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Lecture 12 — October 4, 2016

Prof. Eric Price Scribe: Akshay D Kamath, Surbhi Goel

1 Lower Bounds for pth Moment (p > 2)

We will prove lower bounds for pth Moment (p > 2) using information theory. Suppose we have
an algorithm Alg and a distribution on A ∈ Rm×n such that given x ∈ Rn, running Alg on (Ax)
outputs v that satisfies v = (1± ε)||x||pp w.p. 1− δ.

Consider the following setup,

• Alice has bit b ∈ {0, 1} drawn uniformly at random. She chooses x∗, w ∈ Rn such that
w ∼ N(0, σ2In) and

x∗ =

0 if b = 0 ,

ei w.p. 1/n ∀i ∈ {1, . . . , n} if b = 1 .

She sends A(x∗ + w) to Bob.

• Bob runs Alg on A(x∗ + w) to estimate ||x∗ + w||pp and outputs b̂ = Alg(A(x∗ + w)) > 1.5.

We can easily see that,

||x∗ + w||pp ≈

nσ
p if b = 0 ,

1 + nσp if b = 1 .

Claim 1.0.1. Perr = Pr[b̂ 6= b] < 1/3.

Proof. Set σ < n−1/p, then getting ε = 0.1 approximation to ||x ∗+w||pp lets Bob learn b with error
probability δ+ o(1) < 1/3 where δ is the error made in streaming and o(1) is the chance ||x∗+w||pp
deviates by a constant. Thus we will get Perr = Pr[b̂ 6= b] < 1/3.

Claim 1.0.2. Information between b̂ and b is ≤ m
n1−2/p .

Proof. WLOG, we can assume that rows of A are orthonormal. To see this, take SVD of A = UΣV T .
Then, if algorithm works using A, it also works using V T . Given V T , we can construct Alg′ that
runs on V Tx as Alg′(V Tx) = Alg(UΣV Tx). Also note that V Thas ≤ m rows.

Let v be a row of A, we have

I(〈v, x∗ + w〉, 〈v, x∗〉) = I(〈v, x∗〉+ 〈v, w〉, 〈v, x∗〉)
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Since w is drawn from a Gaussian distribution, 〈v, w〉 is additive white Gaussian noise (AWGN).
Thus, using Shanon-Hertley, we get

I(〈v, x∗ + w〉, 〈v, x∗〉) ≤ 1

2
log

(
1 +

E[〈v, x∗〉2]
E[〈v, w〉]2

)
=

1

2
log

(
1 +

1/2n

σ2

)
≤ 1

4nσ2
=

1

4n1−2/p

since

E[〈v, x∗〉2] =
1

2

n∑
i=1

v2i ·
1

n
=

1

2n
E[〈v, w〉2] =

n∑
i=1

v2i σ
2 = σ2

Note that this only holds for single measurement, we could potentially get more information from
multiple observations even if we do not get from one. We will show that information can be bounded
additively in this case.

Lemma 1.0.3. If ai = bi + wi ∀i ∈ [n] such that each wi is independent of each other and of bi,
then

I(a, b) ≤
n∑
i=1

I(ai, bi)

Proof. We have,

I(a, b) = h(a)− h(a|b) = h(a)− h(a− b|b) = h(a)− h(w|b) = h(a)− h(w)

≤
n∑
i=1

h(ai)− h(wi) =

n∑
i=1

h(ai)− h(wi|bi) =

n∑
i=1

h(ai)− h(ai − bi|bi)

=

n∑
i=1

h(ai)− h(ai|bi) =

n∑
i=1

I(ai, bi)

Hence, proved.

Using the above lemma, we get

I(A(x∗ + w), Ax∗) ≤ m

4n1−2/p

Since b→ x∗ → Ax∗ → A(x∗ + w)→ b̂,

I(b, b̂) ≤ m

4n1−2/p
.

Hence, proved.

Using the above claim, we get

h(b|b̂) ≥ h(b)− m

4n1−2/p
= 1− m

4n1−2/p

This shows that even if you know b̂, there is sufficient entropy left in b hence still sufficient chance
of error. Now, if m < n1−2/p, we get h(b|b̂) ≥ 3/4 and

h(b 6= b̂) ≥ h(b 6= b̂|b̂) ≥ h(b|b̂) ≥ 3/4
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Figure 1: Entropy Curve for bit x

From the entropy curve, it is easy to see that this gives us a contradiction since we have Prerr =
Pr[b̂ 6= b] < 1/3 by the first claim.

2 Packing and Covering Numbers

In this section we discuss packing and covering numbers. We will use results shown here to prove
results on compressed sensing in a later lecture.

2.1 Definitions

Definition 2.1.1. A metric space is an order pair (X, d) where X is a set and d : X → R is a
distance metric with the following properties for all x, y ∈ X:

(i) d(x, y) ≥ 0

(ii) d(x, y) = 0⇔ x = y

(iii) d(x, y) = d(y, x)

(iv) ∀z ∈ X, d(x, y) ≤ d(x, z) + d(z, y)

Definition 2.1.2. An ε-cover of X with respect to d is a collection of points {x1, x2, · · ·xn} ⊆ X
such that ∀y ∈ X min

i∈[n]
d(y, xi) ≤ ε

Definition 2.1.3. The covering number N(ε,X, d) is the minimum n such that there exists an
ε-cover of size n.

Definition 2.1.4. The metric entropy of log(N(ε,X, d)).
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We may look at a few examples to understand these definitions.
Example 1: ConsiderX = [−1, 1] under the distance metric d(x, y) = |x−y|. The set {0,±2ε, 4ε, · · · }∩
[−1, 1] is an ε-cover. So, we know that N(ε,X, d) ≤ 2

2ε + 1.

Example 2: Consider X = [−1, 1]n under the distance metric d(x, y) = ‖x − y‖∞. We may
view this as covering the box [−1, 1]n using εn sized boxes. So, we need at most (1ε + 1)n boxes.
N(ε,X, d) ≤ (1ε + 1)n.

Definition 2.1.5. An ε-packing of X with respect to d is a collection of points {x1, x2, · · ·xn} ⊆ X
such that min

i 6=j∈[n]
d(xj , xi) ≥ ε

Definition 2.1.6. The packing number M(ε,X, d) is the maximum n such that there exists an
ε-packing of size n.

In Homework 3, we will prove the following:

Lemma 2.1.7. M(2ε,X, d) ≤ N(ε,X, d) ≤M(ε,X, d)

2.2 Bounds on Covering Number

In this section we study bounds on the covering number of the unit Lq-ball under Lp distance. We

wish to bound N(ε, Bd
q , ‖ · ‖p) where ‖x‖p = (

∑
xpi )

1
p and Bd

q = {x ∈ Rd
∣∣‖x‖p ≤ 1}.

We know that if p ≥ q, then we have ‖x‖p ≤ ‖x‖q. This means p ≥ q ⇒ Bd
q ⊆ Bd

p .

Let us use Vol(S) to denote the volume of the set S. We note that in d−dimensions, Vol(aS) =
ad Vol(S)

Theorem 2.2.1. 1
εd

Vol(Bdq )

Vol(Bdp)
≤ N(ε, Bd

q , ‖ · ‖p) ≤ (2ε )
d Vol(B

d
q+

ε
2
Bdp)

Vol(Bdp)

Proof. Lower Bound:
Let x1, · · · , xn be an ε-cover of Bd

q under the Lp norm.
Then,

Bd
q ⊆

⋃
i∈[n]

(xi + ε(Bd
p))

So, we may bound the volume:

Vol(Bd
q ) ≤ n · Vol(εBd

p)

= n · εd · Vol(Bd
p)

So, n = N(ε, Bd
q , ‖ · ‖p) ≥ 1

εd
Vol(Bdq )

Vol(Bdp)

Upper Bound:
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Let x1, · · · , xm be an ε-packing of Bd
q .

This means that the balls xi + ε
2B

d
p are disjoint (except at the surface). We also know that all of

these balls are contained in Bd
q + ε

2B
d
p since some of these balls might be on the surface of Bd

q .

So,

Vol(Bd
q +

ε

2
Bd
p) ≥ m · Vol( ε

2
Bd
p)

= m · ( ε
2

)d · Vol(Bd
p)

So, we conclude that m = M(ε, Bd
q , ‖ · ‖p) ≤ (2ε )

d · Vol(B
d
q+

ε
2
Bdp)

Vol(Bdp)

Using Lemma 2.1.7, we may conclude that N(ε, Bd
q , ‖ · ‖p) ≤ (2ε )

d · Vol(B
d
q+

ε
2
Bdp)

Vol(Bdp)

Let us examine this Theorem under the values p = 2 and q = 1.

Vol(Bd
1) = 2d

d! and Vol(Bd
2) = π

d
2

(d/2)! when d is even.

The bound on N = N(ε, Bd
1 , ‖ · ‖2) which we get by applying this theorem can be written in terms

of metric entropy as:

d log(1/ε)− d

2
log(d) ≤ log(N) ≤ d log(

2

ε
)

Observe that this gives us a tight bound when ε << 1
d . However, when ε >> 1√

d
, the bound is

trivial.

Intuitively, we may explain this as follows: The L1 ball in d−dimensions should be viewed as being
“spikey”. The εBd

2 balls, which we use to cover the tips of these spikes incur a huge loss in volume
i.e a large volume which we account for in the bound is outside the volume which we wish to cover.

We will use a different method in order to prove that log(N) ≤ 1
ε2

log(d) in the next lecture.
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