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1 Overview

In previous lectures, we have shown how to estimate lo norm using AMS-sketch and how to estimate
number of distinct elements. As a result, we get O(e%) for Iy and O(log®n) for Iy respectively.

In this lecture, we will estimate pth moment, where p € (0, 2) and show that it is doable in O(log®n)
space. On the other hand, when p > 2, linear sketches require Q(nk?/ P) words, and is not doable

in poly log n space.

2 A special case when p =1

First, recall the algorithm for p = 2.

e Select v € R™, where v; ~ N(0,1), then (v, z) ~ N(0, ||=[|?)

e Take (vi,z), (v, x), (v3,2),---: samples at N(O,||z||?) and then estimate. This requires
O(ei2 log %) samples.

For p =1, instead of choosing samples from Gaussian distribution, we use Cauchy distribution.

2.1 Cauchy Distribution Basics

In this section, we will look at the definitions and properties of Cauchy distribution:

e Standard form of Cauchy Distribution:
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e Claim: If Xy ~ Cauchy(y1), Xo ~ Cauchy(vysz), then X1 + Xo ~ Cauchy(y1 + v2)



Proof: The Fourier Transform of standard Cauchy Distribution is given as follows:
Fz(t) = E[cos(2ntz)]
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Inverse Fourier Transform of standard Cauchy Distribution is:
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We can similarly show that the Fourier transform of Fegychy(y)(t) is exp(=27[t|y).
Thus, if X; ~ Cauchy(v1), X2 ~ Cauchy(vyz2), then:

Fxi+x5(t) = Fx, (1) Fx, () = exp (=27 (t[(v1 +72))

= FCauchy(n+72) (t)

X1+ Xo+... X,
n

This seemingly violates the law of large numbers which states that the distribution of the

average of n random variables approaches that of a Gaussian as n increases. The law of large

numbers is only applicable for random variables that have a finite expectation which does not

hold for Cauchy random variables.

Now, if we have X, Xo,..., X, ~ Cauchy(1), then ~ Cauchy(1).

e p — stable distribution:
Let p > 0 be a real number. A probability distribution D is a p — stable distribution if
Vai,as,...a, and Xi,...X, D are independently chosen, ), a;X;, aX have the same distri-
bution and X ~ D and a = ||al|,

p — stable distribution are typically defined 0 < p < 2 and do not exist for p > 2

Using the above definition, we can easily show that Cauchy is a 1—stable distribution while
Gaussian is a 2—stable distribution.

2.2 Algorithm for p=1

Here is the algorithm.

e Fori=1,---,m, sample A;.’s elements from Cauchy(y = 1) distribution.



e Then, y; = A;.x follows distribution Cauchy(y = ||z||1), according to properties in section
2.1.

e Store yi,- -, Ym-

e Let the median of |y;| be our estimator for ||z||;.

Question: Given m samples of Cauchy with unknown -+, how well can we estimate ~7

Use median. Then, how does median of |y;|,7 € [n] behave?

Claim: the median of |y;|,i € [n] — 7.

e How do we know ¢?

e How fast?

To answer the first question, we can compute ¢ directly. ¢ should satisfy:
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To answer the second question, we use the same methodology as in Lecture 7. Notice that the
following is correct

Byl > (14 €)er) = 5 — Q6) 3)

Then, using Chernoff bound (refer to Lecture 7), we know that a (e,d) estimate requires m =
O(%log §).

Here is an intuitive explanation of the result for m. For the probability density distribution f of
lyi|, the density at © = 0 is constant, and so does the density at the median point z;,.q where
fom med f(x)dx = 1/2. Now, if you have m balls and draw them randomly according to distribution
[, then, the total number of balls that lie less than z,,eq are % + O(y/m). Now, for example,
suppose we have % — /m that fall below ¢4, then, in order to find the median ball, we need
to move slightly right from x,,.q to cover another /m balls. Notice that in total we have m
balls, that is saying, the increased mass due to moving x,,.q to the right should be approximately
1/y/m. Furthermore, since the density at 2.4 is constant, the distance moving right is O(1/y/m).
Therefore, in order to achieve an € approximation, m = O(e%) is required.



2.3 Other p in the interval (1,2)

For other p, we can use the similar methodology as we did when p = 1, i.e., we build a p-stable
distribution D. If all the elements of A; . are sampled from D(1), then, one can show that y; follows
distribution D(||z||,), and all the rest parts of the algorithm remains the same.

3 Lower Bound for p > 2

Proving the lower bound for p > 2 will be shown in next class. We will use ideas from information
theory (Shannon-Hartley theorem) to prove it.



