
CS 395T: Sublinear Algorithms Fall 2016

Lecture 8 — Sep. 20, 2016

Prof. Eric Price Scribe: Ger Yang & Mei Wang

1 Overview

In this lecture, we mainly focus on sketches for a fundamental sampling problem, known as l0
-sampling. Afterwards, we begin to look at “exact” sparse recovery problem. Based on these, we
will start graph sketching in the next lecture. This is a useful tool where we have subgraphs with
streams of edges insertions and deletions, and we can compute some properties of this graph.

2 l0 Sampling

As in turnstile stream model, given a vector x ∈ Rn, an l0 sampling of x is a uniform distribution
over random samples from the non-zero indices of x, which is denoted as supp(x). Now given
y = Ax as linear sketching model, our goal is to choose a sparse and randomized matrix A ∈ Rm×n,
and output each i ∈ supp(x) with probability

1± ε
|supp(x)|

=
1± ε
||x||0

,

where ε is a constant in class.

If there is no other constraints, the algorithm is easy – just set A as an identity matrix and compute
it. And we want to make the ε to be small in order to use sublinear space, and make A to be sparse
to update and compute the Ax quickly so as to sketch in sublinear time.

We can solve this problem with

m = O(
1

ε2
log2(

n

δ
)).

So the question is, how can we do this?

2.1 Reduction to Insertion only turnstile model

The first step is to simplify the problem. We can get a simpler description of this problem as an
insertion only turnstile model. As solved in previous class, we can use the LogLog algorithm in
turnstile model. We choose a hash function: h : [n] → (0, 1). When it is fully independent, pick
i ∈ supp(x) minimizing h(i). If it is not a truly random hash, select from a k-wise independent
family of hash functions which suffices the “min-wise independence”, that is (1

ε2
) or logc 1

ε .

2.2 1-sparse recovery

We begin with a simpler case when ||x||0 = 1 instead of k.

1

Recall the Problem 2(b) in homework set 1: Give an algorithm that detects if x has a single non-
zero entry, and if so finds that location. That is, give an algorithm to compute i if x = ei, or
compute ⊥ otherwise with probability 1− δ. Then the algorithm could be:

1. Check if ||x||0 = 1.

2. If so, output i ∈ supp(x).

The method to check whether ||x||0 = 1 is: let a =
∑
xi, b =

∑
ixi, then b

a ∈ supp(x) if ||x||0 = 1.

2.3 k-sparse recovery

If we know ||x||0 = k, then we can reduce it and use 1-sparse recovery as a black box.

1. Hash the coordinates of x into B = O(k) buckets.

2. Run hw 2(b) on the first bucket, it can take O(log 1
δ) words, which is O(log n log 1

δ) bits.

3. Then if the bucket is empty or at least 2, output ⊥ with 1 − δ probability; else output who
leaves there with 1− δ probability.

Let

P = P[Element i is alone in the first bucket]

= P[h(i) = 0 ∩ none of h(j) = 0, j ∈ supp(x) \ i]

= P[h(i) = 0]− P[h(i) = 0 ∩ any h(j) = 0, j ∈ supp(x) \ i]

Now we want to get the bounds of P , so that each thing has a roughly equal chance of being found.
Then the upper bound is:

P ≤ P[h(i) = 0] =
1

B

And the lower bound is:

P ≥ P[h(i) = 0]− k P[h(i) = 0 ∩ h(j) = 0, i 6= j]

=
1

B
− k 1

B2

=
1

B
(1− k

B
)

Set B ≥ k
ε , then P ∈ [1−ε

B , 1
B]. Then the chance of anything that is alone in the first bucket equals

to kP ∈ [ε(1− ε), ε]. Repeat for O(1ε log 1
δ) times, then we can get O(1ε log 1

δ log (1
εδ)).

2

2.4 General algorithm

What if we don’t know k? Notice that we only use k to set B.

1. We need B ≥ k
ε to be ε -accurate.

2. We need B ≤ k
ε to output anything not equals to ⊥ with no less than ε probability for each

hash.

So if B ≤ ckε , the chance of any element can be found is not less than k(1−ε)
B . Then run the

algorithm for k = 1, 2, 4, 8, . . . , then output element found by the largest k that finds anything.
The space should be O(lognε log logn

δ log (lognεδ)).

3 Exact Sparse Recovery

In the sparse recovery problem, we assume that the data stream x ∈ Rn is a k-sparse vector, i.e.,
‖x‖0 ≤ k. We are free to choose A ∈ Rm×n. Effectively, what we are observing is the vector
y = Ax, which is on a lower dimension than x. Our goal for the sparse recovery problem is to
recover x from y. In the exact sparse recovery problem, we would like to recover x exactly with
high probability.

Before we think about how to solve this problem, we throw out the following questions:

1. How big should m be?

2. How fast can we do it?

3. Do we even need randomization?

For the first problem, it turn out m = 2k words is sufficient, if the running time is not important.
We show this claim in the following lemma:

Lemma 1. Let A ∈ Rm×n be a i.i.d. random Gaussian matrix. Suppose we are given y = Ax,
where ‖x‖0 ≤ k. If m = 2k, then we can recover x from y uniquely with probability 1.

Proof. We prove this by contradiction. Assume with some positive probability, there is some other
solution x′ 6= x such that y = Ax′ and ‖x′‖0 ≤ k. We can see that the vector x − x′ 6= 0 is in the
null space of A:

A(x− x′) = 0

Let S = supp(x − x′) be the support of x − x′. Owing to the k-sparsity of x and x′, we have
|S| ≤ 2k. Denote AS the matrix obtained by choosing each column from A if the index is in S.
Also, for any vector x ∈ Rn, xS is defined analogously. Now we have

AS(x− x′)S = 0

Since x − x′ is a nonzero vector, we can conclude that AS has a linear dependence among its
columns. If m < 2k, then the linear dependency is reasonable since AS is not a full-rank matrix.
If m ≥ 2k, then the event that AS has linearly dependent columns has probability measure zero.
This contradicts to our assumption. As a result, m = 2k is sufficient to recover x from y uniquely
with probability 1.

3

3.1 Fourier Matrix Approach

The first way to deal with the exact sparse recovery problem is the Fourier matrix approach. For
example, if we choose A to be the Vandermonde matrix, it is well-known that with 2k samples,
x can be recovered in polynomial time. The other ways to do the Fourier transform is to use the
Berlekamp-Massey algorithm or the syndrome decoding for Reed-Solomon coding.

3.2 An O(k log k)-Algorithm

We adapt the similar approach as we have done in l0-sampling for the exact sparse recovery problem.
More specifically, we hash the vector x into B buckets using a pairwise independent hash function.
Then, we can see that there are two possible outcomes for each i ∈ supp(x):

1. It is a good coordinate: there is no collision within the bucket it belongs to.

2. It is a bad coordinate: collision happens.

For each good coordinate i ∈ supp(x), it turns out that we are able to get the correct estimate
x̃i = xi using the method we solve Problem 2b in the first problem set. Precisely, we can estimate
x̃i through the following algorithm:

1. Let Sj = {i : h(i) = j}.

2. Compute z′j =
∑

i∈Sj ixi.

3. Compute zj =
∑

i∈Sj xi.

4. Let ĩ = z′j/zj .

5. Set x̃ĩ = zj .

If there is no collision in the j-th bucket, then ĩ = i and x̃ĩ = xi. Next, we show that the probability
that the i-th coordinate is good depends on the number of buckets B. The analysis basically follows
from what we have done in the section of l0-sampling. We let

pij = P[Element i is alone in bucket j]

= P[h(i) = j ∩ There is no k ∈ supp(x) \ i such that h(k) = j]

= P[h(i) = j]− P[h(i) = j ∩ There is some k ∈ supp(x) \ i such that h(k) = j]

Since pij ≥ 1
B

(
1− k

B

)
, we can see that

pi = P[Element i is alone in his bucket]

=

B∑
j=1

pij ≥ 1− k

B

which means the probability of i being a good coordinate is at least 1− k
B .

4

For bad coordinates, we show that the expected number of errors can be made small. We can see
that for each bad coordinate, there is at most 1 more coordinate getting an error estimate. As a
result, let t be the number of coordinates in the support of x that are not alone in the bin, and we
can say

‖x̃− x‖0 ≤ 2t

Taking the expectation on both sides gives us

E[‖x̃− x‖0] ≤ E[2t] = 2
k∑
i=1

(1− pi) ≤
2k2

B

By setting B = 4k/δ and applying Markov’s inequality we get

‖x̃− x‖0 ≤
k

2
w.p. 1− δ

This gives us the following lemma:

Lemma 2. In B = O(k/δ) words, we can find x̃ such that ‖x̃− x‖0 ≤ k/2 with probability at least
1− δ.

The next thing to do is to improve the accuracy by repeating the above procedure log k times.
A naive analysis shows that this would require us O(k log2 k) space to achieve a 3/4 successful
probability. However, we can use a trick to get a bound of using only O(k) words instead of
O(k log k) by working on the residues. Observe that in Lemma 2 we showed that, in B = O(k/δ)
words and with high probability, the vector x̃− x is k/2-sparse. If we further feed the vector x̃− x
into the algorithm described above and get x̃(2), we can find that ‖x̃(2) − x̃+ x‖0 ≤ k/4 with high
probability, which reduces the error from k/2 to k/4. This means that x̃− x̃(2) is a better estimate.
This procedure can be formulated as the following algorithm

1. For i = 1 . . . log k, do

(a) Generate A(i) ∈ R
8k

2iδi
×n

(b) Find A(i)x and A(i)x(i−1)

(c) Compute x̃(i) = A(i)(x− x̃(i−1)).

2. Return x̃ =
∑log k

i=1 (−1)i+1x̃(i)

Theorem 3. The above algorithm finds the exact sparse recovery in O(k log k) space with probability
3/4.

Proof. By Lemma 2, we can see that each iteration achieves k/2i error with probability at least

1−δi. Therefore, the algorithm returns the incorrect solution with probability at most δ =
∑log k

i=1 δi.

By setting δi =
(
3
4

)i
δ1 for each i ∈ {1, 2, . . . , log k}, we can see that δ = δ1

1−3/4 = 4δ1. Besides, the
number of words we are keeping in the algorithm is

log k∑
i=1

O

(
k

2iδi

)
= O(k)

log k∑
i=1

(
2

3

)i
= O(k)

By setting δ = 3/4 we can get the desired result.

5

