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Lecture 5 — September 8, 2016

Prof. Eric Price Scribe: Garrett Goble, Ziyang Tang

1 Overview

In the last lecture we took a more in depth look at Chernoff Bounds and introduced subgaussian
and subexponential variables.

In this lecture we will continue talking about subgaussian variables and related random variables –
subexponential and subgamma, and finally we will give a proof of famous Johnson-Lindenstrauss
lemma using property of subgaussian/subgamma variables.

2 Review of Subgaussian

Definition 1. A random variable X is subgaussian with µ = E(X) and parameter σ if it satisfies
any of the following 3 properties:

1. MGF:

E[eλ(X−µ)] ≤ e
λ2σ2

2 , ∀λ

2. Tail:

Pr[|X − µ| > t] ≤ 2e−
t2

2σ2 , ∀t > 0

3. Moments:
E[|X − µ|k] ≤ σkkk/2, ∀k > 0

The above 3 properties are equivalent with constant factor.

3 Example of Coin flip

Here is an example of coin flip, we would like to use the example of its tail behavior to argue that
coin flip is not a subgaussian. After that we will introduce subexponential and subgamma.

Example of Coin Flip : Let Yi be the number of times to flip a coin until the head is up. We
could see that

Pr[Yi = j] =
1

2j
, ∀j ≥ 1
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Let Z be the number of times we flip a coin until we meet with K heads. Or we could think Z as
the sum of individual Yi.i.e.

Z =
K∑
i=1

Yi

We can easily calculate that E[Yi] = 2, and E[Z] = 2K, but we are interested in what Z look like.

Question: If K = 106, what will Z look like?

According to the law of large numbers, if we let K to be large, let say K = 106, Z would converge
like a Gaussian with high probability to take a value from

2 · 106 ±O(103)

Suppose Z is (sub)Gaussian :

Using the tail bound we have:

Pr[Z ≥ 2K + t
√
K] ≤ e−Ω(t2)

If we set t =
√
K, then we have:

Pr[Z ≥ 3K] ≤ e−Ω(K)

If we set t = K
√
K, then we have:

Pr[Z ≥ K2 + 2K] ≤ e−Ω(K3)

But back to the definition of Z, we have:

Pr[Z ≥ t] ≥ Pr[Y1 ≥ t] =
2

2t
= e−Ω(t)

The above two inequality would cast a contradiction! Thus we can see that Z is not subgaussian,
we need a new kinds of random variable to define it.

4 Subexponential and Subgamma

We would give two new definition to random variable X if it satisfies any of the following properties.

Definition 2. A random variable X is subexponential with µ = E(X) and parameter σ if it
satisfies any of the following 3 properties:

1. MGF:

E[eλ(X−µ)] ≤ e
λ2σ2

2 , ∀|λ| < 1

σ

2. Tail:
Pr[|X − µ| > t] ≤ 2e−

t
2σ , ∀t > 0
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3. Moments:
E[|X − µ|k] ≤ σkkk, ∀k > 0

The above 3 properties are equivalent with constant factor.

Example :

Let p(z) = e−z, ∀z ≥ 0, E(z) = 1.

For the MGF E[eλ(z−1)], we have:

E[eλ(z−1)] =

∫
e−zeλ(z−1)dz

= e−λ
∫
e(λ−1)zdz

=
e−λ

1− λ

=
1− λ+ λ2

2 −
λ3

3! + ...

1− λ

= 1 +
λ2

2
+ λ3(

1

2
− 1

3
) + ...

≤ e
λ2

2 , λ <
1

2

We can see that z here is subexponential.

Now we introduce a more general distribution – subgamma, which has a subgaussian center and a
subexponential tail. Here’s the definition.

Definition 3. A random variable X is subgamma with µ = E(X) and parameter (σ, c) if it
satisfies any of the following 2 properties:

1. MGF:

E[eλ(X−µ)] ≤ e
λ2σ2

2 , ∀|λ| < 1

c

2. Tail:

Pr[|X − µ| > t] ≤ 2max(e−
t2

2σ2
,− t

2c ), ∀t > 0

The above 2 properties are equivalent with constant factor and we will give a short proof here.

Proof. From 1 to 2.

Pr[X − µ ≥ t] ≤ E[eλ(X−µ)]

eλt
≤ e

λ2σ2

2
−λt,∀0 < λ <

1

c
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Since
λ2σ2

2
− λt =

1

2
(λσ − t

σ
)2 − t2

2σ2

We can divide into 2 cases and finally get that

Pr[X − µ ≥ t] ≤ e
λ2σ2

2
−λt ≤

{
e−

t2

2σ2 if t
σ2 <

1
c

e−
t
2c otherwise

Or

Pr[X − µ ≥ t] ≤ max(e−
t2

2σ2 , e−
t
2c )

Note: This implies with probability 1− δ

X ≤ µ+ σ

√
2 log

1

δ
+ C log

1

δ

According to the definition of subgamma, we can see that

sugexp(σ) = subgamma(σ2, σ)

Another property of subgamma is that any sum of 2 independent subgamma is still a subgamma.

Lemma 4. If X ∈ subgamma(σ2
1, c1), Y ∈ subgamma(σ2

2, c2) independent, then X+Y ∈ subgamma(σ2
1+

σ2
2,max(c1, c2))

Proof. Assume X,Y with 0 mean. Then

E[eλ(X+Y )] = E[eλXeλY ]

= E[eλX ]E[eλY ]

≤ e
λ2σ21

2 e
λ2σ22

2 , λ <
1

max(c1, c2)

= e
λ2(σ21+σ

2
2)

2

5 Back to Coin Flip

Let Yi be the number of times to flip a coin until the head is up. We have

Pr[Yi > t] ≤ 2

2t
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So Yi ∈ subexp(O(1)) = subgamma(O(1), O(1))

Since the sum of subgamma is still subgamma, we will have Z =
∑K

i=1 Yi ∈ subgamma(O(K), O(1)).

Using the tail bound of subgamma, we have:

Pr[z ≥ 2K + t] ≤ e−
1
2
min( t

2

K
,t)

Here we can see that Z is approximately a Gaussian with
√
K deviations.

6 Distinct element problem

We had Pr[Y > t] = (1− t)n ≤ e−tn therefore Y is subexponential(Θ( 1
n)) = subgamma( 1

n2 ,
1
n).

m∑
i=1

Yi = subgamma(
m

n2
,

1

n
)

Ŷ =
1

m

m∑
i=1

Yi = subgamma(
1

n2
,

1

nm
)

Pr[|Ŷ − µ| ≥ ε

n
] ≤ 2e−min( ε

2m
2
, εm

2
) = 2e−

ε2m
2

Therefore m = O( 1
ε2

log 1
δ ) for δ failure. Therefore we do not need to split all of our elements into

separate buckets.

Remark: If X ∈ subgaussian(σ2) and Y = X2 ∈ subexponential(O(σ2)) then

Pr[|X| ≥ t] ≤ 2e−
t2

2

Pr[Y ≥ t] ≤ 2e−
t
2

Pr[|Y − E[Y ]| ≥ t] ≤ 2e−
t−O(1)

2 = 2e−Ω(t)

7 Johnson-Linderstrauss Lemma

Now we move to Johnson-Linderstrauss Lemma(JL-lemma).

At first we would like to see if X ∈ subgaussian(σ2), how is X2 behave.

Let Y = X2, and let us assume X has zero mean. According to tail bound, Pr[|X| ≥ t] ≤ 2e−
t2

2 ,

Or we can rewrite it as Pr[Y ≥ t] ≤ 2e−
t
2 , with centralize with mean of Y which we can consider

as a constant, we have Pr[|Y − E(Y )| ≥ t] ≤ 2e−
t−O(1)

2 ≤ 2e−Ω(t)

So far we can conclude that Y = X2 ∈ subexponential(O(σ2))

Now we will see JL-lemma.
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Lemma 5. (Johnson-Linderstrauss, 1984) Let X1, X2, ..., Xn ∈ Rd, there exist Y1, Y2, ..., Yn ∈ Rm
such that

∀i, j ∈ [n], ‖Yi − Yj‖2 ∈ (1± ε)‖Xi −Xj‖2

With m = O( logn
ε2

), not dependent on d!

To prove JL-lemma, we need first to show a similar lemma:

Lemma 6. ((linear) Distributional JL-lemma) There exist a distribution on A ∈ Rm×d with m =
O(1

ε log 1
δ ) such that:

∀x ∈ Rd, ‖Ax‖2 ∈ (1± ε)‖x‖2

with 1− δ probability over A.

We first show if we have Distributional JL, how we can prove JL-lemma.

Proof. (DJL⇒JL) Let construct Yi = AXi. We will have for some i,j

‖Yi − Yj‖ = ‖A(Xi −Xj)‖ ∈ (1± ε)‖Xi −Xj‖ w.p. 1− δ

So
‖Yi − Yj‖ ∈ (1± ε)‖Xi −Xj‖, ∀i, j, w.p. ≥ 1− n2δ

Just set δ = 1
2n2 we will get valid Yi.

Now we would like to see how to prove for DJL-lemma.

Proof. (DJL-lemma): Let A have i.i.d subgaussian(O(1)) entries with variance 1 and zero mean.
For any X ∈ Rd,

Yi = (AX)i =
∑
j

AijXj

Then we have

E[Y 2
i ] = E[

∑
j

A2
ijX

2
j +

∑
j 6=k

AijAikXjXk] = E[
∑
j

X2
j ] = ‖X‖2

Thus
E[‖AX‖22] = m‖X‖2

.

Since Aij ∈ subgaussian(O(1)), we can see AijXj ∈ subgaussian(O(X2
j )), Yi =

∑
j AijXj ∈

subgaussian(O(‖X‖22))

We care about ‖AX‖22, which can be rewrite as

|AX‖22 = ‖Y ‖22 =
∑
i

Y 2
i
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And Yi ∈ subgamma(‖X‖42, ‖X‖22) as the section begins we have showed. So ‖Y ‖22 ∈ subgamma(m‖X‖42, ‖X‖22).

Finally we have:

Pr[|‖Y ‖22 − E[‖Y ‖22]| > εm‖X‖22] < 2e−
1
2
min(ε2m,εm)

= 2e−
1
2
ε2m

< δ, if m > O(
1

ε2
log

1

δ
)

Just this week, Larsen and Nelson showed that O( 1
ε2

log n) is optimal!
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