Problem Set 2

Sublinear Algorithms

Due Thursday, October 9

1. You are given $n \times n$ matrices A, B, C whose elements are from \mathbb{Z}_2 (i.e., the integers mod 2). Show a randomized algorithm running in $O(n^2)$ time which checks whether $AB = C$. The algorithm should output YES if $AB = C$ and output NO with at least $3/4$ probability if $AB \neq C$.

2. We saw a couple different norms for sparse recovery in our study of Count-Min and Count-Sketch, and we will see more in the future. We say that (k, C)-approximate ℓ_p/ℓ_q recovery of a vector x finds an x' such that

$$\|x - x'\|_p \leq C \min_{k\text{-sparse } x'} \|x - x'\|_q$$

In this problem we study implications among the various guarantees. We say that (k, C) ℓ_p/ℓ_q recovery “implies” (k', C') $\ell_{p'}/\ell_{q'}$ recovery if, given any vector x satisfying the former, we can construct a vector x' satisfying the latter.

Some of the parts below describe the transformation required to get the implication, while for others you need to identify the transformation. Suppose that $C > 1$ and $0 < \epsilon < 1$.

(a) $(k, \epsilon/k) \ell_\infty/\ell_1$ recovery implies $(k, 1 + O(\epsilon)) \ell_1/\ell_1$ recovery by restricting to the largest k coordinates.

(b) $(k, \sqrt{\epsilon/k}) \ell_\infty/\ell_2$ recovery implies $(k, 1 + O(\epsilon)) \ell_2/\ell_2$ recovery by restricting to the largest $2k$ coordinates.

(c) $(2k, C) \ell_2/\ell_2$ recovery implies $(k, C/\sqrt{k}) \ell_2/\ell_1$ recovery.

(d) $(k, C/\sqrt{k}) \ell_2/\ell_1$ recovery implies $(k, O(C)) \ell_1/\ell_1$ recovery.

 (a) Suppose a stream has \(m \) elements in \([n]\), and let \(x_i \) denote the number of elements equal to \(i \). Construct a deterministic streaming algorithm using \(O(\log(mn)) \) bits of space that outputs a single integer \(j \) such that, if there exists an \(i \) such that \(x_i > m/2 \), then the algorithm outputs \(j = i \).

 (b) Extend your result to use \(O(k \log(mn)) \) bits to output \(k \) numbers such that, for any \(i \) with \(x_i > m/(k+1) \), then \(i \) is in the list being output.

 (c) [Optional] Give a deterministic algorithm that supports streaming insertions and deletions and gets a result similar to parts (a) or (b). In particular, use \(O(k \log^c(mn)) \) space to output \(O(k) \) numbers such that for any \(i \) with \(x_i > \|x\|_1/k \), \(i \) is in the output list.

4. The power dissipated by a resistor with resistance \(r \) going between two vertices of voltage \(v_1 \) and \(v_2 \) is \((v_1 - v_2)^2/r\). We can think about a resistor network as a multigraph, where each edge is associated with a resistance \(r_e \). If we assign a set of voltages \(v_i \) to the vertices, then the total power dissipated is simply the sum over all resistors of the power dissipated by that resistor.

Consider maintaining a resistor network under a stream with two kinds of updates:

- **INSERT**((\(i, j \), “tag”, \(r \)) which inserts a new resistor labeled “tag” of resistance \(r \) between \(i \) and \(j \).

- **DELETE**((\(i, j \), “tag”, \(r \)) which deletes the resistor labeled “tag” of resistance \(r \) between \(i \) and \(j \).

(a) Give a streaming algorithm to maintain a sketch such that, for any set \(S \) of vertices, you can estimate the energy used by the circuit if the nodes of \(S \) are set to 1 volt and the rest are set to 0 volts. You should use \(O(n^{1/3} \log(1/\delta)) \) words to get an \(1 \pm \epsilon \) approximation with probability \(1 - \delta \) for each \(S \).

(b) Extend this to estimate the energy used by the circuit for any assignment \(v_1, \ldots, v_n \) of voltages to vertices, to error \(1 \pm \epsilon \) with probability \(1 - \delta \).
(c) Suppose now that we only allow insertions of resistors. Show how to use $O(\frac{n}{\epsilon^2} \log^{c} n)$ bits to have a sketch that with high probability can estimate the energy of every assignment of voltages to vertices up to $1 \pm \epsilon$ error.

Hint: You may use the fact that spectral sparsifiers exist. In particular, for any weighted graph G on n vertices, there is an efficient offline algorithm to construct a graph H on those vertices with only $O(\frac{n}{\epsilon^2} \log^{c} n)$ edges that matches the energy of every assignment of voltages to vertices up to $1 \pm \epsilon$ error.