
CS 395T: Sublinear Algorithms Fall 2016

Lecture 10 — September 27, 2016

Prof. Eric Price Scribes: Quinten McNamara & William Hoza

1 Overview

In this lecture, we focus on constructing coresets, which are concise representations of a larger
dataset. We will be particularly interested in coresets for datasets in R2; as an application, we will
see a streaming algorithm for the k-median problem in R2 in the insertion-only model.

2 The k-median problem

The k-median problem can be thought of in terms of the facility location problem: given a set of
consumers that need to be provided service, open a set of k stores that minimizes the cost (total
distance traveled by the consumers.)

Problem definition Let ∆ be a positive integer. Given a set of points P = (p1, . . . , pn) ∈ ([∆]2)n,
find centers C = (c1, . . . , ck) ∈ ([∆]2)k that minimize

d(P,C) :=
∑
i∈[n]

min
j∈[k]
‖pi − cj‖.

Here, ‖ · ‖ could denote the 1-norm or the 2-norm.

Offline complexity of the k-median problem Let C∗ be the minimizer, and let OPT(P, k) =
d(P,C∗). The bad news is that it is NP-hard to exactly compute C∗. This means we should aim
for a (1 + ε)-approximation algorithm, i.e. we should try to construct C such that

d(P,C) ≤ (1 + ε) · OPT(P, k).

The good news is that in 1999, Kolliopoulos and Rao [KR99] provided a (1 + ε)-approximation
algorithm for the k-median problem in R2 with runtime O((1/ε)O(1/ε)n log n log k). The runtime
of the [KR99] algorithm depends badly on ε, but for large values (say ε = 1/2) the runtime is
reasonable. There’s nothing particularly “sublinear” about the [KR99] algorithm, so we won’t go
through it in class. But we will use it as a black box.

2.1 Comparison to k-means

The better-known k-means problem is very similar to the k-median problem; the difference is that
we minimize ∑

i∈[n]

min
j∈[k]
‖pi − cj‖22.

1

To see why the problems are called “k-median” and “k-means”, observe that we can break each
problem into two subproblems:

1. Choose a partition P = P (1) ∪ · · · ∪ P (k).

2. Choose k centers C = (c1, . . . , ck).

The goal is to minimize
∑

j∈[k]

∑
i ‖P

(j)
i − cj‖ in the k-median problem or

∑
j∈[k]

∑
i ‖Pi − cj‖22 in

the k-means problem.

Let’s suppose that we’ve already chosen a partition. Then for each part, we need to choose a center.
One can show that for the k-means problem, the best choice of cj is the mean of the points in P (j).
For the k-median problem, if ‖ · ‖ is the 1-norm, then the best choice of cj is the coordinate-wise
median of the points in P (j). This is easiest to see in one dimension: given p1, . . . , pn ∈ R, the c
minimizing

∑
i(pi − c)2 is the mean of the pis, and the c minimizing

∑
i |pi − c| is the median of

the pis.

3 Coresets

If S = (s1, . . . , sm) ∈ ([∆]2)m and W = (w1, . . . , wm) ∈ Nm, we will think of (S,W) as a weighted
list of points, i.e. wj is the weight of sj .

Definition 1 (Coreset). A (k, ε)-coreset for P = (p1, . . . , pn) is a weighted list of points (S,W)
such that there exists π : [n]→ [m] such that wi = |π−1(i)|, and d(P, S) ≤ ε · OPT(P, k).

Observe that without loss of generality, π(i) gives the index of the closest si to pi, in which case

d(P, S) =
n∑
i=1

‖pi − sπ(i)‖.

Observe also that for ε < 1, we certainly will need m > k, by the definition of OPT(P, k).

3.1 Reducing the k-median problem to coreset construction

Given a (k, ε)-coreset (S,W) for P , we can construct an approximate solution to the k-median
problem for P via the following algorithm: Choose C̃ which minimizes

d((S,W), C̃) :=
∑
i∈[m]

wi · min
j∈[k]
‖si − cj‖.

Claim 2. C̃ is a (1 + 2ε)-approximate solution to the k-median problem for p.

2

Proof. For any C = (c1, . . . , ck),

d(P,C) =
n∑
i=1

min
1≤j≤k

‖pi − cj‖

=
n∑
i=1

min
1≤j≤k

(‖sπ(i) − cj‖ ± ‖pi − sπ(i)‖) by the triangle inequality

= d((S,W), C)± d(P, S)

= d((S,W), C)± ε · OPT(P, k).

By applying this fact first with C = C̃ and then with C = C∗, we find that

d(P, C̃) ≤ d((S,W), C̃) + ε · OPT(P, k)

≤ d((S,W), C∗) + ε · OPT(P, k) by the definition of c̃

≤ d(P,C∗) + 2ε · OPT(P, k)

= (1 + 2ε) · OPT(P, k).

Of course, this reduction is not efficient yet, because finding C̃ is just another instance of the k-
median problem. But a similar analysis shows that if C̃ merely (1 + ε)-approximately minimizes
d((S,W), C̃), it will still be a (1+O(ε))-approximate solution solution to the k-median problem for
P . And as discussed, such a C̃ can be constructed reasonably efficiently using the algorithm from
[KR99].

4 Constructing coresets

4.1 The offline setting

Let’s suppose all the data is available to us.

(1, ε)-coreset in one dimension As a warm-up, how can we construct a (1, ε)-coreset in one
dimension? In other words, we have numbers p1, . . . , pn ∈ R with median c∗, and we would like to
find a small number of points s1, . . . , sm and a map π : [n] → [m] so that if we move each pi to
sπ(i), then the total distance all the points traveled is small compared to the total distance all the
points would travel if we moved them all to c∗.

Construction:
S = {c∗} ∪ {c∗ ± (1 + ε)i : i ∈ {0, 1, . . . , log1+ε ∆}}.

Proof of correctness: Without loss of generality, consider pi between c∗+(1+ε)i and c∗+(1+ε)i+1.
The distance moved by pi is at most |(1 + ε)i+1 − (1 + ε)i|, which is ε · (1 + ε)i, which is at most
ε · |pi − c∗|. It follows that

d(P, (S,W)) ≤ ε · OPT(P, k).

The number of points m is O(1
ε log ∆).

3

(k, ε)-coreset in one dimension We can generalize the construction to a (k, ε)-coreset easily
enough: Let C∗ = (c∗1, . . . , c

∗
k) be the optimal solution to the k-median problem for P . Repeat

the k = 1 construction for each c∗j and overlay the coresets. The total number of points m will be

O(kε log ∆).

(1, ε)-coreset in two dimensions We can generalize the construction to a (1, ε)-coreset for a two-
dimensional dataset as follows. Let c∗ be the solution to the 1-median problem for P . Consider
concentric disks D1, D2, . . . , Dlog ∆ centered at c∗, where disk Dj has radius 2j . Cover each Dj

with disks of radius 2j−1ε. Our coreset consists of the centers of these covering disks. To prove
correctness, observe that if j is the smallest value such that pi ∈ Dj , then ‖pi − c∗‖ ≥ 2j−1, and
hence the distance traveled by pi is at most 2j−1ε ≤ ε · ‖pi − c∗‖. How many disks does it take
to cover each Dj? Area considerations make it clear that we will need at least Ω(1/ε2) disks, and
it turns out that O(ε2) disks suffice. (This can be shown by considering a simple lattice of disks.)
Therefore, the number of points in our coreset m is O(1

ε2
log ∆).

Two dimensions, arbitrary k Once again, generalizing to arbitrary k is straightforward (just re-
peat the construction for each center and overlay the coresets.) The number of points is O(k

ε2
log ∆).

Computational efficiency Unfortunately, our constructions have all relied on knowing the op-
timal k-median centers. What happens if we only have a (1 + ε)-approximation, e.g. from [KR99]?
Given C, we’ve shown how to efficient construct a weighted list (S,W) of m ≤ O(k

ε2
log ∆) points

such that d(P, S) ≤ ε · d(P,C). So as long as C is a 2-approximation to the k-median of P , then
(S,W) will be a (k, 2ε) coreset for P .

4.2 The streaming setting: Merge and reduce

We now present a streaming approximation algorithm for constructing a (k, ε)-coreset. The general
approach is to construct coresets of small batches of the data as they come through the stream,
and then aggregate the coresets to create a coreset for the entire data.

To be more precise, we imagine a binary forest of coresets. The leaves of the forest are batches of
a few input points. Each node is the coreset of its children. Whenever two trees appear with the
same height, a new root node is added to merge them into one tree. The algorithm only actually
has to store a single coreset at each level of this forest. This paradigm is called the merge and
reduce paradigm.

Here is an explicit description of the algorithm. The algorithm maintains a list of coresets (Sj ,Wj),
all initially undefined.

1. Read the input stream P = (p1, . . . , pn) a few points a time. For each batch of a few points:

(a) Condense the points into a (k, ε/ log n)-coreset (S,W).

(b) Initialize j = 1. While (Sj ,Wj) is defined:

i. Set (S,W) to be a (k, ε/ log n)-coreset of (S,W) ∪ (Sj ,Wj).

ii. Delete (Sj ,Wj) so it is no longer defined.

4

iii. Increment j.

(c) Define (Sj ,Wj) := (S,W).

2. Output a (k, ε/ log n)-coreset of all currently defined (Sj ,Wj).

Efficiency For simplicity, we can take the batch size to be, say, 1 point. Then the space used
by the algorithm is only O(k

ε2
log ∆ log3 n), since each coreset requires O(k

(ε/ logn)2
log ∆) space.

(In practice, it would be beneficial to have a larger batch size – after all, we might as well take
k
ε2

log ∆ log3 n points at a time.)

Correctness We need to bound the error accumulation:

Lemma 3. Assume ε ≤ 1/2. Suppose (S1,W1) is a (k, ε)-coreset for P1 and (S2,W2) is a (k, ε)-
coresets for P2. Suppose (S̄, W̄) is a (k, ε′)-coreset for (S1,W1) ∪ (S2,W2). Then (S̄, W̄) is a
(k, 2ε′ + ε)-coreset for P1 ∪ P2.

Proof. We need to bound the distance traveled when we move from P1 ∪ P2 to (S̄, W̄). By the
triangle inequality, this is at most the distance traveled when we move to (S1,W1) ∪ (S2,W2) plus
the distance traveled when we move from (S1,W1) ∪ (S2,W2) to (S̄, W̄):

d(P1 ∪ P2, S̄) ≤ ε · OPT(P1 ∪ P2, k) + d((S̄, W̄), (S1,W1) ∪ (S2,W2))

≤ ε · OPT(P1 ∪ P2, k) + ε′ · OPT((S1,W1) ∪ (S2,W2), k).

Recall that earlier, when reducing the k-median problem to that of constructing coresets, we showed
that

OPT((S1,W1) ∪ (S2,W2), k) ≤ (1 + 2ε) · OPT(P1 ∪ P2, k).

Therefore,

d(P1 ∪ P2, S̄) ≤ (ε+ ε′ · (1 + 2ε)) · OPT(P1 ∪ P2, k)

≤ (ε+ 2ε′) · OPT(P1 ∪ P2, k).

Based on this lemma, one can show by induction that the coresets maintained by the algorithm are
all (k, ε)-coresets, completing the proof of correctness.

References

[KR99] S. G. Kolliopoulos and S. Rao. A nearly linear-time approximation scheme for the Euclidean
k-median problem. In European Symposium on Algorithms, 1643:378–389, 1999.

5

