Problem Set 1
Randomized Algorithms
Due Thursday, September 5

1. [MR 1.8]. Consider adapting the min-cut algorithm of the first class to the problem of finding an \(s-t \) min-cut in an undirected graph. In this problem, we are given an undirected graph \(G \) together with two distinguished vertices \(s \) and \(t \). An \(s-t \) min-cut is a set of edges whose removal disconnects \(s \) from \(t \); we seek an edge set of minimum cardinality. As the algorithm proceeds, the vertex \(s \) may get amalgamated into a new vertex as the result of an edge being contracted; we call this vertex the \(s \)-vertex (initially \(s \) itself). Similarly, we have a \(t \)-vertex. As we run the contraction algorithm, we ensure that we never contract an edge between the \(s \)-vertex and the \(t \)-vertex.

(a) Show that there are graphs (not multi-graphs) in which the probability that this algorithm finds an \(s-t \) min-cut is exponentially small.

(b) How large can the number of different \(s-t \) min-cut solutions in an instance be?

(c) Can you derive a very different bound for the number of different global min-cuts, as a consequence of the algorithm presented in class?

2. [Karger] Suppose we have access to a source of unbiased random bits. This problem looks at constructing biased coins or dice from this source.

(a) Show how to construct a biased coin, which is 1 with probability \(p \) and 0 otherwise, using \(O(1) \) random bits in expectation. [Hint: First show how to construct a biased coin using an arbitrary number of random bits. Then show that the expected number of bits examined is small.]

(b) Show how to sample from \([n]\), with probabilities \(p_1, \ldots, p_n \), using \(O(\log n) \) random bits in expectation.

(c) Show that the “in expectation” caveat is necessary: for example, one cannot sample uniformly over \(\{1,2,3\} \) using \(O(1) \) bits in the worst case.

(d) [Optional.] Give a fast algorithm to sample from \([n]\) with probabilities \(p_1, \ldots, p_n \). That is, give an algorithm that uses in expectation \(O(\log n) \) bits and \(O(1) \) time per sample (in the word RAM model, so manipulating/indexing with \(O(\log n) \)-bit words takes \(O(1) \) time.). Your algorithm may preprocess the input, using \(O(n) \) time and space. [Hints: (a) if all the \(p_i \) came in pairs that summed to \(2/n \), could you solve the problem? (b) can you break up any set of \(p_i \) into \(2n \) total pieces, so the pieces come in pairs that sum to \(1/n \)?]