1 Balls and Bins Revisit

Question:

1. How many balls can I throw in, typically, into \(n \) bins before

(a) max load is 2 with 1 choice?

(b) max load is 2 with 2 choices?

2. How many balls can I throw in, typically, into \(n \) bins before

(a) max load is 3 with 1 choice?

(b) max load is 3 with 2 choices?

(1.a) After \(k \) balls are thrown, if max load is 1, then the loads of \(k \) bins are 1 and \(n - k \) bins are 0. Define failure as the case that the max load is 2. The chance of failure of \(k \)-th is \(\frac{k}{n} \).

Between \(\frac{k}{2} \)-th and \(k \)-th balls thrown, the failure prob is \(O \left(\frac{k}{n} \right) \). The total failure probability after \(k \) balls are thrown is approximately \(1 - \left(1 - \frac{k}{n}\right)^k = \Theta \left(\frac{k^2}{n} \right) \).

(1.b) Same analysis as (1.a). Except now the failure probability of \(k \)-th is \(O \left(\frac{k^2}{n^2} \right) \). So the total failure probability after \(k \) balls are thrown is \(1 - \left(1 - \frac{k^2}{n^2}\right)^k = \Theta \left(\frac{k^3}{n^2} \right) \).

(2.a) After \(k \) balls \((k < n)\) are thrown,

- expect \(\Theta (k) \) bins with 1 ball.
- expect \(\Theta \left(\frac{k^2}{n} \times k \right) = \Theta \left(\frac{k^3}{n} \right) \) bins with 2 ball.
- with \(\Theta \left(\frac{k^3}{n^2} \right) \) probability that there exists a bin with height 3.
Typically, we can throw $\Theta(n^{2/3})$ balls before the max load is 3.

(2.b) After k balls ($k < n$) are thrown,

- expect $\Theta(k)$ bins with 1 ball.
- expect $\Theta\left(\frac{k}{n} \times \frac{k}{n} \times k\right) = \Theta\left(\frac{k^3}{n^2}\right)$ bins with 2 ball.
- with $\Theta\left(\frac{k^7}{n^6}\right)$ probability that there exists a bin with height 3.

Typically, we can throw $\Theta(n^{6/7})$ balls before the max load is 3.

Conclusion: In general, for any height $C = O(1)$. We can throw k balls, typically, before the max load is C where

(a) $k = n^{1 - \frac{1}{C}}$ with 1 choice

(b) $k = n^{1 - \frac{1}{2^{x-1}}}$ with 2 choices

2 Random Walk

Question: Start at 0. At each step, move +1 or -1 with equal probability. Stop if reach -10 or 100

(a) $\Pr[\text{stop at -10}]$

(b) How long does it stop in expectation?

Solution:

(a)

Method 1: Using expectation

Let X_t denote the distribution of its location after moving t steps. $\mathbb{E}[X_t - X_{t-1}] = \frac{1}{2} \times (+1) + \frac{1}{2} \times (-1) = 0$. Therefore, $\mathbb{E}[X_t]$ remains the same for different t. $\mathbb{P}[\text{stops at } -10] \times (-10) + (1 - \mathbb{P}[\text{stops at 100}]) \times 100 = 0$ which indicates $\mathbb{P}[\text{stops at } -10] = \frac{10}{11}$.

Method 2: Let p_i denote the probability of stopping at -10 when starting at i. We have

$$p_i = \begin{cases} 1 & \text{if } i = -10; \\ 0 & \text{if } i = 100; \\ \frac{1}{2} (p_{i-1} + p_{i+1}) & \text{otherwise.} \end{cases}$$

By solving this equation, We have p_i is linear with i and $p_0 = \frac{10}{11}$.
Let n_i denote the expected number of steps to stop when starting at i. We have
\[
 n_i = \begin{cases}
 0 & \text{if } i = -10 \text{ or } 100; \\
 \frac{1}{2} (n_{i-1} + 1) + \frac{1}{2} (n_{i+1} + 1) & \text{otherwise}.
 \end{cases}
\]
By solving this equation, we have $n_i = -i^2 + 90i + 1000$ and $n_0 = 1000$.

(b)