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Abstract
The goal of compressed sensing is to learn a
structured signal x from a limited number of
noisy linear measurements y ≈ Ax. In tra-
ditional compressed sensing, “structure” is rep-
resented by sparsity in some known basis. In-
spired by the success of deep learning in model-
ing images, recent work starting with (Bora et al.,
2017) has instead considered structure to come
from a generative model G : Rk → Rn. We
present two results establishing the difficulty and
strength of this latter task, showing that existing
bounds are tight: First, we provide a lower bound
matching the (Bora et al., 2017) upper bound
for compressed sensing with L-Lipschitz genera-
tive models G which holds even for the more re-
laxed goal of non-uniform recovery. Second, we
show that generative models generalize sparsity
as a representation of structure by constructing a
ReLU-based neural network with 2 hidden lay-
ers and O(n) activations per layer whose range
is precisely the set of all k-sparse vectors.

1. Introduction
In compressed sensing, one would like to learn a struc-
tured signal x ∈ Rn from a limited number of linear mea-
surements y ≈ Ax. This is motivated by two observa-
tions: first, there are many situations where linear mea-
surements are easy, in settings as varied as streaming al-
gorithms, single-pixel cameras, genetic testing, and MRIs.
Second, the unknown signals x being observed are struc-
tured or “compressible”: although x lies in Rn, it would
take far fewer than n floating point numbers to describe x.
In such a situation, one can hope to estimate x well from
a number of linear measurements that is closer to the size
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of the compressed representation of x than to its ambient
dimension n.

In order to do compressed sensing, you need a formal no-
tion of how signals are expected to be structured. The clas-
sic answer is to use sparsity. Given linear measurements1

y = Ax of an arbitrary vector x ∈ Rn, one can hope to
recover an estimate x̂ of x satisfying

‖x− x̂‖ ≤ C min
k-sparse x′

‖x− x′‖ (1)

for some constant C and norm ‖·‖. In this paper, we
will focus on achieving the guarantee with 3/4 probabil-
ity. Thus, if x is well-approximated by a k-sparse vector
x′, it should be accurately recovered. Classic results such
as (Candès et al., 2006) show that (1) is achievable when A
consists of m = O(k log n

k ) independent Gaussian linear
measurements. This bound is tight, and in fact no distribu-
tion of matrices with fewer rows can achieve this guarantee
in either `1 or `2 (Do Ba et al., 2010).

Although compressed sensing has had success, sparsity is
a limited notion of structure. Can we learn a richer model
of signal structure from data, and use this to perform re-
covery? In recent years, deep convolutional neural net-
works have had great success in producing rich models
for representing the manifold of images, notably with gen-
erative adversarial networks (GANs) (Goodfellow et al.,
2014) and variational autoencoders (VAEs) (Kingma &
Welling, 2014). These methods produce generative mod-
els G : Rk → Rn that allow approximate sampling from
the distribution of images. So a natural question is whether
these generative models can be used for compressed sens-
ing.

In (Bora et al., 2017) it was shown how to use generative
models to achieve a guarantee analogous to (1): for any
L-Lipschitz G : Rk → Rn, one can achieve

‖x− x̂‖2 ≤ C min
z′∈B2

k(r)
‖x−G(z′)‖2 + δ, (2)

where r, δ > 0 are parameters, B2
k(r) denotes the radius-

r `2 ball in Rk and Lipschitzness is defined with respect

1The algorithms we discuss can also handle post-measurement
noise, where y = Ax + η. We remove this term for simplicity:
this paper focuses on lower bounds, and handling this term could
only make things harder.
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to the `2-norms, using only m = O(k + k log Lr
δ ) mea-

surements. Thus, the recovered vector is almost as good
as the nearest point in the range of the generative model,
rather than in the set of k-sparse vectors. We will refer to
the problem of achieving the guarantee (2) as “generative-
model recovery”.

Our first theorem is that the (Bora et al., 2017) result is
tight: for any setting of parameters n, k, L, r, δ, there ex-
ists an L-Lipschitz function G : Rk → Rn such that
the (Bora et al., 2017) measurement bound is optimal for
achieving (2):

Theorem 1.1. Consider any n, k, L, r, δ. There exists an
L-Lipschitz function G∗ : Rk → Rn such that, if A is an
algorithm which picks a matrix A ∈ Rm×n, and given Ax
returns an x̂ satisfying (2) with probability at least 3/4,
then m = Ω(min(k + k log(Lr/δ), n)).

The same result holds if the `2 norms in (2) are replaced
with `1 norms.

That our lower bound caps out at m = Θ(n) is of course
necessary, since the problem is trivial for m = n; thus our
bound is tight for the whole range of possible parameters.
Notably, and in contrast to sparse recovery, the additive er-
ror δ is necessary for Lipschitz generative model recovery.
One cannot achieve (2) with δ = 0 and m = o(n).

Our second result is to directly relate the two notions of
structure: sparsity and generative models. We produce a
simple ReLU-based neural network Gsp : R2k → Rn
whose range is precisely the set of all k-sparse vectors.

Theorem 1.2. There exists a 2-hidden-layer ReLU-based
neural network Gsp : R2k → Rn with width O(nk) such
that Im(G) = {x | ‖x‖0 ≤ k}.

This matches a second result of (Bora et al., 2017), which
shows that for ReLU-based neural networks, one can avoid
the additive δ term and achieve a different result from (2):

‖x− x̂‖2 ≤ C min
z′∈Rk

‖x−G(z′)‖2 (3)

using O(kd logW ) measurements, if d is the depth and
W is the maximum number of activations per layer. Ap-
plying this result to our sparsity-producing network Gsp
implies, with O(k log n) measurements, recovery achiev-
ing the standard sparsity guarantee (1). So the generative-
model representation of structure really is more powerful
than sparsity.

Connecting the results. Theorem 1.2 directly implies a
weaker form of Theorem 1.1. The network Gsp produces
all k-sparse binary vectors from seeds of radius r = n

√
k

and with L = 2. The standard sparse recovery lower bound
shows that recovering these vectors for δ =

√
k requires

Ω(k log(n/k)) measurements, which is Ω(k log n) for n >
k1.1. Therefore we immediately see an Ω(k log Lr

δ ) bound
for Lipschitz recovery for these parameters. The advantage
of Theorem 1.1 over such an approach is that it applies to
all values of L, r, and δ, rather than these polynomially-
bounded ones; and indeed, such an approach would not
show that the additive δ is necessary in (2).

In Theorem 2.2, we also show how to improve Theorem 1.2
to have width O(n), at the cost of exponential Lipschitz-
ness.

Concurrent work. A concurrent paper (Liu & Scarlett,
2019) proves a very similar lower bound to our Theo-
rem 1.1. However, the (Liu & Scarlett, 2019) result is
weaker in an important way, analogous to the implication
from Theorem 1.2: it requires n to equalLr/δ, so the lower
bound is equal to Θ(k log n). As a result, it neither applies
to superpolynomial L, nor does it imply that any depen-
dence on δ is necessary.

Our result is also stronger than (Liu & Scarlett, 2019) in a
couple other ways. Our bound applies to non-uniform al-
gorithms where each matrix A only works for 3/4 of pos-
sible inputs x, rather than requiring A to work for all x,
and our bound applies to the `1 as well as the `2 guaran-
tee. The (Liu & Scarlett, 2019) approach likely can be ex-
tended to non-uniform algorithms, but extending their tech-
niques to `1 seems quite challenging. Even in the standard
sparse-recovery setting, our communication-complexity–
based techniques extend to the `1 guarantee, while (to our
knowledge) the information-theory techniques used in (Liu
& Scarlett, 2019) do not.

2. Proof overview
As described above, this paper contains two results: a
tight lower bound for compressed sensing relative to a
Lipschitz generative model, and an O(1)-layer generative
model whose range contains all sparse vectors. The tech-
niques are independent, and we outline each in turn.

2.1. Lower bound for Lipschitz generative recovery.

Over the last decade, lower bounds for sparse recovery have
been studied extensively. The techniques in this paper are
most closely related to the techniques used in (Do Ba et al.,
2010).

Similar to (Do Ba et al., 2010), our proof is based on com-
munication complexity. We will exhibit an L-Lipschitz
function G and a large finite set Z ⊂ Im(G) ⊂ Bpn(R)
of points that are well-separated. Then, given a point x
that is picked uniformly at random from Z, we show how
to identify it from Ax using the generative model recovery
algorithm. This implies Ax also contains a lot of informa-
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tion, so m must be fairly large.

Formally, we produce a generative model whose range in-
cludes a large, well-separated set:

Theorem 2.1. Given R > 0 satisfying R > 2Lr, p ∈
{1, 2}, there exists an O(L)−Lipschitz function G : Rk →
Rn, and X ⊆ Bpk(r) such that

(1) for all x ∈ X , G(x) ∈ {± R
n1/p }n

(2) hence for all x ∈ X , ‖G(x)‖p = R

(3) for all x, y ∈ X , ‖G(x)−G(y)‖p ≥
R

61/p

(4) log(|X|) = Ω
(
min(k log(LrR )), n

)
Now, suppose we have an algorithm that can perform gen-
erative model recovery with respect to G from Theorem
2.1, with approximation factor C, and error δ < R/24
within the radius r ball in k-dimensions. Set t = Θ(log n),
and for any z1, z2, . . . , zt ∈ Z = G(X) take

z = εtz1 + εt−1z2 + εt−1z3 + . . .+ zt

for ε = 1
48(C+1) a small constant. The idea of the proof is

the following: given y = Az, we can recover ẑ such that

‖ẑ − zt‖ ≤ ‖z − zt‖ + ‖ẑ − z‖ + δ

≤ (C + 1) ‖z − zt‖ + δ

≤ (C + 1)
εR

1− ε
+ δ

< R/24 +R/24 = R/12

where the first inequality comes from the generative model
recovery guarantee for zt when treating z − zt as noise.
Now, because Z has minimum distance R/61/p, we can
exactly recover zt by rounding ẑ to the nearest element of
Z. But then we can repeat the process on (Az − Azt)
to find zt−1, then zt−2, up to z1, and learn t lg |Z| =
Ω(tk log(Lr/R)) bits total. Thus Az must contain this
many bits of information; but if the entries ofA are rational
numbers with poly(n) bounded numerators and (the same)
poly(n) bounded denominator, then each entry of Az can
be described in O(t+ log n) bits, so

m ·O(t+ log n) ≥ Ω(tk log(Lr/R))

or m ≥ Ω(k log(Lr/R)).

There are two issues that make the above outline not totally
satisfactory, which we only briefly address how to resolve
here. First, the theorem statement makes no supposition on
the entries of A being polynomially bounded. To resolve
this, we perturb z with a tiny (polynomially small) amount
of additive Gaussian noise, after which discretizing Az at

an even tinier (but still polynomial) precision has negligi-
ble effect on the failure probability. The second issue is
that the above outline requires the algorithm to recover all
t vectors, so it only applies if the algorithm succeeds with
1 − 1/t probability rather than constant probability. This
is resolved by using a reduction from the augmented index-
ing problem, which is a one-way communication problem
where Alice has z1, z2, . . . , zt ∈ Z, Bob has i ∈ [t] and
zi+1, · · · , zn, and Alice must send Bob a message so that
Bob can output zi with 2/3 probability. This still requires
Ω(t log |Z|) bits of communication, and can be solved in
O(m(t + log n)) bits of communication by sending Az as
above.

Constructing the set. The above lower bound approach,
relies on finding a large, well-separated set Z = G(X) as
in Theorem 2.1.

We construct this set in two stages. First, we consider the
k = 1 case, producing a Lipschitz map from R to Rn with
Lr/R points of appropriate distance. We do this by linearly
interpolating between elements of a high-distance code
over {±R/n1/p}n; because codewords are Θ(R) apart, an
L-Lipschitz function from [−r, r] can reach Lr/R such el-
ements (as long as this is less than the 2Ω(n) total number
of codewords).

To extend this construction to a mapping from Rk to Rn,
we take the product distribution of k such functions, each
run with n′ = n/k. This results in a Lipschitz generative
model with the desired radius and number of elements; un-
fortunately, the minimum distance would be too small. We
fix this by concatenating the code: we use an error correct-
ing code over [n/k]k to choose a subset of these points that
is still large enough but has the desired distance.

2.2. Sparsity-producing generative model.

For our second result, to produce a generative model whose
range consists of all k-sparse vectors, we start by map-
ping R2 to the set of positive 1-sparse vectors. For any
pair of angles θ1, θ2, we can use a constant number of un-
biased ReLUs to produce a neuron that is only active at
points whose representation (r, θ) in polar coordinates has
θ ∈ (θ1, θ2). Moreover, because unbiased ReLUs behave
linearly, the activation can be made an arbitrary positive
real by scaling r appropriately. By applying this n times in
parallel, we can produce n neurons with disjoint activation
ranges, making a network R2 → Rn whose range contains
all 1-sparse vectors with nonnegative coordinates.

By doing this k times and adding up the results, we produce
a network R2k → Rn whose range contains all k-sparse
vectors with nonnegative coordinates. To support negative
coordinates, we just extend the k = 1 solution to have two
ranges within which it is non-zero: for one range of θ the
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output is positive, and for another the output is negative.
This results in Theorem 1.2.

2.3. Low width sparsity producing generative model

We also show how to improve this width to O(n). This
construction is randomized as opposed to the explicit con-
struction in Theorem 1.2.

We pick n random vectors in v1, . . . , vn ∈ Rk+1. We as-
sociated every set S ⊂ [n] such that |S| = k with a point
xS on the radius 1 ball such that 〈vi, xS〉 = 0∀i ∈ S (such
a point must exist because these are k linear equations in
xS , which has k + 1 variables). We then construct a neu-
ral network G such that for ri := G(xS)i > 0∀i ∈ S
and G(xS)i = 0∀i /∈ S. Further, we show that for val-
ues r′i ∈ [0, ri] there exists a pre-image x′ within a small
region around xS such that G(x′)i = r′i∀i ∈ S and
G(x′)i = 0∀i /∈ S. Scaling such x′ up can produce any
vector with support S.

The crux of the proof lies in showing that the regions which
we identify around the points xS are non-overlapping. We
do this using an ε-net argument. The result is as follows:

Theorem 2.2. There exists a 2-hidden-layer neural net-
work Grand : Rk+1 → Rn with width O(n) such that
Im(G) = {x | ‖x‖0 ≤ k}.

3. Proof of lower bound
In this section, we prove a lower bound for the sample com-
plexity of generative model recovery by a reduction from
a communication game. We show that the communication
game can be won by sending a vectorAx and then perform-
ing generative model recovery. A lower bound on the com-
munication complexity of the game implies a lower bound
on the number of bits used to represent Ax if Ax is dis-
cretized. We can then use this to lower bound the number
of measurements in A.

Since we are dealing in bits in the communication game
and the entries of a sparse recovery matrix can be arbi-
trary reals, we will need to discretize each measurement.
We show first that discretizing the measurement matrix by
rounding does not change the resulting measurement too
much and will allow for our reduction to proceed.

Notation. We use Bpk(r) = {x ∈ Rk | ‖x‖p ≤
r} to denote the k-dimensional `p ball of radius
r. Given a function g : Ra → Rb, g⊗k :
Rak → Rbk denotes a function that the maps a
point (x1, . . . , xak) to (g(x1, . . . , xa), g(xa+1, . . . , x2a)
, . . . , g(xa(k−1)+1, . . . , xak)). For any function G : A →
B, we use Im(G) to denote {G(x) | x ∈ A}.

Matrix conditioning. We first show that, without loss of
generality, we may assume that the measurement matrix A
is well-conditioned. In particular, we may assume that the
rows of A are orthonormal.

We can multiply A on the left by any invertible matrix to
get another measurement matrix with the same recovery
characteristics. If we consider the singular value decom-
position A = UΣV ∗, where U and V are orthonormal and
Σ is 0 off the diagonal, this means that we can eliminate U
and make the entries of Σ be either 0 or 1. The result is a
matrix consisting of m orthonormal rows.

Discretization. For well-conditioned matrices A, we use
the following lemma (similar to one from (Do Ba et al.,
2010)) to show that we can discretize the entries without
changing the behavior by much:
Lemma 3.1. LetA ∈ Rm×n be a matrix with orthonormal
rows. Let A′ be the result of rounding A to b bits per entry.
Then for any v ∈ Rn there exists an s ∈ Rn with A′v =
A(v − s) and ‖s‖p < n22−b ‖v‖p for p ∈ {1, 2}.

Proof. Let A′′ = A− A′ be the error when discretizing A
to b bits, so each entry of A′′ is less than 2−b. Then for any
v and s = ATA′′v, we have As = A′′v. For p = 2, we
have:

‖s‖2 =
∥∥ATA′′v∥∥

2
≤ ‖A′′v‖2

≤ m2−b ‖v‖2 ≤ n2−b ‖v‖2 .

and for p = 1,

‖s‖1 =
∥∥ATA′′v∥∥

1
≤
√
n ‖A′′v‖1

≤ m
√
n2−b ‖v‖1 ≤ n

22−b ‖v‖1 .

The Augmented Indexing problem. As in (Do Ba et al.,
2010), we use the Augmented Indexing communication
game which is defined as follows: There are two parties,
Alice and Bob. Alice is given a string y ∈ {0, 1}d. Bob
is given an index i ∈ [d], together with yi+1, yi+2, . . . , yd.
The parties also share an arbitrarily long common random
string r. Alice sends a single message M(y, r) to Bob,
who must output yi with probability at least 2/3, where
the probability is taken over r. We refer to this problem as
Augmented Indexing. The communication cost of Aug-
mented Indexing is the minimum, over all correct proto-
cols, of length |M(y, r)| on the worst-case choice of r and
y.

The following theorem is well-known and follows from
Lemma 13 of (Miltersen et al., 1998) (see, for example,
an explicit proof in (Do Ba et al., 2010))
Theorem 3.2. The communication cost of Augmented In-
dexing is Ω(d).
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A well-separated set of points. We would like to prove
Theorem 2.1, getting a large set of well-separated points in
the image of a Lipschitz generative model. Before we do
this, though, we prove a k = 1 analog:

Lemma 3.3. Given p ∈ {1, 2}, there is a set of points P in
Bpn(1) ⊂ Rn of size 2Ω(n) such that for each pair of points
x, y ∈ P

‖x− y‖ ∈
[(1

3

)1/p
,
(2

3

)1/p]
Proof. Consider a τ -balanced linear code over the alphabet
{± 1

n1/p } with message length M . It is known that such
codes exist with block length O(M/τ2) (Ben-Aroya & Ta-
Shma, 2009). Setting the block length to be n and τ = 1/6,
we get that there is a set of 2Ω(n) points in Rn such that
the pairwise hamming distance is between

[
n
3 ,

2n
3

]
, i.e. the

pairwise `p distance is between
[(

1
3

)1/p
,
(

2
3

)1/p]
.

Now we wish to extend this result to arbitrary k while
achieving the parameters in Theorem 2.1.

Proof of Theorem 2.1. We first define an O(L)-Lipschitz
map g : R → Rn/k that goes through a set
of points that are pairwise Θ

(
R
k1/p

)
apart. Con-

sider the set of points P from Lemma 3.3 scaled to
Bpn/k( R

k1/p
). Observe that |P | ≥ exp (Ω (n/k)) ≥

min (exp (Ω (n/k)) , Lr/R). Choose subset P ′ such that
it contains exactly min (Lr/R, exp(Ω(n/k))) points and
let g1 : [0, r/k1/p] → P ′ be a piecewise linear function
that goes through all the points in P ′ in any order. Then,
we define g : R→ Rn/k as:

g(x) =


g1(0) if x < 0

g1(x) if 0 ≤ x ≤ r/k1/p

g1( R
k1/p

) if x ≥ r/k1/p

Let I = { r
k1/p|P ′| , . . . ,

r
k1/p
} be the points that are pre-

images of elements ofP ′. Observe that g isO(L)-Lipschitz
since within the interval [0, r/k1/p], since it maps each in-
terval of length r

k1/p|P ′| ≥
rR

k1/pLr
= R

Lk1/p
to an interval

of length at most O(R/k1/p).

Now, consider the function G := g⊗k : Rk → Rn. Ob-
serve that G is also O(L) Lipschitz,

‖G(x1, . . . , xk)−G(y1, . . . , yk)‖pp
=
∑
i∈[k]

‖g(xi)− g(yi)‖pp

≤
∑
i∈[k]

O(Lp) ‖xi − yi‖pp

= O(Lp) ‖x− y‖pp

Also, for every point (x1, . . . , xk) ∈ Ik,
‖G(x1, . . . , xk)‖p = (

∑
i∈[k] ‖g(xi)‖pp)1/p ≤ R.

However, there still exist distinct points x, y ∈ Ik(for
instance points that differ at exactly one coordinate) such
that ‖G(x)−G(y)‖p ≤ O( R

k1/p
).

We construct a large subset of the points in Ik such that any
two points in this subset are far apart using error correcting
codes. Consider the A ⊂ P ′ s.t. |A| > |P ′| /2 is a prime.
For any integer z > 0, there is a prime between z and 2z,
so such a set A exists. Consider a Reed-Solomon code of
block length k, message length k/2, distance k/2 and al-
phabetA. The existence of such a code implies that there is
a subset X ′ of (P ′)k of size at least (|P ′| /2)k/2 such that
every pair of distinct elements from this set disagree in k/2
coordinates.

This translates into a distance of R
61/p in p-norm. So,

if we set G = g⊗k and X ⊂ Ik to G−1(X ′),
we get a set of points of cardinality (|P ′| /2)k/2 ≥
(min(exp(Ω(n/k)), Lr/R))k/2 with minimum distance
R

61/p in p-norm that lie within the `p ball of radius R.

Lower bound. We now prove the lower bound for gener-
ative model recovery.

Proof of Theorem 1.1. An application of Theorem 2.1 with
R =

√
Lrδ gives us a set of points Z and G such that Z =

G(X) ⊆ Rn such that log(|Z|) = Ω(min(k log(Lrδ ), n)),
and for all x ∈ Z, ‖x‖ ≤

√
Lrδ and for all x, x′ ∈ Z,

‖x− x′‖ ≥
√
Lrδ/6. Let d = blog |X|c log n, and let

D = 48(C + 1).

We will show how to solve the Augmented Indexing
problem on instances of size d = log(|Z|) · log(n) =
Ω(k log(Lr) log n) with communication cost O(m log n).
The theorem will then follow by Theorem 3.2.

Alice is given a string y ∈ {0, 1}d, and Bob is given i ∈ [d]
together with yi+1, yi+2, . . . , yd, as in the setup for Aug-
mented Indexing.

Alice splits her string y into log n contiguous chunks
y1, y2, . . . , ylogn:

y1, . . . , ylog|X|︸ ︷︷ ︸
y1

, ylog|X|+1, . . . , y2 log|X|︸ ︷︷ ︸
y2

, . . . , yd−log|X|, . . . , yd︸ ︷︷ ︸
ylog n

where each chunk contains blog |X|c bits and represents an
index into X .

She uses yj as an index into the set X to choose xj . Alice
defines

x = D1x1 +D2x2 + · · ·+Dlognxlogn.

Alice and Bob use the common randomness R to agree on
a recovery matrix A with orthonormal rows. Both Alice
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and Bob round A to form A′ with b = Θ(log(n)) bits per
entry. Alice computes A′x and transmits it to Bob. Note
that, since x ∈

{
± 1
n1/p

}
the x’s need not be discretized.

From Bob’s input i, he can compute the chunk j =
j(i) for which the bit yi occurs in yj . Bob’s input
also contains yi+1, . . . , yn, from which he can reconstruct
xj+1, . . . , xlogn, and in particular can compute

z = Dj+1xj+1 +Dj+2xj+2 + · · ·+Dlognxlogn.

Set w = 1
Dj (x − z) = 1

Dj

∑j
i=1D

ixi. Bob then com-
putes A′z, and using A′x and linearity, he can compute
1
Dj ·A′(x− z) = A′w. Then

‖w‖ ≤ 1

Dj

j∑
i=1

R ·Di < R.

So from Lemma 3.1, there exists some s with A′w =
A(w − s) and

‖s‖ < n22−b ‖w‖ < R

Djn2
.

Ideally, Bob would perform recovery on the vector A(w −
s) and show that the correct point xj is recovered. How-
ever, since s is correlated with A and w, Bob needs to use
a slightly more complicated technique.

Bob first chooses another vector u uniformly from
Bpn(R/Dj) and computes A(w − s − u) = A′w − Au.
He then runs the estimation algorithm A on A and A(w −
s−u), obtaining ŵ. We have that u is independent ofw and
s, and that ‖u‖ ≤ R

Dj (1− 1/n2) ≤ R
Dj − ‖s‖ with proba-

bility
Vol(Bp

n( R

Dj (1−1/n2)))

Vol(Bp
n( R

Dj ))
= (1− 1/n2)n > 1− 1/n. But

{w − u | ‖u‖ ≤ R
Dj − ‖s‖} ⊆ {w − s− u | ‖u‖ ≤ R

Dj },
so as a distribution over u, the ranges of the random vari-
ables w − s − u and w − u overlap in at least a 1 − 1/n
fraction of their volumes. Therefore w − s− u and w − u
have statistical distance at most 1/n. The distribution of
w − u is independent of A, so running the recovery algo-
rithm on A(w − u) would work with probability at least
3/4. Hence with probability at least 3/4− 1/n ≥ 2/3 (for
n large enough), ŵ satisfies the recovery criterion forw−u,
meaning

‖w − u− ŵ‖ ≤ C min
w′∈Im(G)

‖w − u− w′‖ + δ

Now,

‖xj − ŵ‖ ≤ ‖w − u− xj‖ + ‖w − u− ŵ‖
≤ (1 + C) ‖w − u− xj‖ + δ

≤ (1 + C)

(
‖u‖ +

1

Dj
·
j−1∑
i=1

∥∥Dixi
∥∥)+ δ

≤ 2(1 + C)R/D + δ

< R · 2(1 + C)

D
+ δ

=
1

24
·R+ δ.

Since δ < Lr/24, this distance is strictly bounded by
R/12. Since the minimum distance in X is R/6, this
means

∥∥Djxj − ŵ
∥∥ < ∥∥Djx′ − ŵ

∥∥ for all x′ ∈ X,x′ 6=
xj . So Bob can correctly identify xj with probability at
least 2/3. From xj he can recover yj , and hence the bit yi
that occurs in yj .

Hence, Bob solves Augmented Indexing with probabil-
ity at least 2/3 given the message A′x. Each entry of A′x
takes O(log n) bits to describe because A′ is discretized to
up to log(n) bits and x ∈ {± 1

n1/p }n. Hence, the com-
munication cost of this protocol is O(m · log n). By The-
orem 3.2, m log n = Ω(min(k log(Lr/δ), n) · log n), or
m = Ω(min(k log(Lr/δ), n)).

4. Generator for k-sparse vectors
4.1. Explicit Construction

We show that the set of all k-sparse vectors in Rn is con-
tained in the image of a 2 layer neural network. This shows
that generative model recovery is a generalization of sparse
recovery.

Lemma 4.1. There exists a 2 layer neural network G :
R2 → Rn with width O(n) such that {x | ‖x‖0 = 1} ⊆
Im(G)

Our construction is intuitively very simple. We define two
gadgets G+

i and G−i . G+
i ≥ 0 and G+

i (x1, x2) 6= 0
iff arctan(x2/x1) ∈ [i · 2π

n , (i + 1) · 2π
n ]. Similarly

G−i (x1, x2) ≤ 0 and G−i (x1, x2) 6= 0 iff arctan(x2/x1) ∈
[π + i · 2π

n , π + (i + 1) · 2π
n ]. Then, we set the ith output

node (G(x1, x2))i = G+
i (x1, x2) + G−i (x1, x2). Varying

the distance of (x1, x2) from the origin will allow us to get
the desired value at the output node i.

Proof. Let α = π
n+1 . Let [x]+ = x · I(x ≥ 0) denote the

unbiased ReLU function that preserves positive values and
[x]− = x · I(x ≤ 0) denote the unbiased ReLU function
that preserves negative values. We define G+

i : R2 → R as
follows:
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x1

x2

a+
(i),1

a+
(i),2

b+i

cos(iα)

cos(iα+ α
2
)

− sin(iα)

− sin(iα+ α
2
)

1/ sin(α)

−1/ sin(α/2)

G+
i is a 2 layer neural network gadget that produces pos-

itive values at output node i of G. We define each of the
hidden nodes of the neural network G+

i as follows:

a+
(i),1 =

[
cos(iα)x1 − sin(iα)x2

]
+

a+
(i),2 =

[
cos
(
iα+

α

2

)
x1 − sin

(
iα+

α

2

)
x2

]
+

b+(i) =
[ a+

(i),1

sin(α)
−

a+
(i),2

sin(α/2)

]
+

In a similar manner, G−i which produces negative values at
output node i of G with the internal nodes defined as:

a−(i),1 =
[

cos(π + iα)x1 − sin(π + iα)x2

]
+

a−(i),2 =
[

cos
(
π + iα+

α

2

)
x1

− sin
(
π + iα+

α

2

)
x2

]
+

b−(i) =
[ a−(i),2

sin(α/2)
−

a−(i),1

sin(α)

]
−

The last ReLU activation preserves only negative values.
Since G+

i and G−i are identical up to signs in the second
hidden layer, we only analyze G+

i ’s.
Consider i ∈ [n]. Let β = iα and (x1, x2) =
(t sin(θ), t cos(θ)). Then using the identity
sin(A) cos(B)− cos(A) sin(B) = sin(A−B),

cos(β)x1 − sin(β)x2 = t
(

cos(β) sin(θ)− sin(β) cos(θ)
)

= t sin(θ − β)

This is positive only when θ ∈ (β, π + β). Similarly,
cos(β+α/2)x1− sin(β+α/2)x2 = t sin(θ− (β+α/2))
and is positive only when θ ∈ (β+α/2, π+β+α/2). So,
a+

(i),1 and a+
(i),2 are both non-zero when θ ∈ (β+α/2, π+

β). Using some elementary trigonometry, we may see that:

a
(i)
1

sin(α)
− a

(i)
2

sin(α/2)

= t
( sin(θ − β)

sin(α)
−

sin(θ − (β + α
2 ))

sin(α/2)

)
=
t sin(β − θ + α)

sin(α/2)

In Fact A.1, we show a proof of the above identity. Observe
that when θ > β+α, this term is negative and hence bi = 0.
So, we may conclude that G+

i ((x1, x2)) 6= 0 if and only
if (x1, x2) = (t sin(θ), t cos(θ)) with θ ∈ ((i − 1)α, iα).
Also, observe thatG+

i (t sin(β+α/2), t cos(β+α/2)) = t.
Similarly G−i is non-zero only if and only if θ ∈ [π +
iα, π + (i + 1)α] and G−i (t sin(π + iα + α/2), t cos(π +
iα + α/2)) = −t. Since α = π

n+1 , the intervals within
which each of G+

1 , . . . , G
+
n ,G−1 , . . . , G

−
n are non-zero do

not intersect.

So, given a vector z′ such that ‖z‖0 = 1 with zi′ 6= 0, if
zi′ > 0, set

x1 = |zi′ | sin(i′α+ α/2)

x2 = |zi′ | cos(i′α+ α/2)

and if zi′ < 0, set

x1 = |zi′ | sin(π + i′α+ α/2)

x2 = |zi′ | cos(π + i′α+ α/2)

Observe that:

G+
i′ ((x1, x2)) +G−i′ ((x1, x2)) = zi′

and for all j 6= i′

G+
j ((x1, x2)) +G−j ((x1, x2)) = 0

So, if G(x) = (G+
1 (x) + G−1 (x), . . . , G+

n (x) + G−n (x)),
G is a 2-layer neural network with width O(n) such that
Im(G) = {x | ‖x‖0 ≤ 1}.

Proof of Theorem 1.2. Given a vector z that is non-zero at
k coordinates, let i1 < i2 < · · · < ik be the indices
at which z is non-zero. We may use copies of G from
Lemma 4.1 to generate 1-sparse vectors v1, . . . , vk such
that (vj)ij = zij . Then, we add these vectors to obtain
z. It is clear that we only used k copies of G to create
Gsp. So, Gsp can be represented by a neural network with
2 layers.

Theorem 1 provides a reduction which uses only 2 layers.
Then, using the algorithm from Theorem 3, we can recover
the correct k-sparse vector using O(kd log(nk)) measure-
ments. Since d = 4 and ≤ n, this requires only O(k log n)
linear measurements to perform `2/`2 (k,C)-sparse recov-
ery.

4.2. Randomized Low Width Construction

We describe the neural network Grand : Rk+1 → Rn here
and we prove in the appendix that given any k-sparse vector
y, we show that there exists a vector in x̂ ∈ Rk+1 such that
G(x̂) = y.
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For every i ∈ [2n], pick vi uniformly at random from Sk.
Then pick v

′

i ⊥ vi uniformly at random from Sk.

We define for every i ∈ [2n] and b ∈ {0, 1}

Fi(x) =
[[
〈x, tan(α)v

′

i + vi〉
]
+
− 2
[
〈x, vi〉

]
+

]
+

+
[[
〈x, tan(α)v

′

i − vi〉
]
+
− 2
[
〈x,−vi〉

]
+

]
+

(4)

where we set α = 1/nO(k). As illustrated in Figure 1, Fi
has a non-zero value only when the projection of x on the
plane formed by vi and v′i is at an angle smaller than α from
v′i or −v′i.

Finally, we define the output of the neural network for each
i ∈ [n]:

G(x)i = F2i(x)− F2i+1(x)

For negative output values, yi we use F2i+1 and for positive
we use F2i. As is clear from the construction of Fi, we use
2 layers and in each layer, we have at most 4 nodes for each
i ∈ [n]. So, the width of G is O(n).

Fact 4.2. Let F (x) be any Fi(x) as in (4). Then

Pr
x∼Sk

[F (x) > 0] =
2α

π

v
(0)
i

vi

−v(0)i

Figure 1. The region where Fi(x) is non-zero

We defineWS = {x ∈ Sk | Fi(x) > 0∀i ∈ S}. LetwS de-
note an arbitrary one of the two points such that ‖wS‖2 = 1
and 〈vi, wS〉 = 0 for all i ∈ S.

Fact 4.3. The point wS lies within WS almost surely.

The only way this could not happen is if one of the v′i were
orthogonal to wS . Since the v′i are chosen at random, inde-
pendently of the vi—and hence independently of wS—this
is a probability zero event.

4.3. Proof Sketch

We prove that the construction presented here works by
proving the following statements:

wS and wS′ are far apart We show that for every S and
S′ of cardinality k, wS and wS′ are not too close. As an
example, consider S and S′ such that S ∩ S′ = ∅. The re-
sulting wS and wS′ are randomly distributed and indepen-
dent. So, we know that they are more than 1/poly(n) apart
with probability 1/nk. When you now consider S and S′

that intersect, the wS and wS′ are not independent. How-
ever, we may use the fact that that conditioned on being in
the subspace WS∩S′ , these points are randomly distributed
and independent. Since we need to take a union bound over
all
(
n
k

)
pairs of such sets (some of which intersect at all

but o(k) elements), we show that for any S, S′ ⊂ [n] with
|S| = |S′| = k, wS and wS′ are at least 1/nk apart. We
formally prove this in Lemma B.1.

WS and WS′ are disjoint We show that the regions WS

and WS′ around wS and w′S do not intersect for every
S 6= S′ ⊆ [n] with |S| = |S′| = k. Intuitively, this would
hold because we define α = 1/n8k and the individual re-
gions are likely to have very small volume and since there
are only

(
n
k

)
many such regions, they are unlikely to inter-

sect. This statement is true if wS and wS′ are randomly
distributed or even if the constraints that define WS and
WS′ are independent. Since neither of those statements is
true, we use a technique involving ε-nets in Lemma B.2 to
show that these sets are indeed non-intersecting.

Every k-sparse vector has a pre-image Now, that we
have disjoint regions within which G is non-zero at exactly
the coordinates in S, we show that given a desired k-sparse
output vector y that is non-zero at coordinates S ⊆ [n],
there exists a point x̂ in WS such that G(x̂) = y. We de-
scribe a set of linear constraints such that satisfying those
constraints yields such a x̂. If y has large `2 weight, though,
such a point might not exist within WS . However, we may
recover a point in WS that is correct up to scaling and then
scale the norm of that point to get output y.

Theorem 2.2 is formally proved in the appendix in Ap-
pendix B.
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A. Trigonometric identity
Fact A.1.

sin(β + α
2 − θ)

sin(α/2)
− sin(β − θ)

sin(α)
=

sin(β − θ + α)

sin(α/2)

Proof.

sin(β + α
2 − θ)

sin(α/2)
− sin(β − θ)

sin(α)

=
sin(β + α

2 − θ) sin(α)− sin(β − θ) sin(α/2)

sin(α) sin(α/2)

=
1

2 sin(α) sin(α2 )

(
cos(β − θ − α

2
)

− cos(β − θ +
3α

2
)

− cos(β − θ − α

2
) + cos(β − θ +

α

2
)
)

=
cos(β − θ + α

2 )− cos(β − θ + 3α
2 )

2 sin(α) sin(α/2)

=
sin(β − θ + α) sin(α)

sin(α) sin(α/2)

=
sin(β − θ + α)

sin(α/2)

where we use the identity that sin(A) sin(B) = 1
2 [cos(A−

B)− cos(A+B)]

B. Low Width Neural Network for Sparse
Vectors

B.1. Theorems

Lemma B.1. Suppose α < 1
n8k , then with high probability,

for all S, S′ ⊆ [n] such that |S| = |S′| = k,

‖wS − wS′‖2 ≤ α
1
4

Proof. Consider a fixed set S ⊆ [n] such that |S| = k.
Now for any S′ 6= S such that |S| = k, consider the set
T ′ = S′ \ S.

Pr[‖wS − wS′‖2 ≤ α
1
4 ] ≤ Pr[∀i ∈ T ′, wS ∈Wi]

=
∏
i∈T ′

Pr[wS ∈Wi]

= α|T
′|/4

So, then the probability that there exists a set S′ such that

w′S is close is given by:

Pr[∃S′ : ‖wS − wS′‖2 ≤ α
1
4 ] ≤

∑
S′⊆[n]

|S′|=k,S′ 6=S

α|S
′\S|/4

=

k∑
i=1

(
k

i

)(
n− k
i

)
αi

≤ (nkα
1
4 )

where the last inequality follows because α < 1/nk. Now,
applying a union bound over all choices of S, we get

Pr[∃S, S′ : ‖wS − wS′‖2 ≤ α] ≤
(
n

k

)
× (nkα

1
4 )

≤ 1/nk

Lemma B.2. Suppose α < 1
n8k , then given S1, S2 ⊆ [n],

such that |S1| = |S2| = k and |S1 ∩ S2| = l,

WS1
∩WS2

= ∅

with probability 1− 1/n6k

Proof. Let us denote R = ‖wS1
− wS2

‖2. We know from
Lemma B.1 that with high probability ‖wS1

− wS2
‖2 ≥

α1/4.

Since tan(α) ≈ α when α is small, we will substitute α in
place of tan(α).

Let V ′S denote a matrix whose rows consist of {v′i | i ∈ S}.
Observe that WS1

∩WS2
= ∅ is equivalent to stating that

@x ∈ Sk :
∥∥V ′S1

x
∥∥
∞ < α ∧

∥∥V ′S2
x
∥∥
∞ < α (5)

Consider an ε-net N over Sk where ε = α. If the above
guarantee holds with 2α when restricted to points in N ,
then for any element x ∈ Sk, if p ∈ N is the element
closest to x, we have a b ∈ {1, 2} for which we know that∥∥V ′Sb

p
∥∥
∞ ≥ 2α. Hence∥∥V ′Sb

x
∥∥
∞ ≥

∥∥V ′Sb
p
∥∥
∞ −

∥∥V ′Sb
(x− p)

∥∥
∞

≥ 2α− ε
≥ α

So, we prove that

@x ∈ N :
∥∥V ′S1

x
∥∥
∞ < α ∧

∥∥V ′S2
x
∥∥
∞ < α (6)

We split this into two cases.

Case 1: Points close to either WS1
or WS2

Consider the set T (1) = {x ∈ N | ‖x− wS1‖2 ≤
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R/2}. We can partition this into sets T (1)
i = {x ∈ N |

‖x− wS1
‖2 ∈ [2i−1ε, 2iε]} for i ∈ [1, log(R/ε)], and

T
(1)
0 = {x ∈ N | ‖x− wS1‖2 < ε}.

Observe that for any point x ∈ T (1)
r ,

Pr[
∥∥V ′S1

(x− wS1)
∥∥
∞ < α ∧

∥∥V ′S2
(x− wS2)

∥∥
∞ < α]

= Pr
[ ∥∥V ′S1

(x− wS1
)
∥∥
∞ < α

∣∣ ∥∥V ′S2
(x− wS2

)
∥∥
∞ < α

]
· Pr

[ ∥∥V ′S2
(x− wS2)

∥∥
∞ < α

]
≤ (

α

‖x− wS1‖2
)k−l(

α

‖x− wS2‖2
)k

≤ (
α

r
)k−l(

2α

R
)k

=
2kα2k−l

rk−lRk

Since the
∣∣∣T (1)
r

∣∣∣ ≤ (r/ε)k(by a volume argument):

Pr[∃x ∈ T (1)
r :∥∥V ′S1

(x− wS1
)
∥∥
∞ < α ∧

∥∥V ′S2
(x− wS2

)
∥∥
∞ < α]

≤ (
2kα2k−l

εkRk−l
)

So, if we take a union bound over the r = 1, . . . , log(R/ε)
values, we get

Pr[∃x ∈ T (1) :∥∥V ′S1
(x− wS1

)
∥∥
∞ < α ∧

∥∥V ′S2
(x− wS2

)
∥∥
∞ < α]

≤ log(R/ε)(
2kα2k−l

εkRk−l
)

We can similarly show this for every x ∈ T (2).

Pr[∃x ∈ T (2) :∥∥V ′S1
(x− wS1)

∥∥
∞ < α ∧

∥∥V ′S2
(x− wS2)

∥∥
∞ < α]

≤ log(R/ε)(
2kα2k−l

εkRk−l
)

Case 2: Points close to neither WS1
nor WS2

Let T ′ =
{x ∈ N | ‖x− wS1‖2 > R/2 ∧ ‖x− wS1‖2 > R/2}. We
partition T ′ into the sets T ′0, T

′
1, . . . .

Consider T ′0 = {x ∈ N | ‖x− wS1‖2 ≥ R/2 ∧
‖x− wS2‖2 ≥ R/2 ∧ ‖x− ((wS1 + wS2)/2)‖2 ≤ R}.

For any point x ∈ T ′0:

Pr[
∥∥V ′S1

(x− wS1)
∥∥
∞ < α ∧

∥∥V ′S2
(x− wS2

)
∥∥
∞ < α]

= Pr[
∥∥V ′S1

(x− wS1
)
∥∥
∞ < α]

· Pr[
∥∥V ′S2

(x− wS2)
∥∥
∞ < α]

= (
α

‖x− wS1
‖2

)k(
α

‖x− wS2
‖2

)k−l

≤ (
2α

R
)k(

2α

R
)k−l

= (
2α

R
)2k−l

and since |T ′0| h (R/ε)k, we can conclude

Pr[∃x ∈ T ′0 :∥∥V ′S1
(x− wS1

)
∥∥
∞ < α ∧

∥∥V ′S2
(x− wS2

)
∥∥
∞ < α]

≤ (2α)2k−l

εkRk−l

Define T ′i = {x ∈ Sk | ‖x− ((wS1 + wS2)/2)‖2 ∈
[2i−1R, 2iR]}. For any x ∈ T ′i ,

Pr[
∥∥V ′S1

(x− wS1
)
∥∥
∞ < α ∧

∥∥V ′S2
(x− wS2

)
∥∥
∞ < α]

≤ (
α

‖x− wS1‖2
)k(

α

‖x− wS2‖2
)k

≤ (
α

2i−1R
)k(

2α

2i−1R
)k−l

= (
8α

2iR
)2k−l

So, taking a union bound over all points in T ′i , we have:

Pr[∃x ∈ T ′i :∥∥V ′S1
(x− wS1)

∥∥
∞ < α ∧

∥∥V ′S2
(x− wS2)

∥∥
∞ < α]

≤ (
2iR

ε
)k(

4α

2iR
)2k−l

=
(8α)2k−l

(2iR)k−lεk

So, bounding over all partitions of T ′, we get:

Pr[∃x ∈ T ′ :∥∥V ′S1
(x− wS1

)
∥∥
∞ < α ∧

∥∥V ′S2
(x− wS2

)
∥∥
∞ < α]

≤
∞∑
i=0

(4α)2k−l

(2iR)k−lεk

≤ (8α)2k−l

Rk−lεk
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So, (6) holds with probability:

Pr[∃x ∈ N :∥∥V ′S1
(x− wS1

)
∥∥
∞ < α ∧

∥∥V ′S2
(x− wS2

)
∥∥
∞ < α]

≤ log(R/ε)(
2kα2k−l

εkRk−l
)

≤ log(R/ε)(
2kα2k−l

αkαk−l/4
)

= log(R/ε)2kα3(k−l)/4

Since log(R/ε) h k log(n) and α3(k−l)/4 < 1
n6k , this is

bounded by 1
n6k . Further, because of the argument which

showed that (6) implies (5), up to a factor 2 scaling of α,
we get that:

Pr[∃x ∈ Sk :∥∥V ′S1
(x− wS1

)
∥∥
∞ < α ∧

∥∥V ′S2
(x− wS2

)
∥∥
∞ < α]

≤ 1/n6k

Lemma B.3. Suppose α < 1
n8k , for all sets, S1, S2 ⊆ [n],

such that |S1| = |S2| = k,

WS1
∩WS2

= ∅

with probability 1− 1/n3k

Proof. For any two sets S1 and S2 such that the S1\S2 = l,
we know that:

WS1
∩WS2

= ∅

with probability ≥ 1− α3/4 So, for a given set S1,

Pr[∃S ⊆ [n], |S| = k : WS1
∩WS 6= ∅]

≤
k∑
i=1

(
k

i

)(
n− k
i

)
α3/4

≤ n2kα3/4

Further, taking a union bound over all choices of S, we get

Pr[∃S1 6= S2 ⊆ [n], |S1| = |S2| = k : WS1
∩WS2

6= ∅]

≤
(
n

k

)
n2kα3k/4

≤ n3kα3/4

≤ 1/n3k

Proof. of Theorem 2.2 Let y ∈ Rn be a k-sparse vector and
let S = {i ∈ [n] | yi 6= 0}. From Lemma B.1 and Lemma
B.3, we know that there exists a point wS such that G(wS)
is non-zero at exactly the points {i ∈ [n] | yi 6= 0}.

Consider the polytope on Sk defined byWS which contains
wS . As illustrated in Figure ??, each Fi partitions eachWS

into 2 linear regions. So, there exist 2k polytopes which
within WS such that for each polytope, wS is a vertex.
Consider one such polytope P defined by 〈x, αv′i+vi〉 > 0
and 〈x, vi〉 ≤ 0.

Let x0 be the point in P such that 〈x0, vi + αv′i〉 = 0 for
all i ∈ S. Let 〈x0, vi〉 = −ri for each i ∈ S and define
r = 1

2 mini∈S ri.

Now, solve for δ such that 〈δ, vi + αv′i〉 = |yi| / ‖y‖2 r for
all i ∈ S. Observe that for such a δ:

〈x+ δ, vi〉 = 〈x, vi〉+ 〈δ, vi〉
= −ri + 〈δ, vi〉
≤ −ri + ‖δ‖2 · ‖vi‖2
≤ −ri/2

So, x + δ lies within P and G(x + δ)i = yi/ ‖y‖2 r. So,
since G(a · x) = a ·G(x), we have:

G(‖y‖2 · r · (x+ δ)) = y
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