1. Recall the Bloom filter for approximate set membership: to store a set of \(n \) items, you create a bit array of length \(m \), and each item sets \(k \) random locations to 1. We showed in class that if \(k \approx \frac{m}{n} \ln 2 \) and \(m \approx \frac{1}{\ln 2} n \log_2(1/\delta) \) then this has no false negatives and a \(\delta \) chance of a false positive.

Now suppose there are \(\text{two} \) sets of size \(n \), \(A \) and \(B \), that are stored in Bloom filters with the same hash function \(h \). Let \(x_A \) and \(x_B \) be the corresponding bit arrays, and consider the bitwise AND of the two Bloom filters, \(y = x_A \& x_B \).

(a) Explain how to use \(y \) to estimate membership of \(A \cap B \). What are the false positive and false negative rates, in terms of \(n, m, k \), and \(|A \cap B| \)?

(b) Now optimize \(k \) to make the error rates as small as possible, for a fixed \(n \) and \(m \) (and for the worst case \(|A \cap B| \)). [Feel free to ignore issues of integrality and lower order terms.]

(c) What is the resulting \(m \) in terms of \(n \) and \(\delta \)? Compare this to regular Bloom filters.

(d) What is the expected number of 1s in \(x_A \) and \(y \), with the parameters you have produced? Compare this to the standard Bloom filter parameter setting.

(e) Go through the same argument for using the bitwise OR \(x_A \lor x_B \) to estimate \(A \cup B \).