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Abstract

We initiate the study of sparse recovery problems under the Earth-Mover Distance (EMD).
Specifically, we design a distribution over m× n matrices A such that for any x, given Ax, we
can recover a k-sparse approximation to x under the EMD distance. One construction yields
m = O(k log(n/k)) and a 1 + ε approximation factor, which matches the best achievable bound
for other error measures, such as the `1 norm.

Our algorithms are obtained by exploiting novel connections to other problems and areas,
such as streaming algorithms for k-median clustering and model-based compressive sensing. We
also provide novel algorithms and results for the latter problems.

1 Introduction

In recent years, a new “linear” approach for obtaining a succinct approximate representation of
n-dimensional vectors (or signals) has been discovered. For any signal x, the representation is equal
to Ax, where A is an m × n matrix, or possibly a random variable chosen from some distribution
over such matrices. The vector Ax is often referred to as the measurement vector or linear sketch
of x. Although m is typically much smaller than n, the sketch Ax often contains plenty of useful
information about the signal x.

A particularly useful and well-studied problem is that of stable sparse recovery. The problem is
typically defined as follows: for some norm parameters p and q and an approximation factor C > 0,
given Ax, recover an “approximation” vector x∗ such that

‖x− x∗‖p ≤ C min
k-sparse x′

∥∥x− x′∥∥
q

(1)

where we say that x′ is k-sparse if it has at most k non-zero coordinates. Sparse recovery has
applications to numerous areas such as data stream computing [Mut05, Ind07] and compressed
sensing [CRT06, Don06], notably for constructing imaging systems that acquire images directly in
compressed form (e.g., [DDT+08, Rom09]). The problem has been a subject of extensive study
over the last few years, with the goal of designing schemes that enjoy good “compression rate” (i.e.,
low values of m) as well as good algorithmic properties (i.e., low encoding and recovery times).
It is known by now1 that there exist matrices A and associated recovery algorithms that produce

∗This research has been supported in part by the David and Lucille Packard Fellowship, MADALGO (the Center
for Massive Data Algorithmics, funded by the Danish National Research Association) and NSF grant CCF-0728645.
E. Price has been supported in part by an NSF Graduate Research Fellowship.

1In particular, a random Gaussian matrix [CRT06] or a random sparse binary matrix ([BGI+08], building on
[CCFC02, CM04, CM06]) has this property with overwhelming probability. See [GI10] for an overview.
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Determinism Sketch length Decode time Approx.

Deterministic k log n log(n/k) n logO(1) n ε

Deterministic k log(n/k) nO(1)
√

log(n/k)
Randomized k log(n/k) k log(n/k) ε

Figure 1: Our results

approximations x∗ satisfying Equation (1) with `p = `q = `1, constant approximation factor C,
and sketch length m = O(k log(n/k)); it is also known that this sketch length is asymptotically
optimal [DIPW10, FPRU10]. Results for other combinations of `p/`q norms are known as well.

However, limiting the error measures to variants of `p norms is quite inconvenient in many
applications. First, the distances induced by `p norms are typically only quite raw approximations of
the perceptual differences between images. As a result, in the field of computer vision, several more
elaborate notions have been proposed (e.g., in [RTG00, Low04, Lyu05, GD05]). Second, there are
natural classes of images for which the distances induced by the `p norm are virtually meaningless.
For example, consider images of “point clouds”, e.g., obtained via astronomical imaging. If we
are given two such images, where each point in the second image is obtained via small random
translation of a point in the first image, then the `p distance between the images will be close to
the largest possible, even though the images are quite similar to each other.

Motivated by the above considerations, we initiate the study of sparse recovery under non-
`p distances. In particular, we focus on the Earth-Mover Distance (EMD) [RTG00]. Informally,
for the case of two-dimensional ∆ × ∆ images (say, x, y : [∆]2 → R+) which have the same `1
norm, the EMD is defined as the cost of the min-cost flow that transforms x into y, where the
cost of transporting a unit of mass from a pixel p ∈ [∆]2 of x to a pixel q ∈ [∆]2 of y is equal
to the `1 distance2 between p and q. The EMD metric can be viewed as induced by a norm
‖·‖EMD, such that EMD(x, y) = ‖x− y‖EMD; see Section 2 for a formal definition. Earth-Mover
Distance and its variants are popular metrics for comparing similarity between images, feature sets,
etc. [RTG00, GD05].

Results. In this paper we introduce three sparse recovery schemes for the Earth-Mover Dis-
tance. Each scheme provides a matrix (or a distribution of matrices) A, with m rows and n columns
for n = ∆2, such that for any vector x, given Ax, one can reconstruct a vector x∗ such that

‖x− x∗‖EMD ≤ C min
k-sparse x′

∥∥x− x′∥∥
EMD

. (2)

for some approximation factor C > 0. We call any recovery scheme satisfying Equation (2) an
EMD/EMD recovery scheme. If A is a distribution over matrices (that is, the scheme is randomized),
the guarantee holds with some probability. The other parameters of the constructions are depicted
in Figure 1.

In particular, two of our constructions yield sketch lengths m bounded by O(k log(n/k)), which
mimics the best possible bound achievable for sparse recovery in the `1 distance [DIPW10]. Note,
however, that we are not able to show a matching lower bound for the EMD case.

Connections and applications What does sparse recovery with respect to the Earth-Mover
Distance mean? Intuitively, a sparse approximation under EMD yields a short “signature” of

2One can also use the `2 distance. Note that the two distances differ by at most a factor of
√

2 for two-dimensional
images.
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the image x that approximately preserves its “EMD properties”. For example, if x consists of a
small number of sparse point clouds (e.g., as in astronomical imaging), sparse approximation of x
will approximately identify the locations and weights of the clouds. Our preliminary experiments
with a heuristic algorithm for such data [GIP10] show that this approach can yield substantial
improvements over the usual sparse recovery.

Another application [RTG00] stems from the original paper, where such short signatures were
constructed3 for general images, to extract their color or texture information. The images were then
replaced by their signatures during the experiments, which significantly reduced the computation
time.

The above intuitions can be formalized as follows. Let x′ be the minimizer of ‖x− x′‖EMD over
all k-sparse vectors. Then one can observe that the non-zero entries of x′ correspond to the cluster
centers in the best k-median4 clustering of x. Moreover, for each such center c, the value of x′c is
equal to the total weight of pixels in the cluster centered at c. Thus, a solution to the k-median
problem provides a solution to our sparse recovery problem as well5.

There has been prior work on the k-median problem in the streaming model under insertions and
deletions of points [FS05, Ind04]. Such algorithms utilize linear sketches, and therefore implicitly
provide schemes for approximating the k-median of x from a linear sketch of x (although they do
not necessarily provide the cluster weights, which are needed for the sparse recovery problem). Both
algorithms6 yield a method for approximating the k-median from Ω(k2 logO(1) n) measurements,
with the algorithm of [FS05] providing an approximation factor of 1 + ε. In contrast, our result
achieves an approximation factor of 1 + ε with a sketch length m that is as low as O(k log(n/k)).

Thanks to this connection, our results also yield short sketches for the k-median problem.
Although the solution x∗ output by our algorithm does not have to be k-sparse (i.e., we might
output more than k medians), one can post-process the output by computing the best k-sparse
approximation to x∗ using any off-the-shelf (weighted) k-median algorithm (e.g., [HPM04])). This
reduces the number of clusters to k, while (by the triangle inequality of EMD) multiplying the
approximation factor by a constant that depends on the approximation constant of the chosen
k-median algorithm. See Appendix C for more details.

Techniques On a high level, our approach is to reduce the sparse recovery problem under EMD
to sparse recovery under `1. This is done by constructing a linear mapping P that maps R[∆]2

into some space Rt, that has the property that a “good” sparse approximation to y = Px under `1
yields a “good” sparse approximation to x under EMD. 7 The list of formal constraints that such
a mapping needs to satisfy are given in Section 3. For concreteness, we define one such mapping
below; another one is given in Section 7. Specifically, the pyramid mapping P [IT03, GD05]
(building on [Cha02, AV99]) is defined as follows. First we impose log ∆ + 1 nested grids Gi on

3In fact, the algorithm in [RTG00] vaguely resembles our approach, in that it uses a kd-tree decomposition to
partition the images.

4For completeness, in our context the k-median is defined as follows. First, each pixel p ∈ [∆]2 is interpreted as
a point with weight xp. The goal is to find a set C ⊂ [n]2 of k “medians” that minimizes the objective function∑
p∈[n]2 minc∈C ‖p− c‖1 xp.
5If the algorithm reports both the medians and the weights of clusters.
6The paper [Ind04] claims m = k logO(1) n. Unfortunately, that is an error, caused by ignoring the dependencies

between the queries and their answers provided by the randomized data structure MediEval. Fixing this problem
requires reducing the probability of failure of the algorithm so that it is inversely exponential in k, which yields
another factor of k in the space bound.

7We note that the aforementioned k-median algorithms implicitly rely on some form of sparse recovery (e.g., see
Remark 3.10 in [FS05] or remarks before Theorem 5 in [Ind04]). However, the bounds provided by those algorithms
fall short of what we aim for.
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[∆]2, with G =
⋃
Gi. For each level i = 0 . . . l, l = log2 ∆, the grid Gi is a partition of the image

into cells of side length 2i. The cells in the grids can be thought of as forming a 4-ary tree, with
each node c at level i having a set C(c) of children at level i− 1. For each i, we define a mapping
Pi such that each entry in Pix corresponds to a cell c in Gi, and its value is equal to the sum of
coordinates of x falling into c. The final mapping P is defined as

Px = [20P0x, 2
1P1x, . . . , 2

lPlx] (3)

It is easy to see that, for a vector x that is k-sparse, the vector Px is O(K) sparse for K = kl.
We also show that for any x, there exists an O(K)-sparse y such that the difference ‖y − Px‖1
is comparable to mink-sparse x′ ‖x− x′‖EMD. We then find a good approximation x∗ to x (in the
EMD norm) by “inverting” P on y. Since we can recover an O(K)-sparse approximation to y (in
the `1 norm) from a sketch of length O(K log(n/K)), we obtain the first result from Figure 1.

To improve the sketch length we exploit the particular properties of the mapping P to recover
an O(K)-sparse approximation from only O(K) measurements. For any non-negative vector x, the
coordinates of Px have the following hierarchical structure: (i) the coordinates are organized into
an r-ary tree for r = 4, and (ii) the value of each internal node is non-negative and equal to the sum
of its children times two. Using one or both of these properties enables us to reduce the number of
measurements.

The second algorithm from Figure 1 is obtained using the property (i) alone. Specifically, the
problem of recovering a sparse approximation whose support forms a tree has been well-studied
in signal processing (the question is motivated by an empirical observation that large wavelet
coefficients tend to co-occur in this fashion). In particular, the insightful paper [BCDH10] on
model-based compressive sensing (see Section 5 for an overview) gave a deterministic scheme that
recovers such approximation from a sketch of length O(K). Although the setup given in that paper
is somewhat different from what we need here, we show that one can modify and re-analyze their
scheme to achieve the desired guarantee. This approach, however, leads to an approximation factor
of O(

√
log(n/k)).

In order to achieve a constant approximation factor, we employ both properties (i) and (ii),
as well as randomization. Specifically, we recover the tree coefficients top-down, starting from the
root of the tree. This is done in a greedy manner: we only recurse on the children of nodes that are
estimated to be “heavy”. This first pass identifies a superset S of the locations where Px is large,
but estimates some of the values (Px)S quite poorly. The set of locations S has |S| = O(K), so we
can recover (Px)S accurately with O(K) measurements using the set query sketches of [Pri11].

Finally, we show that we can achieve the first and second result in Figure 1 by replacing the
pyramid mapping by a variant of an even more basic transform, namely the (two-dimensional)
Haar wavelet mapping. Our variant is obtained by rescaling the original Haar wavelet vectors
using exponential weights, to mimic the pyramid scheme behavior. This result relates the two well-
studied notions (EMD and wavelets) in a somewhat unexpected way. As a bonus, it also simplifies
the algorithms, since inverting the wavelet mapping can now be done explicitly and losslessly.

2 Preliminaries

Notation We use [n] to denote the set {1 . . . n}. For any set S ⊂ [n], we use S to denote the
complement of S, i.e., the set [n] \ S. For any x ∈ Rn, xi denotes the ith coordinate of x, and xS
denotes the vector x′ ∈ Rn given by x′i = xi if i ∈ S, and x′i = 0 otherwise. We use supp(x) to

denote the support of x. We use R[∆]2 to denote the set of functions from [∆]× [∆] to R; note that
R[∆]2 can be identified with Rn since n = ∆2. We also use R+ to denote {x ∈ R | x ≥ 0}.
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EMD Consider any two non-negative vectors x, y ∈ R[∆]2

+ such that ‖x‖1 = ‖y‖1. Let Γ(x, y) be
the set of functions γ : [∆]2 × [∆]2 → R+, such that for any i, j ∈ [∆]2 we have

∑
l γ(i, l) = xi and∑

l γ(l, j) = yj ; that is, Γ is the set of possible “flows” from x to y. Then we define

EMD∗(x, y) = min
γ∈Γ

∑
i,j∈[∆]2

γ(i, j)‖i− j‖1

to be the min cost flow from x to y, where the cost of an edge is its `1 distance. This induces a
norm ‖·‖EMD such that ‖x− y‖EMD = EMD∗(x, y). For general vectors w,

‖w‖EMD = min
x−y+z=w
‖x‖1=‖y‖1
x,y≥0

EMD∗(x, y) +D ‖z‖1

where D = 2∆ is the diameter of the set [∆]2. That is, ‖w‖EMD is the min cost flow from the
positive coordinates of w to the negative coordinates, with some penalty for unmatched mass.

Signal models The basic idea of the signal models framework of [BCDH10] is to restrict the
sparsity patterns of the approximations. For some sparsity parameter8 K let SK be a family of
subsets of [n] such that for each S ∈ SK we have |S| ≤ K. The family SK induces a signal model
MK ⊂ Rn where

MK = {x ∈ Rn | supp(x) ⊆ S for some S ∈ SK}.

Note thatMK is a union of |SK | subspaces, each of dimension at most K. The signals inMK are
called MK-sparse.

The following two examples of signal models are particularly relevant to our paper:

1. General k-sparse signals, where Sk contains all k-subsets of [n]. In this case the induced signal
model (denoted by Σk) contains all k-sparse signals.

2. Tree sparse signals. In this case, we assume that n = cl−1
c−1 for some (constant) integer c and

parameter l, and associate each i ∈ [n] with a node of a full c-ary tree T (c, l) of depth l.
The family SK contains all sets S of size up to K that are connected in T (c, l) and contain
the root (so each S corresponds to a graph-theoretic subtree of T (c, l)). The induced signal
model is denoted by T cK , or TK for short.9

In order to facilitate signal recovery, one often needs to consider the differences x − y of two
signals x ∈ M, y ∈ M′. For this purpose we define the Minkowski sum of MK and M′K as
MK ⊕M′K = {x+ y : x ∈ MK , y ∈ M′K}. To simplify the notation, we define M(t) to the t-wise

Minkowski sum of MK . For all signal models considered in this paper, we have M(t)
K ⊂MKt.

Restricting sparsity patterns enables to recover sparse approximations from shorter sketches.
We defer a more thorough overview of the results to Section 5.

Assumptions We assume that the sparsity parameters k (and K, where applicable) are smaller
than n/2. Note that if this assumption does not hold, the problem becomes trivial, since one can
define the measurement matrix A to be equal to the identity matrix.

8We use K to denote the sparsity in the context of model-based recovery (as opposed to k, which is used in the
context of “standard” recovery).

9We note that technically this model was originally defined with respect to the wavelet basis (as opposed to the
standard basis here) and for c = 2. We adapt that definition to the needs in our paper.
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3 Framework for EMD-sparse recovery

In this section we describe our approach to reducing sparse recovery under EMD into sparse recovery
under `1. We need the following three components: (i) a t× n matrix B (that will be used to map
the EMD space into the `1 space); (ii) a signal model M⊂ Rt; and (iii) an `1/`1 recovery scheme
forM. The latter involves an m× t matrix A′ (or a distribution over such matrices) such that, for
any x ∈ Rt, given A′x, one can recover x∗ such that

‖x− x∗‖1 ≤ C
′ min
x′∈M

∥∥x− x′∥∥
1

(4)

for an approximation factor C ′. If A′ is a distribution over matrices, we require that the guarantee
holds with some constant probability, e.g., 2/3.

The mapping B must satisfy the following three properties:

A. (EMD-to-`1 expansion.) For all x ∈ Rn,

‖x‖EMD ≤ ‖Bx‖1 .

B. (Model-alignment of EMD with M.) For all x ∈ Rn+, there exists a y ∈M with

‖y −Bx‖1 ≤ ε min
k-sparse x′

∥∥x− x′∥∥
EMD

.

C. (Invertibility.) There is an efficient algorithm B−1 : Rt → Rn such that, for some constant D
and all y ∈ Rt, ∥∥y −BB−1(y)

∥∥
1
≤ D min

x∈Rn
‖y −Bx‖1 .

Lemma 3.1. Consider B,A′,M satisfying the above properties. Then the matrix A = A′B supports
k-sparse recovery for EMD (as defined in Equation (2)) with approximation factor C = (1+D)C ′ε.

Proof. Consider the recovery of any vector x ∈ Rn+. Let

E = min
k-sparse x′

∥∥x− x′∥∥
EMD

.

By Property B, for any x ∈ Rn, there exists a y ∈M with

‖y −Bx‖1 ≤ εE.

Hence our `1/`1 model-based recovery scheme for M, when run on Ax = A′Bx, returns a y∗ with

‖y∗ −Bx‖1 ≤ C
′εE.

Let x∗ = B−1(y∗). We have by Property C that

‖y∗ −Bx∗‖1 ≤ D min
x′∈Rn

∥∥y∗ −Bx′∥∥
1
≤ D ‖y∗ −Bx‖1 ≤ DC

′εE.

Hence by Property A

‖x∗ − x‖EMD ≤ ‖B(x∗ − x)‖1 ≤ ‖y
∗ −Bx‖1 + ‖y∗ −Bx∗‖1

≤ (1 +D)C ′εE

as desired.
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4 Pyramid transform

In this section we will show that the pyramid transform P defined in Equation (3) of Section 1
satisfies properties B and C of Section 3, with appropriate parameters.

The property A has been shown to hold for P in many other papers (e.g., [Cha02, IT03]). The
intuition is that the weight of a cell is at least the Earth-Mover Distance to move all mass in the
cell from the center to any corner of the cell, including the corner that is at the center of the parent
of the cell.

4.1 Model-alignment with tree sparsity

In this section we show Property B, where the signal modelM is equal to the K-tree-sparse model
TK , for K = O(k log(n/k)). In fact, we show a stronger statement: the trees have their width (the
maximum number of nodes per level) bounded by some parameter s. We will exploit the latter
property later in the paper.

Lemma 4.1. For any x ∈ Rn+ there exists a tree S ⊂ [t] of size K and width s with∥∥(Px)S
∥∥

1
≤ ε min

k-sparse x′

∥∥x− x′∥∥
EMD

for s = O
(

1
ε2
k
)

and K = O( 1
ε2
k log(n/k)).

Proof. Let x′ = arg mink-sparse x′ ‖x− x′‖EMD be the k-medians approximation of x. Consider the

cells that contain each point in the support of x′. For each such cell at any level i, add the O( 1
ε2

)
other cells of the same level within an `1 distance of 2

ε2
i. The resulting S has s = O

(
1
ε2
k
)

cells per
level, and all the ancestors of any cell in the result also lie in S. So S is a tree of width s. It has
O(s) elements from the top log4 s levels, and O(s) elements on each of the log4 t− log4 s remaining
levels, for a size K = O(s log t/s). We will show that

∥∥(Px)S
∥∥

1
is small.

Define ei for i ∈ [∆]2 to be the elementary vector with a 1 at position i, so xi = x · ei. Suppose
that the distance between i and the nearest center in x′ is vi. Then we have∥∥(Px)S

∥∥
1

=
∑
i∈[∆]2

∥∥(Pxiei)S
∥∥

1
=
∑
i∈[∆]2

∥∥(Pei)S
∥∥

1
xi

∥∥x− x′∥∥
EMD

=
∑
i∈[∆]2

vixi.

so it is sufficient to show
∥∥(Pei)S

∥∥
1
≤ εvi for any i.

Let h be the highest level such that ei is not contained in a cell at level h in S. If no such h
exists,

∥∥(Pei)S
∥∥

1
= 0. Otherwise, vi ≥ 2

ε2
h, or else S would contain ei’s cell in level h. But then

∥∥(Pei)S
∥∥

1
=

h∑
j=0

2j < 2h+1 ≤ εvi

as desired.

Corollary 4.2. For any x ∈ Rn+, there exists a y ∈ TK with

‖y − Px‖1 ≤ ε min
k-sparse x′

∥∥x− x′∥∥
EMD

.
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4.2 Invertibility

Given an approximation b to Px, we would like to find a vector y with ‖b− Py‖1 small. Note that
this task can be formulated as a linear program, and therefore solved in time that is polynomial in
n. In Appendix A we show a much faster approximate algorithm for this problem, needed for our
fast recovery algorithm:

Lemma 4.3. Given any approximation b to Px, we can recover a y in O(|supp(b)|) time with

‖Py − Px‖1 ≤ 8 ‖b− Px‖1 .

Recall that P has t = b4n/3c rows. This means standard `1/`1 K-sparse recovery for Px is
possible with m = O(K log t/K) = O( 1

ε2
k log2(n/k)). Hence by Lemma 3.1, using B = P and

standard sparse recovery techniques on the model M = ΣK gives the first result in Figure 1:

Theorem 4.4. There exists a deterministic EMD/EMD recovery scheme with m = O( 1
ε2
k log2(n/k))

and C = ε. Recovery takes O(n logc n) time for some constant c.

5 Tree-sparse recovery

To decrease the number of measurements required by our algorithm, we can use the stronger signal
model TK instead of ΣK . The paper [BCDH10] gives an algorithm for model-based sparse recovery
of TK , but their theorem does not give an `1/`1 guarantee. In Appendix B we review the prior
work and convert their theorem into the following:

Theorem 5.1. There exists a matrix A with O(K) rows and a recovery algorithm that, given Ax,
returns x∗ with

‖x− x∗‖1 ≤ C
√

log(n/K) min
x′∈TK

∥∥x− x′∥∥
1

for some absolute constant C > 1. As long as the coefficients of x are integers bounded by nO(1),
the algorithm runs in time O(K2n logc n) for some constant c.

By Lemma 3.1, using this on B = P and M = TK gives the second result in Figure 1:

Theorem 5.2. There exists a deterministic EMD/EMD recovery scheme with m = O( 1
ε2
k log(n/k))

and distortion C = O(ε
√

log(n/k)). Recovery takes O(k2n logc n) time for some constant c.

6 Beyond tree sparsity

The previous section achieved O(
√

log n) distortion deterministically with O(k log(n/k)) rows. In
this section, we improve the distortion to an arbitrarily small constant ε at the cost of making the
algorithm randomized. To do this, we show that EMD under the pyramid transform is aligned with
a stronger model than just tree sparsity—the model can restrict the values of the coefficients as
well as the sparsity pattern. We then give a randomized algorithm for `1/`1 recovery in this model
with constant distortion.

Definition 6.1. Define T sK to be the family of sets S ⊆ [t] such that (i) S corresponds to a
connected subset of G containing the root and (ii) |S ∩Gi| ≤ s for all i. We say that such an S is
K-tree-sparse with width s.
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Definition 6.2. Define M⊂ TK as

M =

{
y ∈ Rt

∣∣∣∣ supp(y) ⊆ S for some S ∈ T sK , and
yi ≥ 2

∥∥yC(i)

∥∥
1
∀i ∈ [t]

}
.

where s = O( 1
ε2
k) comes from Lemma 4.1.

Note that every y ∈M is non-negative, and (Px)S ∈M for all x ∈ Rn+. With Lemma 4.1, this
implies:

Lemma 6.3. There is model-alignment of P with M, i.e., they satisfy Property B.

We will give a good algorithm for `1/`1 recovery over M.

6.1 Randomized `1/`1 recovery of M

Theorem 6.4. There is a randomized distribution over m×t matrices A with m = O( 1
ε2
k log(n/k))

and an algorithm that recovers y∗ from Ay in O( 1
ε2
k log(n/k)) time with

‖y∗ − y‖1 ≤ C min
y′∈M

∥∥y − y′∥∥
1

with probability 1− k−Ω(1), for some constant C. We assume k = Ω(log log n).

We will give an algorithm to estimate the support of y. Given a sketch of y, it recovers a support
S ∈ T 2s

K with ∥∥yS∥∥1
≤ 10 min

y′∈M

∥∥y − y′∥∥
1
.

We can then use the set query algorithm [Pri11] to recover a y∗ from a sketch of size O(|S|) with

‖y∗ − yS‖1 ≤
∥∥yS∥∥1

.

Then
‖y∗ − y‖1 ≤ ‖y

∗ − yS‖1 + ‖y − yS‖1 ≤ 2
∥∥yS∥∥1

≤ 20 min
y′∈M

∥∥y − y′∥∥
1
.

as desired. Hence estimating the support of y is sufficient.

6.2 Finding a good sparse support S to y

Vectors y′ ∈ M have two properties that allow us to find good supports S ∈ T sK with constant
distortion using only O(|S|) rows. First, supp(y′) forms a tree, so the support can be estimated
from the top down, level by level. Second, each coefficient has value at least twice the sum of the
values of its children. This means that the cost of making a mistake in estimating the support (and
hence losing the entire subtree below the missing coefficient) is bounded by twice the weight of the
missing coefficient. As a result, we can bound the global error in terms of the local errors made at
each level.

Of course, y may not be inM. But y is “close” to some y′ ∈M, so if our algorithm is “robust”,
it can recover a good support for y as well. Our algorithm is described in Algorithm 6.1.

Lemma 6.5. Algorithm 6.1 uses a binary sketching matrix of O(s log(n/s)) rows and takes O(s log(n/s))
time to recover S from the sketch.

9



Definition of sketch matrix A. The algorithm is parameterized by a width s. Let hi be a
random hash function from Gi to O(s) for i ∈ [log(n/s)]. Then define A′(i) to be the O(s) × |Gi|
matrix representing hi, so A′(i)ab = 1 if hi(b) = a and 0 otherwise. Choose A to be the vertical
concatenation of the A′(i)’s.
Recovery procedure.

. Find approximate support S to y from b = Ay
procedure FindSupport(A, b)

Tlog(n/s) ← Glog(n/s) .
∣∣Tlog(n/s)

∣∣ ≤ 2s
for i = log(n/s)− 1 . . . 0 do

. Estimate y over C(Ti+1).
y∗j ← bhi(j) for j ∈ C(Ti+1).

. Select the 2s largest elements of our estimate.
Ti ← arg max

T ′⊆C(Ti+1)
|T ′|≤2s

∥∥y∗T ′∥∥1

end for

S ←
log(n/s)⋃
i=0

Ti ∪
⋃

i≥log(n/s)

Gi

end procedure

Algorithm 6.1: Finding sparse support under M

Proof. The algorithm looks at O(log(n/s)) levels. At each level it finds the top 2s of 4× 2s values,
which can be done in linear time. The algorithm requires a sketch with O(log(n/s)) levels of O(s)
cells each.

The algorithm estimates the value of yC(Ti+1) by hashing all of yGi into an O(s) size hash table,
then estimating yj as the value in the corresponding hash table cell. Since y is non-negative, this is
an overestimate. We would like to claim that the 2s largest values in our estimate approximately
contain the s largest values in yC(Ti+1). In particular, we show that any yj we miss is either (i) not
much larger than s of the coordinates we do output or (ii) very small relative to the coordinates
we already missed at a previous level.

Lemma 6.6. In Algorithm 6.1, for every level i let wi = maxq∈C(Ti+1)\Ti yq denote the maximum
value that is skipped by the algorithm and let fi =

∥∥yGi+1\Ti+1

∥∥
1

denote the error from coordinates
not included in Ti+1. Let ci denote the s-th largest value in yTi. Then with probability at least
1− e−Ω(s), wi ≤ max{ fi4s , 2ci} for all levels i.

Proof. Define s′ = 8s ≥ |C(Ti+1)|. We make the hash table size at each level equal to u = 32s′.
We will show that, with high probability, there are at most s coordinates p where y∗p is more than
fi/s

′ larger than yp. Once this is true, the result comes as follows: y∗ is an overestimate, so the top
2s elements of y∗ contain at least s values that have been overestimated by at most fi/s

′. Because
the algorithm passes over an element of value wi, each of these s values must actually have value
at least wi − fi/s′. Hence either wi < 2fi/s

′ = fi
4s or all s values are at least wi/2.

To bound the number of badly overestimated coordinates, we split the noise in two components:
the part from Gi\C(Ti+1) and the part from C(Ti+1). We will show that, with probability 1−e−Ω(s),
the former is at most fi/s

′ in all but s/4 locations and the latter is zero in all but 3s/4 locations.
WLOG we assume that the function hi is first fixed for Gi \C(Ti+1), then randomly chosen for

C(Ti+1). Let Oi ⊂ [u] be the set of “overflow buckets” l such that the sum sl =
∑

p/∈C(Ti+1),hi(p)=l
yp

10



is at least fi/s
′. By the definition of fi,

∑
l sl = fi/2, so

|Oi|/u ≤
fi/2

fi/s′
/u = 1/2

s′

32s′
= 1/64.

Thus, the probability that a fixed child q ∈ C(Ti+1) is mapped to Oi is at most 1/64. This is
independent over C(Ti+1), so the Chernoff bound applies. Hence with probability at least 1−e−Ω(s),
the number of q ∈ C(Ti+1) mapping to Oi is at most twice its expectation, or |C(Ti+1)| /32 = s/4.

We now bound the collisions within C(Ti+1). Note that our process falls into the “balls into
bins” framework, but for completeness we will analyze it from first principles.

Let Z be the number of cells in C(Ti+1) that collide. Z is a function of the independent random
variables hi(p) for p ∈ C(Ti+1), and Z changes by at most 2 if a single hi(p) changes (because p can
cause at most one otherwise non-colliding element to collide). Hence by McDiarmid’s inequality,

Pr[Z ≥ E[Z] + t] ≤ e−t2/(2s′)

But we know that the chance that a specific p collides with any of the others is at most s′/u = 1/32.
Hence E[Z] ≤ s′/32, and

Pr[Z ≥ (
1

32
+ ε)s′] ≤ e−ε2s′/2.

By setting ε = 2/32 we obtain that, with probability 1− e−Ω(s) we have that Z ≤ 3s′

32 = 3s/4.

Hence with probability 1− e−Ω(s), only 3s/4 locations have non-zero corruption from C(Ti+1),
and we previously showed that with the same probability only s/4 locations are corrupted by f ′/s′

from outside C(Ti+1). By the union bound, this is true for all levels with probability at least
1− (log n)e−Ω(s) = 1− e−Ω(s).

Lemma 6.7. Let S be the result of running Algorithm 6.1 on y ∈ Rt. Then∥∥yS∥∥1
≤ 10 min

y′∈M

∥∥y − y′∥∥
1

with probability at least 1− eΩ(s).

Proof. From the algorithm definition, Ti = S ∩Gi for each level i. Let y′ ∈M minimize ‖y − y′‖1,
and let U = supp(y′). By the definition of M, U ∈ T sK .

For each i, define Vi = U ∩C(Ti+1) \Ti to be the set of nodes in U that could have been chosen
by the algorithm at level i but were not. For q ∈ U \ S, define R(q) to be the highest ancestor of q
that does not lie in S; hence R(q) lies in Vi for some level i. Then∥∥y′

S

∥∥
1

=
∥∥∥y′U\S∥∥∥

1
=
∑
q∈U\S

y′q

=
∑
i

∑
p∈Vi

∑
R(q)=p

y′q

≤
∑
i

∑
p∈Vi

2y′p

= 2
∑
i

∥∥y′Vi∥∥1
, (5)

where the inequality holds because each element of y′ is at least twice the sum of its children. Hence
the sum of y′ over a subtree is at most twice the value of the root of the subtree.
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Define the error term fi =
∥∥yGi+1\Ti+1

∥∥
1
, and suppose that the statement in Lemma 6.6 applies,

as happens with probability 1− eΩ(s). Then for any level i and p ∈ Vi, if ci is the sth largest value
in yTi , then yp ≤ max{fi/4s, 2ci} or yp ≤ fi

4s + 2ci. Since yTi contains at least s values larger than
ci, and at most |U ∩ Ti| = |U ∩ C(Ti+1)| − |Vi| ≤ s − |Vi| of them lie in U , yTi\U must contain at
least |Vi| values larger than ci. This, combined with |Vi| ≤ s, gives

‖yVi‖1 ≤ fi/4 + 2
∥∥yTi\U∥∥1

. (6)

Combining Equations (5) and (6), we get∥∥y′
S

∥∥
1
≤ 2[

∑
i

∥∥(y − y′)Vi
∥∥

1
+ ‖yVi‖1]

≤ 2
∥∥(y − y′)U

∥∥
1

+
∑
i

(
4
∥∥yTi\U∥∥1

+ fi/2
)

≤ 2
∥∥(y − y′)U

∥∥
1

+ 4
∥∥yS\U∥∥1

+
∥∥yS∥∥1

/2

= 2
∥∥(y − y′)U

∥∥
1

+ 4
∥∥(y − y′)S\U

∥∥
1

+
∥∥yS∥∥1

/2

≤ 4
∥∥y − y′∥∥

1
+
∥∥yS∥∥1

/2.

Therefore ∥∥yS∥∥1
≤
∥∥y − y′∥∥

1
+
∥∥y′

S

∥∥
1

≤ 5
∥∥y − y′∥∥

1
+
∥∥yS∥∥1

/2∥∥yS∥∥1
≤ 10

∥∥y − y′∥∥
1

as desired.

6.3 Application to EMD recovery

By Lemma 3.1 our `1/`1 recovery algorithm for M gives an EMD/EMD recovery algorithm.

Theorem 6.8. Suppose k = Ω(log log n). There is a randomized EMD/EMD recovery scheme with
m = O( 1

ε2
k log(n/k)), C = ε, and success probability 1 − k−Ω(1). Recovery takes O( 1

ε2
k log(n/k))

time.

7 Wavelet-based method

We can also instantiate the framework of Section 3 using a reweighted Haar wavelet basis instead
of P for the embedding B. We will have M be the tree-sparse model TO( 1

ε2
k logn/k), and use the

`1/`1 recovery scheme of Section 5.
The details are deferred to Appendix D. We obtain an embedding W defined by a Haar

transform H (after rescaling the rows), and the following theorem:

Theorem 7.1. There exists a matrix A with O(k log(n/k)) rows such that we can recover x∗ from
Ax with

‖x∗ − x‖EMD ≤ C min
y∈TK

‖Wx− y‖1 ≤ C min
k-sparse x′

∥∥x− x′∥∥
EMD

for some distortion C = O(
√

log(n/k)).

Note that if we ignore the middle term, this gives the same EMD/EMD result as in Section 5.
However the middle term may be small for natural images even if the right term is not. In particular,
it is well known that images tend to be tree-sparse under H.
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A Invertibility of Pyramid Transform

If b were (Px)S for some S, then the problem would be fairly easy, since b tells us the mass pq in

cells q (in particular, if q is at level i, pq =
bq
2i

). Define the surplus sq = pq −
∑

r∈C(q) pr to be the
mass estimated in the cell that is not found in the cell’s children.

We start from the case when all surpluses are non-negative (as is the case for (Px)S). In this
case, we can minimize ‖b− Py‖1 by creating sq mass anywhere in cell q.

Lemma A.1. Suppose b is such that sq ≥ 0 for all q ∈ G. Let y be the result of running Algo-
rithm A.1 on b. Then y minimizes ‖b− Py‖1.
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For every cell q ∈ G, let eq ∈ Rn denote an elementary unit vector with the 1 located somewhere
in q (for example, at the center of q). Then return

y =
∑
q∈G

sqeq.

Algorithm A.1: Recovering y from b to minimize ‖b− Py‖1 when all surpluses are non-negative.

Proof. The vector y has the property that (Py)q ≥ bq for all q ∈ G, and for the root node r we have
(Py)r = br. Because the weights are exponential in the level value, any y′ minimizing ‖b− Py′‖1
must have (Py′)r ≥ br, or else increasing any coordinate of y′ would decrease ‖b− Py′‖1. But then

∥∥b− Py′∥∥
1

=

log ∆∑
i=0

∑
q∈Gi

∣∣(Py′)q − bq∣∣
≥

log ∆∑
i=0

∑
q∈Gi

(Py′)q − bq

=

log ∆∑
i=0

2i−log ∆(Py′)r −
∑
q∈Gi

bq


= (2− 2− log ∆)(Py′)r − ‖b‖1
≥ (2− 2− log ∆)br − ‖b‖1 .

Equality holds if and only if (Py′)q ≥ bq for all q ∈ G and (Py′)r = br. Since y has these properties,
y minimizes ‖b− Py‖1.

Unfortunately, finding the exact solution is harder when some surpluses sq may be negative.
Then in order to minimize ‖b− Py‖1 one must do a careful matching up of positive and negative
surpluses. In order to avoid this complexity, we instead find a greedy 8-approximation. We modify
b from the top down, decreasing values of children until all the surpluses are non-negative.

Perform a preorder traversal of G. At each node q at level i, compute the surplus sq. If sq is
negative, arbitrarily decrease b among the children of q by a total of 2i−1 |sq|, so that b remains
non-negative.

Algorithm A.2: Modifying b to form all non-negative surpluses

Lemma A.2. Suppose we run algorithm A.2 on a vector b to get b′. Then∥∥b− b′∥∥
1
≤ 3 min

y
‖Py − b‖1 .

Proof. Let y minimize ‖Py − b‖1. As with Py′ for any y′, Py has zero surplus at every node.
At the point when we visit a node q, we have updated our estimate of b at q but not at its

children. Therefore if q is at level i we compute sq = 1
2i
b′q − 1

2i−1

∑
s∈C(q) bs. Then, because Py has
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zero surplus,

|sq| =

∣∣∣∣∣∣ 1

2i
b′q −

1

2i
(Py)q −

1

2i−1

∑
s∈C(q)

(bs − (Py)s)

∣∣∣∣∣∣
≤ 1

2i
∣∣b′q − bq∣∣+

1

2i
|bq − (Py)q|+

1

2i−1

∑
s∈C(q)

|bs − (Py)s| .

Define fi =
∑

q∈Gi |bq − (Py)q| to be the original `1 error on level i, and gi =
∑

q∈Gi

∣∣b′q − bq∣∣ to
be a bound on the amount of error we add when running the algorithm. Because we only modify
values enough to rectify the surplus of their parent, we have

gi−1 ≤ 2i−1
∑
q∈Gi

|sq|

≤
∑
q∈Gi

1

2

∣∣b′q − bq∣∣+
1

2
|bq − (Py)q|+

∑
s∈C(q)

|bs − (Py)s|

≤ 1

2
gi +

1

2
fi + fi−1.

Unrolling the recursion, we get

gi ≤ fi +

log ∆−i∑
j=1

1

2j−1
fi+j

∥∥b′ − b∥∥
1

=

log ∆∑
i=0

gi ≤
log ∆∑
i=0

3fi = 3 ‖Py − b‖1

as desired.

This lets us prove Lemma 4.3.

Lemma 4.3. Given any approximation b to Px, running the previous two algorithms gives a y
with

‖Py − Px‖1 ≤ 8 ‖b− Px‖1
in O(|supp(b)|) time.

Proof. By running Algorithm A.2 on b, we get b′ with ‖b− b′‖1 ≤ 3 ‖Px− b‖1. Then we run
Algorithm A.1 on b′ to get y that minimizes ‖Py − b′‖1. Then

‖Py − Px‖1 ≤
∥∥Py − b′∥∥

1
+
∥∥Px− b′∥∥

1

≤ 2
∥∥Px− b′∥∥

1

≤ 2(‖Px− b‖1 +
∥∥b′ − b∥∥

1
)

≤ 8 ‖Px− b‖1 .

To bound the recovery time, note that after Algorithm A.2 visits a node with value 0, it sets the
value of every descendant of that node to 0. So it can prune its descent when it first leaves supp(b),
and run in O(|supp(b)|) time. Furthermore, this means |supp(b′)| ≤ |supp(b)| and supp(b′) is a
top-down tree. Hence Algorithm A.1 can iterate through the support of b′ in linear time.
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B Model-based compressive sensing

In this section we first provide a quick review of model-based sparse recovery, including the relevant
definitions, algorithms and their guarantees. We then show how to augment the algorithm so that
it provides the guarantees that are needed for our EMD algorithms.

B.1 Background

Model-based RIP Given a signal model MK , we can formulate the MK-restricted isometry
property (MK-RIP) of an m× n matrix A, which suffices for performing sparse recovery.

Definition B.1. A matrix A satisfies the MK-RIP with constant δ if for any x ∈MK , we have

(1− δ) ‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ) ‖x‖2

It is known that random Gaussian matrices with m = O(k log(n/k)) rows satisfy the Σk-
RIP (i.e., the “standard” RIP), with very high probability, and that this bound cannot be im-
proved [DIPW10]. In contrast, it has been shown that in order to satisfy the TK-RIP, only
m = O(K) rows suffice [BCDH10]. The intuitive reason behind this is that the number of rooted
trees of size K is 2O(K) while the number of sets of size k is

(
n
k

)
= 2Θ(k log(n/k)).

Algorithms Given a matrix A that satisfies the MK-RIP, one can show how to recover an
approximation to a signal from its sketch. The specific theorem (proven in [BCDH10] and re-stated
below) considers `2 recovery of a “noisy” sketch Ax + e, where e is an arbitrary “noise” vector,
while x ∈ MK . In the next section we will use this theorem to derive an `1 result for a different
scenario, where x is an arbitrary vector, and we are given its exact sketch Ax.

Theorem B.2. Suppose that a matrix A satisfies M(4)
K -RIP with constant δ < 0.1. Moreover,

assume that we are given a procedure that, given y ∈ Rn, finds y∗ ∈MK that minimizes ‖y− y∗‖2.
Then there is an algorithm that, for any x ∈MK , given Ax+ e, e 6= 0, finds x∗ ∈MK such that

‖x− x∗‖2 ≤ C‖e‖2

for some absolute constant C > 1. The algorithm runs in time O((n+ T +MM) log(‖x‖2/‖e‖2)),
where T is the running time of the minimizer procedure, and MM is the time needed to perform
the multiplication of a vector by the matrix A.

Note that the algorithm in the theorem has a somewhat unexpected property: if the sketch is
nearly exact, i.e., e ≈ 0, then the running time of the algorithm becomes unbounded. The reason
for this phenomenon is that the algorithm iterates to drive the error down to ‖e‖2, which takes
longer when e is small. However, as long as the entries of the signals x, x∗ and the matrix A have
bounded precision, e.g., are integers in the range 1, . . . , L, one can observe that O(logL) iterations
suffice.

The task of minimizing ‖y− y∗‖2 over y∗ ∈MK can typically be accomplished in time polyno-
mial in K and n. In particular, for MK = TK , there is a simple dynamic programming algorithm
solving this problem in time O(k2n). See, e.g., [CIHB09] for a streamlined description of the algo-
rithms for (a somewhat more general) problem and references. For more mathematical treatment
of tree approximations, see [CDDD01].

The following lemma (from [NT08]) will help us bound the value of ‖e‖2.
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Lemma B.3. Assume that the matrix A satisfies the (standard) Σs-RIP with constant δ. Then
for any vector z, we have ‖Az‖2 ≤

√
1 + δ(‖zS‖2 + ‖z‖1/

√
s), where S is the set of the s largest

(in magnitude) coefficients of z.

For completeness, we also include a proof. It is different, and somewhat simpler than the original
one. Moreover, we will re-use one of the arguments later.

Proof. We partition the coordinates of S into sets S0, S1, S2, . . . , St, such that (i) the coordinates
in the set Sj are no larger (in magnitude) than the coordinates in the set Sj−1, j ≥ 1, and (ii) all
sets but St have size s. We have

‖Az‖2 ≤
t∑

j=0

‖AzSj‖2

≤
√

1 + δ(‖zS0‖2 +

t∑
j=1

‖zSj‖2)

≤
√

1 + δ(‖zS0‖2 +
s∑
j=1

√
s(‖zSj−1‖1/s))

≤
√

1 + δ(‖z‖2 + ‖z‖1/
√
s)

B.2 New result

We start from the following observation relating general sparsity and tree sparsity. Consider k and
K such that K = c′k log(n/k) for some constant c′.

Claim B.4. Assume n = cl−1
c−1 for some (constant) integer c. Then there exists a constant c′ such

that Σk ⊂ TK .

Proof. It suffices to show that for any S ⊂ [n] of size k there exists a rooted connected subset T of
T (c, l) of size K such that S ⊂ T . The set T is equal to T ′ ∪ T ′′, where (i) T ′ consist of all nodes
in the tree T (c, l) up to level dlogc ke and (ii) T ′′ consists of all paths from the root to node i, for
i ∈ S. Note that |T ′| = O(k), and |T ′′ \ T ′| = O(k(log n− log k)) = O(k log(n/k)).

This claim is used in the following way. As we will see later, in order to provide the guarantee
for recovery with respect to the model TK , we will need to perform the recovery with respect to the
model TK ⊕ Σk. From the claim it follows that we can instead perform the recovery with respect

to the model T (2)
K ⊂ T2K .

Specifically, we show the following.

Theorem B.5. Suppose that we are given a matrix and minimizer subroutine as in Theorem B.2
for T2K . Then, for any x, given the vector Ax, the approximation x∗ computed by the algorithm in
Theorem B.2 satisfies

‖x− x∗‖1 ≤ (1 + 2C
√

(1 + δ)c′ log(n/k)) min
x′∈TK

‖x− x′‖1
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Proof. Let x′ ∈ TK be the minimizer of ‖x − x′‖1. Let T be a tree of size K such that x′ = xT ,
and define the “`1 approximation error” E = ‖x− x′‖1 = ‖xT ‖1

Let P ⊆ T be the set of the k largest (in magnitude) coordinates of xT . By Claim B.4 it follows
that P ⊆ T ′, for some T ′ ∈ TK . Let T ′′ = T ∪ T ′.

We decompose Ax into AxT ′′ +AxT ′′ = AxT ′′ + e. Since xT ′′ ∈ T2K , by Theorem B.2 we have

‖x− x∗‖2 ≤ C‖e‖2 (7)

Let T ∗ be the support of x∗. Note that |T ∗| ≤ 2K.
Since A satisfies the (standard) RIP of order k with constant δ = 0.1, by Lemma B.3 we have

‖e‖2 ≤
√

1 + δ[‖xS‖2 +
∥∥xT∪P∥∥1

/
√
k]

where S ⊂ T ∪ P is the set of the k largest (in magnitude) coordinates of xT∪P . By the definition
of P , every coordinate of |xS | is not greater than the smallest coordinate of |xP |. By the same
argument as in the proof of Lemma B.3 it follows that ‖xS‖2 ≤ ‖xP ‖1 /

√
k, so

‖e‖2 ≤
√

(1 + δ)/k
∥∥xT∥∥1

. (8)

We have

‖x− x∗‖1 = ‖(x− x∗)T ′′∪T ∗‖1 +
∥∥(x− x∗)T ′′∪T ∗

∥∥
1

≤ ‖(x− x∗)T ′′∪T ∗‖1 + E

≤
√

4K ‖(x− x∗)T ′′∪T ∗‖2 + E

≤
√

4K ‖x− x∗‖2 + E

≤
√

4KC ‖e‖2 + E

≤
√

4KC
√

(1 + δ)/k
∥∥xT∥∥1

+ E

= (1 + 2C
√

(1 + δ)K/k)E

= (1 + 2C
√

(1 + δ)c′ log(n/k))E

by Equations 7 and 8.

C Strict sparse approximation

In this section we show how to reduce the sparsity of an approximation down to k for an arbitrary
norm ‖ · ‖. This reduction seems folklore, but we could not find an appropriate reference, so we
include it for completeness.

Consider a sparse approximation scheme that, given Ax, returns (not necessarily sparse) vec-
tor x∗ such that ‖x∗ − x‖ ≤ C mink-sparse x′ ‖x′ − x‖; let x′ be the the minimizer of the lat-
ter expression. Let x̂ be the approximately best k-sparse approximation to x∗, i.e., such that
‖x̂− x∗‖ ≤ C ′mink-sparse x′′ ‖x′′ − x∗‖; let x′′ be the minimizer of the latter expression. Note that
since x′ is k-sparse, it follows that ‖x′′ − x∗‖ ≤ ‖x′ − x∗‖.

Claim C.1. We have
‖x̂− x‖ ≤ [(C ′ + 1)C + C ′]‖x′ − x‖
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Proof.

‖x̂− x‖ ≤ ‖x̂− x∗‖+ ‖x∗ − x‖
≤ C ′‖x′′ − x∗‖+ ‖x∗ − x‖
≤ C ′‖x′ − x∗‖+ ‖x∗ − x‖
≤ C ′[‖x′ − x‖+ ‖x− x∗‖] + ‖x∗ − x‖
= (C ′ + 1)‖x∗ − x‖+ C ′‖x′ − x‖
≤ (C ′ + 1)C‖x′ − x‖+ C ′‖x′ − x‖
= [(C ′ + 1)C + C ′]‖x′ − x‖

D Wavelet-based method

We start by recalling the definition of the non-standard two-dimensional Haar wavelet basis (see [SDS95]
for an overview). Let H ∈ Rn×n be the matrix with rows corresponding to the basis vectors. We
will define H in terms of the grids Gi. The first row of H has all coordinates equal to 1/n. The
rest of H consists of three rows for each cell C ∈ Gi for i ≥ 1. For each cell C, the corresponding
rows contain zeros outside of the coordinates corresponding to C. The entries corresponding to C
are defined as follows: (i) one row has entries equal to 2−i for each entry corresponding to the left
half of C and equal to −2−i for each entry corresponding to the right half of C; (ii) the second row
has entries equal to 2−i for the top half of C and to −2−i for the bottom half; (ii) and the third
row has entries equal to 2−i for the top left and bottom right quadrants of C, and equal to −2−i

for the other two quadrants.
We define W to transform into the same basis as H, but with rescaled basis vectors. In

particular, the basis vectors from level i are smaller by a factor of 22i−2, so the non-zero entries
have magnitude 22−3i. This is equivalent to changing the coefficients of the corresponding rows of
W to be 2i−2 rather than 2−i. Similarly, we rescale the all-positive basis vector to have coefficients
equal to 1/n3. Then W = DH for some diagonal matrix D.

This rescaling is such that the columns of W−1, call them vi, all have ‖vi‖EMD = 1. This is
because the min-cost matching moves each of 22i/2 coefficients by 2i/2. So we have

‖x‖EMD =
∥∥∥∑(Wx)ivi

∥∥∥
EMD

≤
∑
‖(Wx)ivi‖EMD

=
∑
|(Wx)i| = ‖Wx‖1 ,

which is Property A of the framework.
Property C is easy since W has a known inverse (namely HTD−1), giving

∥∥y −WW−1y
∥∥

1
= 0

for all y. All that remains to show is Property B.

Lemma D.1. For all x ∈ Rn+, there exists a y ∈ TO( 1
ε2
k log(n/k)) with

‖y −Wx‖1 ≤ ε min
k-sparse xk

‖x− xk‖EMD .

Proof. We will show this using Lemma 4.1 as a black box. We know there exists a support S of
Px corresponding to a tree of grid cells such that∥∥(Px)S

∥∥
1
≤ ε min

k-sparse xk
‖x− xk‖EMD .
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Let S′ be a support of Wx that contains the all-constant basis vector as well as, for each cell C ∈ Gi
in S with i ≥ 1, the three coefficients in Wx corresponding to C. Then S′ is also a tree.

For any cell C ∈ Gi, let u be the row in P corresponding to C and v be any of the three rows
in W corresponding to C. Then

‖v‖∞ = 2i−2 =
1

4
‖u‖∞ .

So the only difference between v and u is that (i) v has one fourth the magnitude in each coefficient
and (ii) some coefficients of v are negative, while all of u are positive. Hence for positive x,
|v · x| ≤ 1

4 |u · x|. This gives

∥∥(Wx)
S
′
∥∥

1
≤ 3

4

∥∥(Px)S
∥∥

2
≤ 3

4
ε min
k-sparse xk

‖x− xk‖EMD .

as desired.

Theorem D.2. This gives

‖x∗ − x‖EMD ≤ C min
y∈TK

‖Wx− y‖1 ≤ C min
k-sparse x′

∥∥x− x′∥∥
EMD

for some distortion C = O(
√

log(n/k)).
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