Problem Set 3

Sublinear Algorithms

Due Thursday, October 20

1. Recall that $M(X, d, \epsilon)$ denotes the packing number for space X with
distance d and radius ϵ, and $N(X, d, \epsilon)$ denotes the covering number.
Prove that

$$M(X, d, 2\epsilon) \leq N(X, d, \epsilon) \leq M(X, d, \epsilon)$$

2. In this problem we show that matrices that satisfy the RIP-2 cannot
be very sparse. Let $A \in \mathbb{R}^{m \times n}$ satisfy the $(k, 1/2)$ RIP for $m < n$.
Suppose that the average column sparsity of A is d, i.e. A has nd
nonzero entries.
Furthermore, suppose that $A \in \{0, \pm \alpha\}^{m \times n}$ for some parameter α.

(a) By looking at the sparsest column, give a bound for α in terms of d.

(b) By looking at the densest row, give a bound for α in terms of n, m, d and k.

(c) Conclude that either $d \gtrsim k$ or $m \gtrsim n$. (Recall that this means:
there exists a constant C for which $d \geq k/C$.)

(d) What if each non-zero $A_{i,j}$ were drawn from $N(0,1)$?

(e) [Optional] Extend the result to general settings of the non-zero
$A_{i,j}$.

3. In class we have shown various algorithms for sparse recovery that
tolerate noise and use $O(k \log(n/k))$ measurements, and shown that
any ℓ_1/ℓ_1 sparse recovery algorithm must use this many measurements.
But what if we don’t care about tolerating noise, and only want to
recover x from Ax when x is exactly k-sparse?
Consider the matrix

\[A = \begin{pmatrix}
1 & 1 & \cdots & 1 \\
\alpha_1 & \alpha_2 & \cdots & \alpha_n \\
\alpha_1^2 & \alpha_2^2 & \cdots & \alpha_n^2 \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_1^{2k-1} & \alpha_2^{2k-1} & \cdots & \alpha_n^{2k-1}
\end{pmatrix} \]

for distinct \(\alpha_i \).

(a) Prove that any \(2k \times 2k \) submatrix of \(A \) is invertible.

(b) Give an \(n^{O(k)} \) time algorithm to recover \(x \) from \(Ax \) under the assumption that \(x \) is \(k \)-sparse.

(c) [Optional] Give an \(n^{O(1)} \) time algorithm to recover \(x \) from \(Ax \) under the assumption that \(x \) is \(k \)-sparse. You may choose specific values for the \(\alpha_i \). Hint: look up syndrome decoding of Reed-Solomon codes.