Problem Set 4

Sublinear Algorithms

Due Tuesday, November 11

. Show that any algorithm that computes an ¢,/¢5 approximate sparse
Fourier transform must look at Q(klog(n/k)/loglogn) positions of the
input, even if the algorithm uses adaptivity.

. In class we showed how to do O(1)-approximate 1-sparse recovery with
O(loglogn) adaptive linear measurements. Show how to do 1 + e
approximate l-sparse recovery with O(% + loglogn) adaptive linear
measurements.

. In class we described an algorithm for computing semi-equispaced Fourier
transforms. In particular, we described how if z is k-sparse with sup-
port {1,2,...,k} then you can compute Zq for any set Q of size k in
O(klog®n) time.

For this problem, show how to solve the reverse problem: suppose that
you are given Tq for an arbitrary set € of size k, and know that x is
k-sparse with support {1,2,...,k}. Show how to reconstruct z.

. In this problem we will consider the sparse Hadamard transform. The
Hadamard transform on N = 2™ is given by ¥ = Hx for

Hi; = (1)
where 7,5 € {0,1}" are identified with [N]. The fast Hadamard trans-
form gives an O(N log N) time algorithm for converting x to X. We will

show how to recover a K-sparse T from query access to z in O(K log® N)
time.

(a) Suppose that T is approximately 1-sparse, i.e. there exists an i
such that |z;| > 0.99||Z||. Use a linear code to find z with O(n)
samples from z and O(n°) time.

1



(b) Now let’s look at extending this to K-sparse recovery. Suppose
K = 2* and consider the K-dimensional hadamard transform of
the vector y € RX given that contains z; for all i with the last
n — k bits equaling some fixed value 7:

y; = ;) for r € {0, 1}””“

Express ¥; in terms of Z and r.

(c) Now consider any A € {0,1}"** and r € {0,1}" in the orthogonal
subspace to A (i.e., ATr = 0 mod 2), and

Yi = T Ai4r

Express y; in terms of z, A and 7.

(d) Show how to use this to “hash” the elements of Z into K buckets
and perform sparse recovery in each bucket. Give an algorithm
that, for any 7 € R", recovers most of the coordinates i where
72 > ||2—2k |3/ K, with large constant probability, in O(K log® N)
time.

(e) Conclude with an algorithm to perform ¢y /¢, recovery in O(K log® N)
time.

5. This problem looks at the 1-sparse Fourier transform. Consider a vector
x € R" such that there exists an i* with

|z | > (1 —€)]|z]]2.

for a sufficiently small constant e. Our goal is to find ¢* from samples
of the Fourier transform

n—1
i/L’\j = Z :ciw”
=0
for w being a primitive nth root of unity.
(a) Consider observations of the form
fr<a) = /x\rﬂz/a:\?"-
Show that f.(a) ~ w®", in the sense that

Erepn | f(a) — w™ > < 1/100.




(b)

(c)

Show how, using O(logn) samples of f,.(a) for random r,a € [n],
you can find ¢* in O(nlogn) time with 1/n¢ failure probability.
This would be sample-efficient but not time efficient.

Now suppose you had a sampling method g(a) such that
lg(a) —w® |> < 1/100.

always. Show how to use O(logn) samples of ¢ to identify i* in
O(logn) time.

Based on the previous part, give a method that uses O(log n loglogn)
time and samples of f,.(a) to recover i* with 1 — 1/log®n proba-
bility. This is time efficient but not sample efficient.

Combine the above methods — one slow but with exponential fail-
ure probability, and the other fast but needing low failure proba-
bility in each step — to use O(logn) samples of f,(a) and O(log® n)
time to recover ¢* with constant probability.

Ideally the algorithm should be nonadaptive, but you may use
adaptivity if you wish.

Hint: recover i* O(loglogn) bits at a time.



