Problem Set 1

Sublinear Algorithms

Due Tuesday, September 23

1. Let $x_1, ..., x_n \sim N(0, 1)$. Define

$$z = \max_{i \in [n]} x_i.$$

- (a) Prove that $E[z] = \Theta(\sqrt{\log n})$.
- (b) What if the x_i were instead subgaussian with parameter $\sigma = 1$? What would be the bounds on E[z] then?
- 2. Let X_1 and X_2 be subgaussian random variables with parameters σ_1 and σ_2 respectively.
 - (a) Show that $X_1 + X_2$ is subgaussian with parameter $2\sqrt{\sigma_1^2 + \sigma_2^2}$, regardless of whether X_1 and X_2 are independent.
 - (b) If X_1 and X_2 are independent, show that X_1X_2 is subexponential and specify the parameters in terms of σ_1 and σ_2 .
- 3. Recall that the various algorithms for distinct elements take poly(log $n, 1/\epsilon, \log(1/\delta)$) samples to achieve a multiplicative $1 \pm \epsilon$ approximation to the number of distinct elements in the stream with probability 1δ . Is this dependence on ϵ and δ necessary?
 - (a) Show that any streaming algorithm achieving $\epsilon = 0$ and $\delta = 1/10$ must take $\Omega(n)$ space.
 - (b) Show that any streaming algorithm achieving $\epsilon = 1/10$ and $\delta = 0$ must take $\Omega(n)$ space.
 - (c) (Optional) Show that the dependence must be at least poly $(1/\epsilon + \log(1/\delta))$.

4. Recall the AMS sketch from class for $\|\cdot\|_2$ estimation: a random $m \times n$ matrix A with entries $A_{ij} \in \{\pm 1/\sqrt{m}\}$ is drawn for $m = O(1/\epsilon^2)$, and $\|x\|_2^2$ is estimates as $\|Ax\|_2^2$. With at least 3/4 probability, we had

$$(1 - \epsilon) \|x\|_2^2 \le \|Ax\|_2^2 \le (1 + \epsilon) \|x\|_2^2. \tag{1}$$

- (a) Consider the following matrix instead: for each $i \in [n]$, let the *i*th column of A have a single ± 1 in a random row, and 0s elsewhere. Because this matrix is sparse, it can be maintained under turnstile updates in *constant* time. Show that this A still satisfies (1) with 3/4 probability for $m = O(1/\epsilon^2)$.
- (b) Show how to generate A using only $O(\log n)$ bits of randomness.
- 5. Recall the algorithm described in class for testing whether a distribution is uniform: count the fraction of collisions A in the samples x_1, \ldots, x_m , and determine whether it is above or below $1/n + \epsilon^2/(2n)$. We showed using Chebyshev's inequality that after $O(\sqrt{n}/\epsilon^4)$ samples, the observed value of A would probably be within a $1 + \epsilon^2/2$ multiplicative factor of its expected value. We also showed that this suffices for the tester to distinguish uniform distributions from those ϵ -far from uniform.

In this problem, we try to determine whether the dependence is tight. In particular, we know that Pearson's chi-squared test takes $\Theta(n/\epsilon^2)$ samples, so we would like to get a tester with something like a $\Theta(\sqrt{n}/\epsilon^2)$ dependence.

- (a) Show a probability distribution that is ϵ -far from uniform and for which $\Omega(\sqrt{n}/\epsilon^4)$ samples are required for A to be typically a $1+\epsilon^2$ multiplicative approximation of its expected value.
- (b) How many samples does the tester actually take on this distribution to distinguish it from uniform?
- (c) (Optional) If the answer to (b) was less than $\Omega(\sqrt{n}/\epsilon^4)$, find a distribution for which the tester requires $\Omega(\sqrt{n}/\epsilon^4)$ samples or prove that none exists.