1 Overview

In this lecture, we will overview the three areas of computer science which we will cover in this course.

1. Property Testing: There is a large amount of data which we can ‘query’ locally and we wish to test whether the data satisfies some property using $o(n)$ queries.

2. Streaming Algorithms: The data arrives in a stream and we wish to evaluate some statistic of the data while using $o(n)$ space.

3. Compressed Sensing: We wish to make a $o(n)$ ‘measurements’ of the data and then compute functions of the data.

2 Property Testing

2.1 Introduction

Some well known property testing problems are:

1. Bipartiteness Testing: Is the graph bipartite?
2. Connectedness Testing: Is the graph connected?
3. Uniformity Testing: Is the given distribution uniform?

One might argue that the problems stated above cannot be solved by making sublinear queries. For example, there may be a bipartite graph with just one edge within a bipartition.

So, we relax the problem slightly and phrase it as follows:

Distinguish between

1. X has property P: Accept with high probability.
2. X is a ϵ-far from satisfying P: Reject with high probability.
2.2 Uniformity Testing

The uniformity testing problem may be phrased as follows:

Distinguish between

1. X is the uniform distribution on $[n]$: Accept with high probability
2. X is ϵ-far in TV distance from uniform on $[n]$: Reject with high probability.

In this case, the distance metric used is Total Variation distance: $\|X - \mathcal{U}_n\|_{TV} = \frac{1}{2} \sum_{i=0}^{n} |X_i - \frac{1}{n}|$

Toy Problem: Distinguish between

1. X is the uniform distribution on $[n]$: Accept with high probability
2. X is uniform over $S \subseteq [n], |S| = \frac{n}{2}$: Reject with high probability.

In order to distinguish between these two cases, we may sample until we see more than $n/2$ distinct elements.

If our distribution is from the first case, observe that if we have sampled less than $n/2$ elements, the probability of sampling a new element is more than $\frac{1}{2}$. So, we will need $\approx n$ draws until we see more than $n/2$ elements. So, we use $O(n)$ samples.

If our distribution lies in the second case, we never see more than $n/2$ elements and always reject.

In this course, we will deal with more sophisticated methods that will give us better results.

If we wish to accept/reject with constant probability, we know that $O\left(\sqrt{n}\frac{\epsilon}{\epsilon^2}\right)$ samples suffice for Uniformity Testing problem.

If we wish to accept/reject with δ probability, we knew that $O\left(\sqrt{n}\log\left(\frac{1}{\delta}\right)\right)$. A recent result improves this to $O\left(\frac{\sqrt{n\log\left(\frac{1}{\delta}\right)}}{\epsilon^2} + \frac{\log\left(\frac{1}{\delta}\right)}{\epsilon^2}\right)$

3 Streaming Algorithms

3.1 Introduction

We assume we have a “stream” of data passing by, that is too large to keep in main storage.

- Orders being processed.
- Connections through a router.
- Scanning off disk into RAM.
We can divide these problems into two cases.

Single Pass We only get to see the data once ever. (e.g. router connections)

Multiple Pass Accessing the data stream is expensive, but we can do it multiple times, so we can make a small (usually constant or logarithmic) number of passes over the stream.

Our goal is to compute some function of the data, while using sublinear space, often $O(n^\epsilon)$ or $O(\log^c n)^1$.

3.2 Distinct Elements

In the distinct elements problem, we receive a stream of elements from a “universe” $[U]$. The stream contains n elements, with k distinct elements.

The naïve algorithm takes $O(k \log U)$ bits, by storing every unique element seen so far. If we want to compute k with total accuracy, even with only, say, 9/10 success probability, this many bits is necessary. (see problem set 1)

Instead, we will attempt to find an (ϵ, δ) approximation—with probability $1 - \delta$, our estimate should be between $(1 - \epsilon)k$ and $(1 + \epsilon)k$. A series of algorithms have steadily improved the space bounds for this problem.

Probabilistic Counting $O(\frac{1}{\epsilon^2} \log U)$ space.

LogLog $O(\frac{1}{\epsilon^2} \log \log U)$ space.

HyperLogLog As above, but with better constants. Widely used in practice.

Theoretical Result $O(\frac{1}{\epsilon^2} + \log U)$. Not a practical algorithm.

4 Compressed Sensing

4.1 Introduction

We want to estimate some vector $X \in \mathbb{R}^n$.

- Image
- Audio
- Geological Strata (seismic sensing)

But we can’t observe the data directly. Instead, we have some ability to take “measurements” of it.

1This is typically referred to as “polylog” space
In an MRI scan, we get samples from the Fourier transform of brain waves.

In a single-pixel camera, there is a single photosensitive element with a mask in front of it, as opposed to the many distinct photosensitive elements in a standard camera.

How can we recover X from these measurements? Consider the related problem of compression. There, we use the structure of a signal to compress the signal into a smaller representation, then recover the signal from that representation. (approximately, in the case of lossy compression methods such as mp3s)

Perhaps with the right measurements we can recover X without ever observing the whole thing?

4.2 General Formulation

We need to define what we mean by “measurements”. You may choose $A \in \mathbb{R}^{m \times n}$. You may then sense $AX \in \mathbb{R}^m$. (we can think of AX as being m measurements of X)

But what do we mean by “structure”? Here there are many options. One is sparsity.

Exact Sparsity X has at most k non-zero values.

Approximate Sparsity $\min ||X - X_k||$ is “small”, with the minimum taken over k-sparse vectors X_k.

So in this case, given $Y = AX$ and A, we will attempt to find an estimate \hat{X} of X with error bounded by the lack of sparsity in X, i.e.

$$||\hat{X} - X|| \leq C \min_{\text{k-sparse } X_k} ||X - X_k||$$

4.3 Example

If $A \sim \mathcal{N}(0, I_{m \times n})$, with $m \geq O(k \log \frac{n}{k})$ then, with high probability, A will satisfy the restricted isometry property (the RIP)

If A satisfies the RIP then

$$\forall X, \hat{X} := \arg\min_{||A\hat{X} - Y|| \leq \epsilon} ||\hat{X}||$$

satisfies $||\hat{X} - X||_2 \leq C||X - X_k||_2$ with high probability.