1 Subgamma Variables

Definition 1. A random variable X is subgamma with variance proxy σ^2 and exponential scale c if:

(I) \[\mathbb{E} \left[e^{\lambda(X - \mathbb{E}[X])} \right] \leq e^{\frac{\lambda^2 \sigma^2}{2}} \quad \forall |\lambda| \leq \frac{1}{c} \]

This definition implies:

(II) \[P[|X - \mathbb{E}[X]| \geq t] \leq 2 \cdot \max \left(e^{-\frac{t^2}{2\sigma^2}}, e^{-\frac{t}{2c}} \right). \]

(III) With probability $\geq 1 - \delta$,

\[|X - \mathbb{E}[X]| \leq \sqrt{2\sigma^2 \ln \left(\frac{2}{\delta} \right)} + 2c \ln \left(\frac{2}{\delta} \right). \]

Either of the latter two properties also implies the definition (I), with a loss in parameters: $\sigma^2 \mapsto O(\sigma^2 + c^2)$ and $c \mapsto O(c)$.

This is a generalization of the subgaussian random variables we considered in last class, with the introduction of c. In particular, Subgaussian(σ^2) = Subgamma($\sigma^2, 0$).

Example

Let $Z \sim \mathcal{N}(0, 1)$ and $X = Z^2$.

Then

\[\mathbb{E}[X] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} z^2 e^{-\frac{z^2}{2}} \, dz = 1. \] (split the integrand into $z \cdot ze^{-z^2/2}$ and use integration by parts)

And the centered MGF is

\[\mathbb{E} \left[e^{\lambda(X - 1)} \right] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{\lambda(z^2 - 1)} e^{-\frac{z^2}{2}} \, dz \]

\[= \frac{e^{-\lambda}}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{\left(\lambda - \frac{1}{2} \right) z^2} \, dz \]
\[e^{-\lambda \sigma} \frac{1}{\sqrt{2\pi \sigma^2}} \int_{-\infty}^{\infty} e^{-\frac{z^2}{2\sigma^2}} \, dz = e^{-\frac{\lambda}{2}} = e^{-\frac{1}{2\sigma^2}} \]

\[\left(\lambda - \frac{1}{2} = -\frac{1}{2\sigma^2} \right) \]

So \(X \) is Subgamma(4, 4).

Alternatively, if \(Z \) is mean 0 and Subgaussian(\(\sigma^2 \)) and \(X = Z^2 \) then we claim that \(X \) is Subgamma(\(O(\sigma^4), O(\sigma^2) \)).

To show this note that from the definition of Subgaussian random variables we know that with probability \(1 - \delta \)

\[Z = O(\sigma \sqrt{\log(\frac{2}{\delta})}) \]

So by squaring both sides, we have

\[Z^2 = O\left(\sigma^2 \log\left(\frac{2}{\delta}\right) \right) \]

which fits (III) if \(\sigma^2 = 0 \) and \(c = O(\sigma^2) \). Thus, after conversion we end up with variance proxy \(O(\sigma^4) \) and exponential scale \(O(\sigma^2) \).

2 Basic Properties

- If \(X_1, X_2 \) are independent and are \((\sigma_1^2, c_1)\)- and \((\sigma_2^2, c_2)\)-Subgamma, then \(X_1 + X_2 \) is \((\sigma_1^2 + \sigma_2^2, \max(c_1, c_2))\)-Subgamma.

- If \(X \) is \((\sigma^2, c)\)-Subgamma, then \(\alpha X \) is \((\alpha^2 \sigma^2, \alpha c)\)-Subgamma for any constant \(\alpha \).

3 Johnson-Lindenstrauss-Lemma (84)

Theorem 2 (Johnson-Lindenstrauss-Lemma). Let \(X_1, \ldots, X_n \in \mathbb{R}^d \). Then there exist \(y_1, \ldots, y_n \in \mathbb{R}^m \) (\(m \) “small”) such that for all \(i, j \):

\[\|y_i - y_j\|_2 = (1 \pm \epsilon)\|x_i - x_j\|_2 \]

Theorem 3 (Distributional Johnson-Lindenstrauss-Lemma). There exists a random linear map \(A \in \mathbb{R}^{m\times d} \) (entries of \(A \sim \mathcal{N}(0, 1/m) \)) such that \(\forall x \in \mathbb{R}^d \)

\[\|Ax\|_2 = (1 \pm \epsilon)\|x\|_2 \quad \text{with probability } 1 - 2e^{-\Omega(\epsilon^2 m)} \]

(or with probability \(1 - \delta \) if \(m = O\left(\frac{1}{\epsilon^2 \log\left(\frac{2}{\delta}\right)} \right) \)).
From The Distributional To the Standard Johnson-Lindenstrauss-Lemma

Set \(y_i = Ax_i \) with \(\delta = \frac{1}{m} \). Then with probability \(1 - \frac{1}{n} \) we have for all \(i, j \):
\[
\| A(x_i - x_j) \| = (1 \pm \epsilon) \| x_i - x_j \|
\]
\[
= \| y_i - y_j \|
\]
(Probability > 0 certainly implies existence.)

Proving The Distributional Johnson-Lindenstrauss-Lemma

Proof. Select the entries of \(A \) according to \(\mathcal{N}(0, 1/m) \). Then, denoting the \(i \)th row of \(A \) as \(A_i \), we have
\[
\forall x : \quad y_i = A_i x \sim \sum_{j=1}^{m} \mathcal{N}(0, 1/m) x_j = \mathcal{N}(0, \sum_{j=1}^{m} x_j^2 / m)
\]
meaning \(y_i \) is normally distributed with mean 0 and variance \(\frac{1}{m} \| x \|_2^2 \).
Therefore,
\[
\mathbb{E}[\| y \|_2^2] = \sum_i = 1^m \mathbb{E}[y_i^2] = m \cdot \text{Var}[y_i] = \| x \|_2^2
\]
All we need then is
\[
P[\| y \|_2^2 \text{ is far from } \mathbb{E}[\| y \|_2^2]] \leq \text{something small.}
\]
Suppose \(y_i \sim \mathcal{N}(0, 1) \). How does \(\sum_{i=1}^{m} y_i^2 \) concentrate about the expected value \(m \)?
It is \(\text{Subgamma}(4m, 4) \). Hence,
\[
P\left[\left| \sum_{i=1}^{m} y_i^2 - m \right| \geq t \right] \leq 2 \cdot \max\left(e^{-\frac{t^2}{8m}}, e^{-\frac{t}{8}} \right)
\]
\[
\leq 2 \cdot \max\left(e^{-\frac{2m}{8}}, e^{-\frac{\epsilon m}{8}} \right) \quad (\text{if } \epsilon < 1)
\]

4 Bernstein-type Bound

If \(|X - \mu| \leq m \) with probability 1—in other words, if \(X \) is restricted to a finite interval—then \(X \) is \(\text{Subgamma}(2 \cdot \text{Var}[X], 2m) \).
Example 1

X_i is a coin with bias p_i towards 0. And $X = \sum_i X_i$. Then

$$\mathbb{E}[X] = \sum_i p_i = \mu$$

and

$$\text{Var}[X] \leq \mu.$$

Therefore, X is Subgamma($2\mu, 2$) which implies

$$\mathbb{P}\left[|X - \mu| \geq \epsilon \mu\right] \leq 2e^{-\min(\epsilon^2, \epsilon)^{\mu/4}}.$$ (multiplicative Chernoff)

Example 2

In the coupon collector problem we had

$$T_i \sim \text{geom}(p_i) \quad p_i = \frac{n + 1 - i}{n}$$

where T_i was the arrival time of the ith item.

Consequently,

$$\mathbb{E}[T_i] = \frac{n + 1 - i}{n}$$

and

$$\mathbb{E}[T] = \sum_i \mathbb{E}[T_i] = nH_n = O(n \log(n)).$$

By the Bernstein bound we have that T_i is Subgamma\(O\left(\frac{1}{p_i^2}\right), O\left(\frac{1}{p_i}\right)\). Therefore, $T = \sum T_i$ is

Subgamma\(O\left(\sum \frac{1}{p_i^2}\right), O\left(\max \frac{1}{p_i}\right)\) = Subgamma(n^2, n).

Hence, with probability $1 - \delta$

$$T \leq \mathbb{E}[T] + O\left(\sqrt{n^2 \log\left(\frac{2}{\delta}\right)} + n \log\left(\frac{1}{\delta}\right)\right)$$

$$= O\left(n \log\left(\frac{n}{\delta}\right)\right).$$