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1 Overview

In previous lectures, we have shown how to estimate l2 norm using AMS-sketch and how to estimate
number of distinct elements. As a result, we get O( 1

ε2
) for l2 and O(logc n) for l0 respectively.

In this lecture, we will estimate pth moment, where p ∈ (0, 2) and show that it is doable in O(logc n)
space. On the other hand, when p > 2, linear sketches require Ω(n1−2/p) words, and is not doable
in poly log n space.

2 A special case when p = 1

First, recall the algorithm for p = 2.

• Select v ∈ Rn, where vi ∼ N(0, 1), then 〈v, x〉 ∼ N(0, ‖x‖2)

• Take 〈v1, x〉 , 〈v2, x〉 , 〈v3, x〉 , · · · : samples at N(0, ‖x‖2) and then estimate. This requires
O( 1

ε2
log 1

δ ) samples.

For p = 1, instead of choosing samples from Gaussian distribution, we use Cauchy distribution.

2.1 Cauchy Distribution Basics

In this section, we will look at the definitions and properties of Cauchy distribution:

• Standard form of Cauchy Distribution:

p(x) =
1

π

1

x2 + 1
(1)

• General Form: Cauchy Distribution with scale factor γ

p(x) =
1

πγ

1(
x
γ

)2
+ 1

(2)

• Claim: If X1 ∼ Cauchy(γ1), X2 ∼ Cauchy(γ2), then X1 +X2 ∼ Cauchy(γ1 + γ2)
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Proof: The Fourier Transform of standard Cauchy Distribution is given as follows:

Fx(t) = E[cos(2πtx)]

=

∫ ∞
−∞

exp(2πitx)
1

π(1 + x2)
dx

= exp(−2π|t|)

Inverse Fourier Transform of standard Cauchy Distribution is:

F−1x (t) =

∫ ∞
−∞

exp(2πitx) exp(2π|t|)dx

=

∫ 0

−∞
exp(2πitx− 2πt)dt+

∫ ∞
0

exp(2πitx+ 2πt)dt

=
1

2π(1− ix)
+

1

2π(1 + ix)

=
1

π(1 + x2)
= p(x)

We can similarly show that the Fourier transform of FCauchy(γ)(t) is exp(−2π|t|γ).

Thus, if X1 ∼ Cauchy(γ1), X2 ∼ Cauchy(γ2), then:

FX1+X2(t) = FX1(t)FX2(t) = exp (−2π|t|(γ1 + γ2))

= FCauchy(γ1+γ2)(t)

Now, if we have X1, X2, . . . , Xn ∼ Cauchy(1), then
X1 +X2 + . . . Xn

n
∼ Cauchy(1).

This seemingly violates the law of large numbers which states that the distribution of the
average of n random variables approaches that of a Gaussian as n increases. The law of large
numbers is only applicable for random variables that have a finite expectation which does not
hold for Cauchy random variables.

• p− stable distribution:
Let p > 0 be a real number. A probability distribution D is a p − stable distribution if
∀a1, a2, . . . an and X1, . . . Xn D are independently chosen,

∑
i aiXi, āX have the same distri-

bution and X ∼ D and ā = ‖a‖p
p− stable distribution are typically defined 0 < p < 2 and do not exist for p > 2

Using the above definition, we can easily show that Cauchy is a 1−stable distribution while
Gaussian is a 2−stable distribution.

2.2 Algorithm for p = 1

Here is the algorithm.

• For i = 1, · · · ,m, sample Ai,:’s elements from Cauchy(γ = 1) distribution.
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• Then, yi = Ai,:x follows distribution Cauchy(γ = ‖x‖1), according to properties in section
2.1.

• Store y1, · · · , ym.

• Let the median of |yi| be our estimator for ‖x‖1.

Question: Given m samples of Cauchy with unknown γ, how well can we estimate γ?

Use median. Then, how does median of |yi|, i ∈ [n] behave?

Claim: the median of |yi|, i ∈ [n] → cγ.

• How do we know c?

• How fast?

To answer the first question, we can compute c directly. c should satisfy:

P(|yi| < cγ) =
1

2

⇒ 2

∫ cγ

0

1

πγ((xγ )2 + 1)
dx =

1

2

⇒ 2

∫ c

0

1

π(x2 + 1)
dx =

1

2

⇒ 2

π
arctanx|c0 =

1

2

⇒ arctan c =
π

4
⇒ c = 1.

To answer the second question, we use the same methodology as in Lecture 7. Notice that the
following is correct

P(|yi| > (1 + ε)cγ) =
1

2
− Ω(ε) (3)

Then, using Chernoff bound (refer to Lecture 7), we know that a (ε, δ) estimate requires m =
O( 1

ε2
log 1

δ ).

Here is an intuitive explanation of the result for m. For the probability density distribution f of
|yi|, the density at x = 0 is constant, and so does the density at the median point xmed where∫ xmed

0 f(x)dx = 1/2. Now, if you have m balls and draw them randomly according to distribution
f , then, the total number of balls that lie less than xmed are m

2 + O(
√
m). Now, for example,

suppose we have m
2 −
√
m that fall below xmed, then, in order to find the median ball, we need

to move slightly right from xmed to cover another
√
m balls. Notice that in total we have m

balls, that is saying, the increased mass due to moving xmed to the right should be approximately
1/
√
m. Furthermore, since the density at xmed is constant, the distance moving right is O(1/

√
m).

Therefore, in order to achieve an ε approximation, m = O( 1
ε2

) is required.
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2.3 Other p in the interval (1, 2)

For other p, we can use the similar methodology as we did when p = 1, i.e., we build a p-stable
distribution D. If all the elements of Ai,: are sampled from D(1), then, one can show that yi follows
distribution D(‖x‖p), and all the rest parts of the algorithm remains the same.

3 Lower Bound for p > 2

Proving the lower bound for p > 2 will be shown in next class. We will use ideas from information
theory (Shannon-Hartley theorem) to prove it.
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