CS 395T: Sublinear Algorithms Fall 2016

Lecture 10 — September 27, 2016
Prof. Eric Price Scribes: Quinten McNamara & William Hoza

1 Overview

In this lecture, we focus on constructing coresets, which are concise representations of a larger
dataset. We will be particularly interested in coresets for datasets in R?; as an application, we will
see a streaming algorithm for the k-median problem in R? in the insertion-only model.

2 The k-median problem

The k-median problem can be thought of in terms of the facility location problem: given a set of
consumers that need to be provided service, open a set of k stores that minimizes the cost (total
distance traveled by the consumers.)

Problem definition Let A be a positive integer. Given a set of points P = (py, ..., pn) € ([A]?)?,
find centers C' = (c1,...,c) € ([A]*)¥ that minimize

d(P,C) = g min ||p; — ¢jl|-
 JE[K]
1€[n]
Here, || - || could denote the 1-norm or the 2-norm.

Offline complexity of the k-median problem Let C* be the minimizer, and let OPT(P, k) =
d(P,C*). The bad news is that it is NP-hard to exactly compute C*. This means we should aim
for a (1 + €)-approximation algorithm, i.e. we should try to construct C such that

d(P,C) < (1+¢) - OPT(P, k).

The good news is that in 1999, Kolliopoulos and Rao [KR99] provided a (1 + €)-approximation
algorithm for the k-median problem in R? with runtime O((1/€)°/9nlognlogk). The runtime
of the [KR99] algorithm depends badly on €, but for large values (say € = 1/2) the runtime is
reasonable. There’s nothing particularly “sublinear” about the [KR99] algorithm, so we won’t go
through it in class. But we will use it as a black box.

2.1 Comparison to k-means
The better-known k-means problem is very similar to the k-median problem; the difference is that

we minimize
) min ||p; — ;3.
- }JGUC]

1

To see why the problems are called “k-median” and “k-means”, observe that we can break each
problem into two subproblems:

1. Choose a partition P = PO y ...y Pk,
2. Choose k centers C' = (c1,...,cp).

The goal is to minimize ;cp0 >, HPi(j) — ¢j|| in the k-median problem or ;0 >, [P — ¢jll3 in
the k-means problem.

Let’s suppose that we’ve already chosen a partition. Then for each part, we need to choose a center.
One can show that for the k-means problem, the best choice of ¢; is the mean of the points in pU),
For the k-median problem, if || - || is the 1-norm, then the best choice of ¢; is the coordinate-wise
median of the points in PY). This is easiest to see in one dimension: given pi,...,p, € R, the ¢
minimizing >, (p; — ¢)? is the mean of the p;s, and the ¢ minimizing Y, |p; — ¢| is the median of
the p;s.

3 Coresets

If S = (s1,...,8m) € ([A]>)™ and W = (w1, ..., wy) € N™, we will think of (S, W) as a weighted
list of points, i.e. w; is the weight of s;.

Definition 1 (Coreset). A (k,e¢)-coreset for P = (p1,...,pn) s a weighted list of points (S, W)
such that there exists 7 : [n] — [m] such that w; = |7~1(3)|, and d(P,S) < e- OPT(P, k).

Observe that without loss of generality, 7(7) gives the index of the closest s; to p;, in which case
n
d(P,S) = " |Ipi = sl
i=1
Observe also that for e < 1, we certainly will need m > k, by the definition of OPT(P, k).

3.1 Reducing the k-median problem to coreset construction

Given a (k,e)-coreset (S,W) for P, we can construct an approximate solution to the k-median
problem for P via the following algorithm: Choose C' which minimizes

d((S,W),C) = Z w; ?elb?] l|si — ¢l
i€[m)

Claim 2. C is a (1 + 2¢)-approximate solution to the k-median problem for p.

Proof. For any C = (¢1,...,¢cx),
n
= Zé?& Ipi =

= 3 11r<1[11£1]C (8@ — ¢ill £ [Ilpi = sx@)ll) by the triangle inequality

- d((S, W), C) + d(P,S)
— d((S,W),C) + ¢ - OPT(P, k).

By applying this fact first with C' = C' and then with C' = C*, we find that

d(P,C) < d((S,W),C) +¢-OPT(P, k)
<d((S,W),C*) 4+ ¢€-OPT(P,k) by the definition of ¢
< d(P,C*) + 2¢ - OPT(P, k)

(1

+2¢) - OPT(P, k). 0

Of course, this reduction is not efficient yet, because finding C is just another instance of the k-
median problem. But a similar analysis shows that if C' merely (1 + €)-approximately minimizes
d((S, W),), it will still be a (14 O(¢))-approximate solution solution to the k-median problem for
P. And as discussed, such a C' can be constructed reasonably efficiently using the algorithm from
[KR99).

4 Constructing coresets

4.1 The offline setting

Let’s suppose all the data is available to us.

(1,€)-coreset in one dimension As a warm-up, how can we construct a (1, €)-coreset in one
dimension? In other words, we have numbers p1,...,p, € R with median ¢*, and we would like to
find a small number of points si,..., s, and a map 7 : [n] — [m] so that if we move each p; to
(i), then the total distance all the points traveled is small compared to the total distance all the
points would travel if we moved them all to c*.

Construction:

S={ctu{crL(1+e':ic{0,1,...,log A}}.

Proof of correctness: Without loss of generality, consider p; between ¢* + (1 +¢)® and ¢* + (1+¢€)*L.
The distance moved by p; is at most |(1 + €)*1 — (1 + €)?|, which is € - (1 + €)%, which is at most
€ |pi — c*|. It follows that

d(P,(S,W)) <e-OPT(P,k).

The number of points m is O(2 log A).

(k,e)-coreset in one dimension We can generalize the construction to a (k,e€)-coreset easily
enough: Let C* = (c],...,c}) be the optimal solution to the A-median problem for P. Repeat
the k = 1 construction for each ¢; and overlay the coresets. The total number of points m will be

O(%log A).

(1,€)-coreset in two dimensions We can generalize the construction to a (1, €)-coreset for a two-
dimensional dataset as follows. Let ¢* be the solution to the 1-median problem for P. Consider
concentric disks D1, Do, ..., Doy o centered at c*, where disk D; has radius 2J. Cover each D;
with disks of radius 2/~'e. Our coreset consists of the centers of these covering disks. To prove
correctness, observe that if j is the smallest value such that p; € Dj, then ||p; — ¢*|| > 2= and
hence the distance traveled by p; is at most 2/~te < e ||p; — ¢*||. How many disks does it take
to cover each D;? Area considerations make it clear that we will need at least €2(1/€*) disks, and
it turns out that O(e2?) disks suffice. (This can be shown by considering a simple lattice of disks.)
Therefore, the number of points in our coreset m is O(Ei2 log A).

Two dimensions, arbitrary £ Once again, generalizing to arbitrary k is straightforward (just re-
peat the construction for each center and overlay the coresets.) The number of points is O(eﬁ2 log A).

Computational efficiency Unfortunately, our constructions have all relied on knowing the op-
timal k-median centers. What happens if we only have a (1 + €)-approximation, e.g. from [KR99]?
Given C, we’ve shown how to efficient construct a weighted list (S, W) of m < O(eﬁ2 log A) points
such that d(P,S) < e-d(P,C). So as long as C is a 2-approximation to the k-median of P, then
(S, W) will be a (k, 2¢) coreset for P.

4.2 The streaming setting: Merge and reduce

We now present a streaming approximation algorithm for constructing a (k, €)-coreset. The general
approach is to construct coresets of small batches of the data as they come through the stream,
and then aggregate the coresets to create a coreset for the entire data.

To be more precise, we imagine a binary forest of coresets. The leaves of the forest are batches of
a few input points. Each node is the coreset of its children. Whenever two trees appear with the
same height, a new root node is added to merge them into one tree. The algorithm only actually
has to store a single coreset at each level of this forest. This paradigm is called the merge and
reduce paradigm.

Here is an explicit description of the algorithm. The algorithm maintains a list of coresets (S, W),
all initially undefined.

1. Read the input stream P = (p1,...,p,) a few points a time. For each batch of a few points:

(a) Condense the points into a (k, €/ log n)-coreset (S, W).

(b) Initialize j = 1. While (S;, W}) is defined:
i. Set (S,W) to be a (k, e/ logn)-coreset of (S, W)U (S;, W;).
ii. Delete (S;,Wj) so it is no longer defined.

iii. Increment j.

(c) Define (S;, W;) := (S, W).

2. Output a (k, €/logn)-coreset of all currently defined (S, Wj).

Efficiency For simplicity, we can take the batch size to be, say, 1 point. Then the space used
by the algorithm is only O(eﬁ2 log Alog®n), since each coreset requires O((e/b#gn)? log A) space.
(In practice, it would be beneficial to have a larger batch size — after all, we might as well take
E% log Alog®n points at a time.)

Correctness We need to bound the error accumulation:

Lemma 3. Assume ¢ < 1/2. Suppose (S1,W1) is a (k,e€)-coreset for Py and (Sa, Wa) is a (k,€)-
coresets for Py. Suppose (S, W) is a (k,€')-coreset for (S1,W1) U (S2,Ws). Then (S,W) is a
(k,2€¢ + €)-coreset for Py U Ps.

Proof. We need to bound the distance traveled when we move from Py U Py to (S,W). By the
triangle inequality, this is at most the distance traveled when we move to (S1, W) U (S2, W3) plus
the distance traveled when we move from (S7, W) U (Sa, Wa) to (S, W):

d(P1 U Ps, 5') <e€- OPT(Pl U PQ,k) + d((g, W), (51, Wl) U (SQ,WQ))
<e€- OPT(P1 U P, k) +é- OPT((Sl, Wl) U (Sz, WQ), k)

Recall that earlier, when reducing the k-median problem to that of constructing coresets, we showed
that
OPT((S1, W1) U (SQ, Wz), k) < (1 + 26) . OPT(P1 U Py, k)

Therefore,

d(PLUP,,S) < (e+€-(1+2¢)-OPT(PLU Py, k)

(e +2¢)-OPT(PLU Py, k). O

VANVAN

Based on this lemma, one can show by induction that the coresets maintained by the algorithm are
all (k, €)-coresets, completing the proof of correctness.

References

[KR99] S. G. Kolliopoulos and S. Rao. A nearly linear-time approximation scheme for the Euclidean
k-median problem. In Furopean Symposium on Algorithms, 1643:378-389, 1999.

