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Abstract

We develop an algorithm for estimating the values of a vector
x ∈ Rn over a support S of size k from a randomized sparse
binary linear sketch Ax of size O(k). Given Ax and S, we can
recover x′ with ‖x′ − xS‖2 ≤ ε ‖x− xS‖2 with probability at

least 1− k−Ω(1). The recovery takes O(k) time.
While interesting in its own right, this primitive also has a

number of applications. For example, we can:

1. Improve the linear k-sparse recovery of heavy hitters in
Zipfian distributions with O(k logn) space from a 1 + ε
approximation to a 1 + o(1) approximation, giving the
first such approximation in O(k logn) space when k ≤
O(n1−ε).

2. Recover block-sparse vectors with O(k) space and a 1+ε
approximation. Previous algorithms required either ω(k)
space or ω(1) approximation.

1 Introduction

In recent years, a new “linear” approach for obtaining
a succinct approximate representation of n-dimensional
vectors (or signals) has been discovered. For any signal x,
the representation is equal to Ax, where A is an m×n ma-
trix, or possibly a random variable chosen from some dis-
tribution over such matrices. The vector Ax is often re-
ferred to as the measurement vector or linear sketch of x.
Although m is typically much smaller than n, the sketch
Ax often contains plenty of useful information about the
signal x.

A particularly useful and well-studied problem is that
of stable sparse recovery. The problem is typically defined
as follows: for some norm parameters p and q and an
approximation factor C > 0, given Ax, recover a vector
x′ such that

‖x′ − x‖p ≤ C · Errq(x, k),(1)

where Errq(x, k) = min
k-sparse x̂

‖x̂− x‖q

where we say that x̂ is k-sparse if it has at most k non-zero
coordinates. Sparse recovery has applications to numer-
ous areas such as data stream computing [Mut03, Ind07]
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and compressed sensing [CRT06, Don06], notably for con-
structing imaging systems that acquire images directly in
compressed form (e.g., [DDT+08, Rom09]). The problem
has been a subject of extensive study over the last sev-
eral years, with the goal of designing schemes that enjoy
good “compression rate” (i.e., low values of m) as well
as good algorithmic properties (i.e., low encoding and
recovery times). It is known that there exist distribu-
tions of matrices A and associated recovery algorithms
that for any x with high probability produce approxima-
tions x′ satisfying Equation (1) with `p = `q = `2, con-
stant approximation factor C = 1 + ε, and sketch length
m = O(k log(n/k));1 it is also known that this sketch
length is asymptotically optimal [DIPW10, FPRU10].
Similar results for other combinations of `p/`q norms are
known as well.

Because it is impossible to improve on the sketch
size in the general sparse recovery problem, recently
there has been a large body of work on more re-
stricted problems that are amenable to more efficient
solutions. This includes model-based compressive sens-
ing [BCDH10], which imposes additional constraints (or
models) on x beyond near-sparsity. Examples of models
include block sparsity, where the large coefficients tend to
cluster together in blocks [BCDH10, EKB09]; tree spar-
sity, where the large coefficients form a rooted, connected
tree structure [BCDH10, LD05]; and being Zipfian, where
we require that the histogram of coefficient size follow a
Zipfian (or power law) distribution.

A sparse recovery algorithm needs to perform two
tasks: locating the large coefficients of x and estimating
their value. Existing algorithms perform both tasks at
the same time. In contrast, we propose decoupling these
tasks. In models of interest, including Zipfian signals and
block-sparse signals, existing techniques can locate the
large coefficients more efficiently or accurately than they
can estimate them. Prior to this work, however, estimat-
ing the large coefficients after finding them had no better
solution than the general sparse recovery problem. We
fill this gap by giving an optimal method for estimating
the values of the large coefficients after locating them.

1In particular, a random Gaussian matrix [CD04] or a random
sparse binary matrix ([GLPS09], building on [CCF02, CM04]) has
this property with overwhelming probability. See [GI10] for an
overview.
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We refer to this task as the Set Query Problem2.
Main result. (Set Query Algorithm.) We give a ran-

domized distribution over O(k) × n binary matrices A
such that, for any vector x ∈ Rn and set S ⊆ {1, . . . , n}
with |S| = k, we can recover an x′ from Ax + ν and S
with

‖x′ − xS‖2 ≤ ε(‖x− xS‖2 + ‖ν‖2)

where xS ∈ Rn equals x over S and zero elsewhere. The
matrix A has O(1) non-zero entries per column, recovery
succeeds with probability 1− k−Ω(1), and recovery takes
O(k) time. This can be achieved for arbitrarily small
ε > 0, using O(k/ε2) rows. We achieve a similar result in
the `1 norm.

The set query problem is useful in scenarios when,
given a sketch of x, we have some alternative methods for
discovering a “good” support of an approximation to x.
This is the case, e.g., in block-sparse recovery, where (as
we show in this paper) it is possible to identify “heavy”
blocks using other methods. It is also a natural prob-
lem in itself. In particular, it generalizes the well-studied
point query problem [CM04], which considers the case
that S is a singleton. We note that, although the set
query problem for sets of size k can be reduced to k in-
stances of the point query problem, this reduction is less
space-efficient than the algorithm we propose, as elabo-
rated below.

Techniques. Our method is related to existing sparse
recovery algorithms, including Count-Sketch [CCF02]
and Count-Min [CM04]. In fact, our sketch matrix A
is almost identical to the one used in Count-Sketch—
each column of A has d random locations out of O(kd)
each independently set to ±1, and the columns are in-
dependently generated. We can view such a matrix as
“hashing” each coordinate to d “buckets” out of O(kd).
The difference is that the previous algorithms require
O(k log k) measurements to achieve our error bound (and
d = O(log k)), while we only need O(k) measurements
and d = O(1).

We overcome two obstacles to bring d down to O(1)
and still achieve the error bound with high probability3.
First, in order to estimate the coordinates xi, we need
a more elaborate method than, say, taking the median
of the buckets that i was hashed into. This is because,
with constant probability, all such buckets might contain
some other elements from S (be “heavy”) and therefore
using any of them as an estimator for yi would result in
too much error. Since, for super-constant values of |S|, it
is highly likely that such an event will occur for at least
one i ∈ S, it follows that this type of estimation results
in large error.

2The term “set query” is in contrast to “point query,” used in
e.g. [CM04] for estimation of a single coordinate.

3In this paper, “high probability” means probability at least
1− 1/kc for some constant c > 0.

We solve this issue by using our knowledge of S. We
know when a bucket is “corrupted” (that is, contains
more than one element of S), so we only estimate coordi-
nates that lie in a large number of uncorrupted buckets.
Once we estimate a coordinate, we subtract our estima-
tion of its value from the buckets it is contained in. This
potentially decreases the number of corrupted buckets,
allowing us to estimate more coordinates. We show that,
with high probability, this procedure can continue until
it estimates every coordinate in S.

The other issue with the previous algorithms is that
their analysis of their probability of success does not de-
pend on k. This means that, even if the “head” did not
interfere, their chance of success would be a constant (like
1 − 2−Ω(d)) rather than high probability in k (meaning
1 − k−Ω(d)). We show that the errors in our estimates
of coordinates have low covariance, which allows us to
apply Chebyshev’s inequality to get that the total error
is concentrated around the mean with high probability.

Related work. A similar recovery algorithm (with
d = 2) has been analyzed and applied in a streaming
context in [EG07]. However, in that paper the authors
only consider the case where the vector y is k-sparse. In
that case, the termination property alone suffices, since
there is no error to bound. Furthermore, because d = 2
they only achieve a constant probability of success. In
this paper we consider general vectors y so we need to
make sure the error remains bounded, and we achieve a
high probability of success.

The recovery procedure also has similarities to recover-
ing LDPCs using belief propagation, especially over the
binary erasure channel. The similarities are strongest for
exact recovery of k-sparse y; our method for bounding
the error from noise is quite different.

Applications. Our efficient solution to the set query
problem can be combined with existing techniques to
achieve sparse recovery under several models.

We say that a vector x follows a Zipfian or power law
distribution with parameter α if

∣∣xr(i)∣∣ = Θ(
∣∣xr(1)

∣∣ i−α)
where r(i) is the location of the ith largest coefficient
in x. When α > 1/2, x is well approximated in the `2
norm by its sparse approximation. Because a wide va-
riety of real world signals follow power law distributions
([Mit04, BKM+00]), this notion (related to “compress-
ibility”4) is often considered to be much of the reason
why sparse recovery is interesting [CT06, Cev08]. Prior
to this work, sparse recovery of power law distributions
has only been solved via general sparse recovery methods:
(1 + ε)Err2(x, k) error in O(k log(n/k)) measurements.

However, locating the large coefficients in a power law

4A signal is “compressible” when
∣∣xr(i)∣∣ = O(

∣∣xr(1)

∣∣ i−α) rather

than Θ(
∣∣xr(1)

∣∣ i−α) [CT06]. This allows it to decay very quickly
then stop decaying for a while; we require that the decay be con-
tinuous.
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distribution has long been easier than in a general dis-
tribution. Using O(k log n) measurements, the Count-
Sketch algorithm [CCF02] can produce a candidate set
S ⊆ {1, . . . , b} with |S| = O(k) that includes all of the top
k positions in a power law distribution with high prob-
ability (if α > 1/2). We can then apply our set query
algorithm to recover an approximation x′ to xS . Because
we already are using O(k log n) measurements on Count-
Sketch, we use O(k log n) rather than O(k) measurements
in the set query algorithm to get an ε/

√
log n rather than

ε approximation. This lets us recover a k-sparse x′ with
O(k log n) measurements with

‖x′ − x‖2 ≤
(

1 +
ε√

log n

)
Err2(x, k).

This is especially interesting in the common regime where
k < n1−c for some constant c > 0. Then no previ-
ous algorithms achieve better than a (1 + ε) approxima-
tion with O(k log n) measurements, and the lower bound
in [DIPW10] shows that any O(1) approximation requires
Ω(k log n) measurements5. This means at Θ(k log n)
measurements, the best approximation changes from
ω(1) to 1 + o(1).

Another application is that of finding block-sparse ap-
proximations. In this application, the coordinate set
{1 . . . n} is partitioned into n/b blocks, each of length
b. We define a (k, b)-block-sparse vector to be a vector
where all non-zero elements are contained in at most k/b
blocks. An example of block-sparse data is time series
data from n/b locations over b time steps, where only
k/b locations are “active”. We can define

Err2(x, k, b) = min
(k,b)−block-sparse x̂

‖x− x̂‖2 .

The block-sparse recovery problem can now be formu-
lated analogously to Equation 1. Since the formulation
imposes restrictions on the sparsity patterns, it is natu-
ral to expect that one can perform sparse recovery from
fewer than O(k log(n/k)) measurements needed in the
general case. Because of that reason and the prevalence
of approximately block-sparse signals, the problem of sta-
ble recovery of variants of block-sparse approximations
has been recently a subject of extensive research (e.g.,
see [EB09, SPH09, BCDH10, CIHB09]). The state of the
art algorithm has been given in [BCDH10], who gave a
probabilistic construction of a single m×n matrix A, with
m = O(k+ k

b log n), and an n logO(1) n-time algorithm for
performing the block-sparse recovery in the `1 norm (as
well as other variants). If the blocks have size Ω(log n),
the algorithm uses only O(k) measurements, which is a

5The lower bound only applies to geometric distributions, not
Zipfian ones. However, our algorithm applies to more general sub-
Zipfian distributions (defined in Section 4.1), which includes both.

substantial improvement over the general bound. How-
ever, the approximation factor C guaranteed by that al-
gorithm was super-constant.

In this paper, we provide a distribution over matri-
ces A, with m = O(k + k

b log n), which enables solving
this problem with a constant approximation factor and
in the `2 norm, with high probability. As with Zipfian
distributions, first one algorithm tells us where to find
the heavy hitters and then the set query algorithm esti-
mates their values. In this case, we modify the algorithm
of [ABI08] to find block heavy hitters, which enables us to
find the support of the k

b “most significant blocks” using

O(kb log n) measurements. The essence is to perform di-
mensionality reduction of each block from b to O(log n)
dimensions, then estimate the result with a linear hash
table. For each block, most of the projections are esti-
mated pretty well, so the median is a good estimator of
the block’s norm. Once the support is identified, we can
recover the coefficients using the set query algorithm.

2 Preliminaries

2.1 Notation

For n ∈ Z+, we denote {1, . . . , n} by [n]. Suppose x ∈ Rn.
Then for i ∈ [n], xi ∈ R denotes the value of the i-
th coordinate in x. As an exception, ei ∈ Rn denotes
the elementary unit vector with a one at position i. For
S ⊆ [n], xS denotes the vector x′ ∈ Rn given by x′i = xi
if i ∈ S, and x′i = 0 otherwise. We use supp(x) to denote
the support of x. We use upper case letters to denote
sets, matrices, and random distributions. We use lower
case letters for scalars and vectors.

2.2 Negative Association

This paper would like to make a claim of the form “We
have k observations each of whose error has small expec-
tation and variance. Therefore the average error is small
with high probability in k.” If the errors were indepen-
dent this would be immediate from Chebyshev’s inequal-
ity, but our errors depend on each other. Fortunately, our
errors have some tendency to behave even better than if
they were independent: the more noise that appears in
one coordinate, the less remains to land in other coordi-
nates. We use negative dependence to refer to this general
class of behavior. The specific forms of negative depen-
dence we use are negative association and approximate
negative correlation; see Appendix A for details on these
notions.
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3 Set-Query Algorithm

Theorem 3.1. There is a randomized sparse binary
sketch matrix A and recovery algorithm A , such that for
any x ∈ Rn, S ⊆ [n] with |S| = k, x′ = A (Ax + ν, S) ∈
Rn has supp(x′) ⊆ S and

‖x′ − xS‖2 ≤ ε(‖x− xS‖2 + ‖ν‖2)

with probability at least 1−1/kc. A has O( cε2 k) rows and
O(c) non-zero entries per column, and A runs in O(ck)
time.

One can achieve ‖x′ − xS‖1 ≤ ε(‖x− xS‖1 +‖ν‖1) un-
der the same conditions, but with only O( cεk) rows.

We will first show Theorem 3.1 for a constant c = 1/3
rather than for general c. Parallel repetition gives the
theorem for general c, as described in Section 3.7. We
will also only show it with entries of A being in {0, 1,−1}.
By splitting each row in two, one for the positive and one
for the negative entries, we get a binary matrix with the
same properties. The paper focuses on the more difficult
`2 result; see Appendix B for details on the `1 result.

3.1 Intuition

We call xS the “head” and x − xS the “tail.” The head
probably contains the heavy hitters, with much more
mass than the tail of the distribution. We would like
to estimate xS with zero error from the head and small
error from the tail with high probability.

Our algorithm is related to the standard Count-
Sketch [CCF02] and Count-Min [CM04] algorithms. In
order to point out the differences, let us examine how
they perform on this task. These algorithms show that
hashing into a single w = O(k) sized hash table is good
in the sense that each point xi has:

1. Zero error from the head with constant probability
(namely 1− k

w ).

2. A small amount of error from the tail in expectation
(and hence with constant probability).

They then iterate this procedure d times and take the
median, so that each estimate has small error with prob-
ability 1 − 2−Ω(d). With d = O(log k), we get that all
k estimates in S are good with O(k log k) measurements
with high probability in k. With fewer measurements,
however, some xi will probably have error from the head.
If the head is much larger than the tail (such as when
the tail is zero), this is a major problem. Furthermore,
with O(k) measurements the error from the tail would be
small only in expectation, not with high probability.

We make three observations that allow us to use only
O(k) measurements to estimate xS with error relative to
the tail with high probability in k.

1. The total error from the tail over a support of size
k is concentrated more strongly than the error at a
single point: the error probability drops as k−Ω(d)

rather than 2−Ω(d).

2. The error from the head can be avoided if one knows
where the head is, by modifying the recovery algo-
rithm.

3. The error from the tail remains concentrated after
modifying the recovery algorithm.

For simplicity this paper does not directly show (1),
only (2) and (3). The modification to the algorithm to
achieve (2) is quite natural, and described in detail and
illustrated in Section 3.2. Rather than estimate every co-
ordinate in S immediately, we only estimate those coordi-
nates which mostly do not overlap with other coordinates
in S. In particular, we only estimate xi as the median
of at least d − 2 positions that are not in the image of
S \ {i}. Once we learn xi, we can subtract Axiei from
the observed Ax and repeat on A(x − xiei) and S \ {i}.
Because we only look at positions that are in the image
of only one remaining element of S, this avoids any error
from the head. We show in Section 3.3 that this algo-
rithm never gets stuck; we can always find some position
that mostly doesn’t overlap with the image of the rest of
the remaining support.

We then show that the error from the tail has low ex-
pectation, and that it is strongly concentrated. We think
of the tail as noise located in each “cell” (coordinate in
the image space). We decompose the error of our result
into two parts: the “point error” and the “propagation”.
The point error is error introduced in our estimate of
some xi based on noise in the cells that we estimate xi
from, and equals the median of the noise in those cells.
The “propagation” is the error that comes from point
error in estimating other coordinates in the same con-
nected component; these errors propagate through the
component as we subtract off incorrect estimates of each
xi.

Section 3.4 shows how to decompose the total error in
terms of point errors and the component sizes. The two
following sections bound the expectation and variance of
these two quantities and show that they obey some no-
tions of negative dependence. We combine these errors in
Section 3.7 to get Theorem 3.1 with a specific c (namely
c = 1/3). We then use parallel repetition to achieve The-
orem 3.1 for arbitrary c.

3.2 Algorithm

We describe the sketch matrix A and recovery proce-
dure in Algorithm 3.1. Unlike Count-Sketch [CCF02] or
Count-Min [CM04], our A is not split into d hash tables
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Figure 1: An instance of the set query problem. There are
n vertices on the left, corresponding to x, and the table
on the right represents Ax. Each vertex i on the left maps
to d cells on the right, randomly increasing or decreasing
the value in each cell by xi. We represent addition by
black lines, and subtraction by red lines. We are told the
locations of the heavy hitters, which we represent by blue
circles; the rest is represented by yellow circles.

of size O(k). Instead, it has a single w = O(d2k/ε2) sized
hash table where each coordinate is hashed into d unique
positions. We can think of A as a random d-uniform
hypergraph, where the non-zero entries in each column
correspond to the terminals of a hyperedge. We say that
A is drawn from Gd(w, n) with random signs associated
with each (hyperedge, terminal) pair. We do this so we
will be able to apply existing theorems on random hyper-
graphs.

Figure 1 shows an example Ax for a given x, and Fig-
ure 2 demonstrates running the recovery procedure on
this instance.

Lemma 3.1. Algorithm 3.1 runs in time O(dk).

Proof. A has d entries per column. For each of the at
most dk rows q in the image of S, we can store the preim-
ages P (q). We also keep track of the sets of possible next
hyperedges, Ji = {j | |Lj | ≥ d− i} for i ∈ {1, 2}. We can
compute these in an initial pass in O(dk). Then in each
iteration, we remove an element j ∈ J1 or J2 and update
x′j , b, and T in O(d) time. We then look at the two or
fewer non-isolated vertices q in hyperedge j, and remove
j from the associated P (q). If this makes |P (q)| = 1,
we check whether to insert the element in P (q) into the
Ji. Hence the inner loop takes O(d) time, for O(dk) to-
tal.

3.3 Exact Recovery

The random hypergraph Gd(w, k) of k random d-uniform
hyperedges on w vertices is well studied in [K L02]. We
use their results to show that the algorithm successfully
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Figure 2: Example run of the algorithm. Part (a) shows
the state as considered by the algorithm: Ax and the
graph structure corresponding to the given support. In
part (b), the algorithm chooses a hyperedge with at least
d − 2 isolated vertices and estimates the value as the
median of those isolated vertices multiplied by the sign
of the corresponding edge. In part (c), the image of the
first vertex has been removed from Ax and we repeat on
the smaller graph. We continue until the entire support
has been estimated, as in part (d).
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Definition of sketch matrix A. For a constant d, let

A be a w × n = O(d
2

ε2 k) × n matrix where each column
is chosen independently uniformly at random over all ex-
actly d-sparse columns with entries in {−1, 0, 1}. We can
think of A as the incidence matrix of a random d-uniform
hypergraph with random signs.
Recovery procedure.

1: procedure SetQuery(A,S, b) . Recover
approximation x′ to xS from b = Ax+ ν

2: T ← S
3: while |T | > 0 do
4: Define P (q) = {j | Aqj 6= 0, j ∈ T} as the set

of hyperedges in T that contain q.
5: Define Lj = {q | Aqj 6= 0, |P (q)| = 1} as the

set of isolated vertices in hyperedge j.
6: Choose a random j ∈ T such that |Lj | ≥ d−1.

If this is not possible, find a random j ∈ T such that
|Lj | ≥ d− 2. If neither is possible, abort.

7: x′j ← medianq∈Lj
Aqjbq

8: b← b− x′jAej
9: T ← T \ {j}

10: end while
11: return x′

12: end procedure

Algorithm 3.1: Recovering a signal given its support.

terminates with high probability, and that most hyper-
edges are chosen with at least d− 1 isolated vertices:

Lemma 3.2. With probability at least 1 − O(1/k), Al-
gorithm 3.1 terminates without aborting. Furthermore,
in each component at most one hyperedge is chosen with
only d− 2 isolated vertices.

We will show this by building up a couple lemmas. We
define a connected hypergraph H with r vertices on s
hyperedges to be a hypertree if r = s(d − 1) + 1 and to
be unicyclic if r = s(d − 1). Then Theorem 4 of [K L02]
shows that, if the graph is sufficiently sparse, Gd(w, k) is
probably composed entirely of hypertrees and unicyclic
components. The precise statement is as follows6:

Lemma 3.3 (Theorem 4 of [K L02]). Let m = w/d(d −
1)− k. Then with probability 1−O(d5w2/m3), Gd(w, k)
is composed entirely of hypertrees and unicyclic compo-
nents.

We use a simple consequence:

Corollary 3.1. If d = O(1) and w ≥ 2d(d − 1)k, then
with probability 1−O(1/k), Gd(w, k) is composed entirely
of hypertrees and unicyclic

6Their statement of the theorem is slightly different. This is the
last equation in their proof of the theorem.

We now prove some basic facts about hypertrees and
unicyclic components:

Lemma 3.4. Every hypertree has a hyperedge incident
on at least d − 1 isolated vertices. Every unicyclic com-
ponent either has a hyperedge incident on d − 1 isolated
vertices or has a hyperedge incident on d−2 isolated ver-
tices, the removal of which turns the unicyclic component
into a hypertree.

Proof. Let H be a connected component of s hyperedges
and r vertices.

If H is a hypertree, r = (d − 1)s + 1. Because H has
only ds total (hyperedge, incident vertex) pairs, at most
2(s− 1) of these pairs can involve vertices that appear in
two or more hyperedges. Thus at least one of the s edges
is incident on at most one vertex that is not isolated, so
some edge has d− 1 isolated vertices.

If H is unicyclic, r = (d− 1)s and so at most 2s of the
(hyperedge, incident vertex) pairs involve non-isolated
vertices. Therefore on average, each edge has d − 2 iso-
lated vertices. If no edge is incident on at least d− 1 iso-
lated vertices, every edge must be incident on exactly d−2
isolated vertices. In that case, each edge is incident on
exactly two non-isolated vertices and each non-isolated
vertex is in exactly two edges. Hence we can perform an
Eulerian tour of all the edges, so removing any edge does
not disconnect the graph. After removing the edge, the
graph has s′ = s − 1 edges and r′ = r − d + 2 vertices;
therefore r′ = (d−1)s′+1 so the graph is a hypertree.

Corollary 3.1 and Lemma 3.4 combine to show
Lemma 3.2.

3.4 Total error in terms of point error
and component size

Define Ci,j to be the event that hyperedges i and j are in
the same component, and Di =

∑
j Ci,j to be the number

of hyperedges in the same component as i. Define Li to
be the cells that are used to estimate i; so Li = {q |
Aqj 6= 0, |P (q)| = 1} at the round of the algorithm when
i is estimated. Define Yi = medianq∈Li

Aqi(b − AxS)q
to be the “point error” for hyperedge i, and x′ to be
the output of the algorithm. Then the deviation of the
output at any coordinate i is at most twice the sum of
the point errors in the component containing i:

Lemma 3.5.

|(x′ − xS)i| ≤ 2
∑
j∈S
|Yj |Ci,j .

Proof. Let Ti = (x′ − xS)i, and define Ri = {j | j 6=
i,∃q ∈ Li s.t. Aqj 6= 0} to be the set of hyperedges that
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overlap with the cells used to estimate i. Then from the
description of the algorithm, it follows that

Ti = median
q∈Li

Aqi((b−AxS)q −
∑
j

AqjTj)

|Ti| ≤ |Yi|+
∑
j∈Ri

|Tj | .

We can think of the Ri as a directed acyclic graph (DAG),
where there is an edge from j to i if j ∈ Ri. Then if p(i, j)
is the number of paths from i to j,

|Ti| ≤
∑
j

p(j, i) |Yi| .

Let r(i) = |{j | i ∈ Rj}| be the outdegree of the DAG.
Because the Li are disjoint, r(i) ≤ d − |Li|. From
Lemma 3.2, r(i) ≤ 1 for all but one hyperedge in the
component, and r(i) ≤ 2 for that one. Hence p(i, j) ≤ 2
for any i and j, giving the result.

We use the following corollary:

Corollary 3.2.

‖x′ − xS‖
2
2 ≤ 4

∑
i∈S

D2
i Y

2
i

Proof.

‖x′ − xS‖
2
2 =

∑
i∈S

(x′ − xS)2
i ≤ 4

∑
i∈S

(
∑
j∈S
Ci,j=1

|Yj |)2

≤ 4
∑
i∈S

Di

∑
j∈S
Ci,j=1

|Yj |2 = 4
∑
i∈S

D2
i Y

2
i

where the second inequality is the power means inequal-
ity.

The Dj and Yj are independent from each other, since
one depends only on A over S and one only on A over
[n] \ S. Therefore we can analyze them separately; the
next two sections show bounds and negative dependence
results for Yj and Dj , respectively.

3.5 Bound on point error

Recall from Section 3.4 that based entirely on the set S
and the columns of A corresponding to S, we can identify
the positions Li used to estimate xi. We then defined the
“point error”

Yi = median
q∈Li

Aqi(b−AxS)q = median
q∈Li

Aqi(A(x−xS)+ν)q

and showed how to relate the total error to the point er-
ror. Here we would like to show that the Yi have bounded

moments and are negatively dependent. Unfortunately,
it turns out that the Yi are not negatively associated so
it is unclear how to show negative dependence directly.
Instead, we will define some other variables Zi that are
always larger than the corresponding Yi. We will then
show that the Zi have bounded moments and negative
association.

We use the term “NA” throughout the proof to de-
note negative association. For the definition of negative
association and relevant properties, see Appendix A.

Lemma 3.6. Suppose d ≥ 7 and define µ =

O( ε
2

k (‖x− xS‖22 + ‖ν‖22)). There exist random variables
Zi such that the variables Y 2

i are stochastically dominated
by Zi, the Zi are negatively associated, E[Zi] = µ, and
E[Z2

i ] = O(µ2).

Proof. The choice of the Li depends only on the values of
A over S; hence conditioned on knowing Li we still have
A(x−xS) distributed randomly over the space. Further-
more the distribution of A and the reconstruction algo-
rithm are invariant under permutation, so we can pre-
tend that ν is permuted randomly before being added to
Ax. Define Bi,q to be the event that q ∈ supp(Aei), and
define Di,q ∈ {−1, 1} independently at random. Then
define the random variable

Vq = (b−AxS)q = νq +
∑

i∈[n]\S

xiBi,qDi,q.

Because we want to show concentration of measure, we
would like to show negative association (NA) of the
Yi = medianq∈Li

AqiVq. We know ν is a permutation
distribution, so it is NA [JP83]. The Bi,q for each i as
a function of q are chosen from a Fermi-Dirac model, so
they are NA [DR96]. The Bi,q for different i are inde-
pendent, so all the Bi,q variables are NA. Unfortunately,
the Di,q can be negative, which means the Vq are not
necessarily NA. Instead we will find some NA variables
that dominate the Vq. We do this by considering Vq as a
distribution over D.

Let Wq = ED[V 2
q ] = ν2

q +
∑
i∈[n]\S x

2
iBi,q. As in-

creasing functions of NA variables, the Wq are NA. By
Markov’s inequality PrD[V 2

q ≥ cWq] ≤ 1
c , so after choos-

ing the Bi,q and as a distribution over D, V 2
q is dominated

by the random variable Uq = WqFq where Fq is, indepen-
dently for each q, given by the p.d.f. f(c) = 1/c2 for c ≥ 1
and f(c) = 0 otherwise. Because the distribution of Vq
over D is independent for each q, the Uq jointly dominate
the V 2

q .
The Uq are the componentwise product of the Wq with

independent positive random variables, so they too are
NA. Then define

Zi = median
q∈Li

Uq.

7



As an increasing function of disjoint subsets of NA vari-
ables, the Zi are NA. We also have that

Y 2
i = (median

q∈Li

AqiVq)
2 ≤ (median

q∈Li

|Vq|)2

= median
q∈Li

V 2
q ≤ median

q∈Li

Uq = Zi

so the Zi stochastically dominate Y 2
i . We now will bound

E[Z2
i ]. Define

µ = E[Wq] = E[ν2
q ] +

∑
i∈[n]\S

x2
iE[Bi,q]

=
d

w
‖x− xS‖22 +

1

w
‖ν‖22

≤ ε2

k
(‖x− xS‖22 + ‖ν‖22).

Then we have

Pr[Wq ≥ cµ] ≤ 1

c

Pr[Uq ≥ cµ] =

∫ ∞
0

f(x) Pr[Wq ≥ cµ/x]dx

≤
∫ c

1

1

x2

x

c
dx+

∫ ∞
c

1

x2
dx =

1 + ln c

c

Because the Uq are NA, they satisfy marginal probability
bounds [DR96]:

Pr[Uq ≥ tq, q ∈ [w]] ≤
∏
i∈[n]

Pr[Uq ≥ tq]

for any tq. Therefore

Pr[Zi ≥ cµ] ≤
∑
T⊂Li

|T |=|Li|/2

∏
q∈T

Pr[Uq ≥ cµ]

≤ 2|Li|
(

1 + ln c

c

)|Li|/2

Pr[Zi ≥ cµ] ≤
(

4
1 + ln c

c

)d/2−1

(2)

If d ≥ 7, this makes E[Zi] = O(µ) and E[Z2
i ] = O(µ2).

3.6 Bound on component size

Lemma 3.7. Let Di be the number of hyperedges in the
same component as hyperedge i. Then for any i 6= j,

Cov(D2
i , D

2
j ) = E[D2

iD
2
j ]− E[D2

i ]
2 ≤ O(

log6 k√
k

).

Furthermore, E[D2
i ] = O(1) and E[D4

i ] = O(1).

Proof. The intuition is that if one component gets larger,
other components tend to get smaller. Also the graph
is very sparse, so component size is geometrically dis-
tributed. There is a small probability that i and j are
connected, in which case Di and Dj are positively cor-
related, but otherwise Di and Dj should be negatively
correlated. However analyzing this directly is rather diffi-
cult, because as one component gets larger, the remaining
components have a lower average size but higher variance.
Our analysis instead takes a detour through the hyper-
graph where each hyperedge is picked independently with
a probability that gives the same expected number of hy-
peredges. This distribution is easier to analyze, and only
differs in a relatively small Õ(

√
k) hyperedges from our

actual distribution. This allows us to move between the
regimes with only a loss of Õ( 1√

k
), giving our result.

Suppose instead of choosing our hypergraph from
Gd(w, k) we chose it from Gd(w, k

(w
d)

); that is, each hyper-

edge appeared independently with the appropriate prob-
ability to get k hyperedges in expectation. This model is
somewhat simpler, and yields a very similar hypergraph
G. One can then modify G by adding or removing an
appropriate number of random hyperedges I to get ex-
actly k hyperedges, forming a uniform G ∈ Gd(w, k). By
the Chernoff bound, |I| ≤ O(

√
k log k) with probability

1− 1
kΩ(1) .

Let Di be the size of the component containing i in G,

and Hi = D2
i − D

2

i . Let E denote the event that any
of the Di or Di is more than C log k, or that more than
C
√
k log k hyperedges lie in I, for some constant C. Then

E happens with probability less than 1
k5 for some C, so

it has negligible influence on E[D2
iD

2
j ]. Hence the rest of

this proof will assume E does not happen.

Therefore Hi = 0 if none of the O(
√
k log k) random

hyperedges in I touch the O(log k) hyperedges in the
components containing i in G, so Hi = 0 with proba-

bility at least 1−O( log2 k√
k

). Even if Hi 6= 0, we still have

|Hi| ≤ (D2
i +D2

j ) ≤ O(log2 k).

Also, we show that the D
2

i are negatively correlated,
when conditioned on being in separate components. Let
D(n, p) denote the distribution of the component size of a
random hyperedge on Gd(n, p), where p is the probability
an hyperedge appears. Then D(n, p) dominates D(n′, p)
whenever n > n′ — the latter hypergraph is contained
within the former. If Ci,j is the event that i and j are
connected in G, this means

E[D
2

i | Dj = t, Ci,j = 0]

is a decreasing function in t, so we have negative corre-
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lation:

E[D
2

iD
2

j | Ci,j = 0] ≤ E[D
2

i | Ci,j = 0] E[D
2

j | Ci,j = 0]

≤ E[D
2

i ] E[D
2

j ].

Furthermore for i 6= j, Pr[Ci,j = 1] = E[Ci,j ] =
1

k−1

∑
l 6=i E[Ci,l] = E[Di]−1

k−1 = O(1/k). Hence

E[D
2

iD
2

j ] = E[D
2

iD
2

j | Ci,j = 0] Pr[Ci,j = 0]+

E[D
2

iD
2

j | Ci,j = 1] Pr[Ci,j = 1]

≤E[D
2

i ] E[D
2

j ] +O(
log4 k

k
).

Therefore

E[D2
iD

2
j ]

= E[(D
2

i +Hi)(D
2

j +Hj)]

= E[D
2

iD
2

j ] + 2 E[HiD
2

j ] + E[HiHj ]

≤E[D
2

i ] E[D
2

j ] +O(2
log2 k√

k
log4 k +

log2 k√
k

log2 k)

= E[D2
i −Hi]

2 +O(
log6 k√

k
)

= E[D2
i ]

2 − 2 E[Hi] E[D2
i ] + E[Hi]

2 +O(
log6 k√

k
)

≤E[D2
i ]

2 +O(
log6 k√

k
)

Now to bound E[D4
i ] in expectation. Because our

hypergraph is exceedingly sparse, the size of a com-
ponent can be bounded by a branching process that
dies out with constant probability at each step. Using
this method, Equations 71 and 72 of [COMS07] state

that Pr[D ≥ k] ≤ e−Ω(k). Hence E[D
2

i ] = O(1) and

E[D
4

i ] = O(1). Because Hi is 0 with high probability and
O(log2 k) otherwise, this immediately gives E[D2

i ] = O(1)
and E[D4

i ] = O(1).

3.7 Wrapping it up

Recall from Corollary 3.2 that our total error

‖x′ − xS‖
2
2 ≤ 4

∑
i

Y 2
i D

2
i ≤ 4

∑
i

ZiD
2
i .

The previous sections show that Zi and D2
i each have

small expectation and covariance. This allows us to apply
Chebyshev’s inequality to concentrate 4

∑
i ZiD

2
i about

its expectation, bounding ‖x′ − xS‖2 with high probabil-
ity:

Lemma 3.8. We can recover x′ from Ax+ν and S with

‖x′ − xS‖2 ≤ ε(‖x− xS‖2 + ‖ν‖2)

with probability at least 1− 1
c2k1/3 in O(k) recovery time.

Our A has O( cε2 k) rows and sparsity O(1) per column.

Proof. Our total error is

‖x′ − xS‖
2
2 ≤ 4

∑
i

Y 2
i D

2
i ≤ 4

∑
i

ZiD
2
i .

Then by Lemma 3.6 and Lemma 3.7,

E[4
∑
i

ZiD
2
i ] = 4

∑
i

E[Zi] E[D2
i ] = kµ

where µ = O( ε
2

k (‖x− xS‖22 + ‖ν‖22)). Furthermore,

E[(
∑
i

ZiD
2
i )

2] =
∑
i

E[Z2
iD

4
i ] +

∑
i 6=j

E[ZiZjD
2
iD

2
j ]

=
∑
i

E[Z2
i ] E[D4

i ] +
∑
i6=j

E[ZiZj ] E[D2
iD

2
j ]

≤
∑
i

O(µ2) +
∑
i 6=j

E[Zi] E[Zj ](E[D2
i ]

2 +O(
log6 k√

k
))

= O(µ2k
√
k log6 k) + k(k − 1) E[ZiD

2
i ]

2

Var(
∑
i

ZiD
2
i ) = E[(

∑
i

ZiD
2
i )

2]− k2 E[ZiD
2
i ]

2

≤ O(µ2k
√
k log6 k)

By Chebyshev’s inequality, this means

Pr[4
∑
i

ZiD
2
i ≥ (1 + c)µk] ≤ O(

log6 k

c2
√
k

)

Pr[‖x′ − xS‖
2
2 ≥ (1 + c)Cε2(‖x− xS‖22 + ‖ν‖22)] ≤ O(

1

c2k1/3
)

for some constant C. Rescaling ε down by
√
C(1 + c),

we can get

‖x′ − xS‖2 ≤ ε(‖x− xS‖2 + ‖ν‖2)

with probability at least 1− 1
c2k1/3 :

Now we shall go from k−1/3 probability of error to k−c

error for arbitrary c, with O(c) multiplicative cost in time
and space. We simply perform Lemma 3.8 O(c) times in
parallel, and output the pointwise median of the results.
By a standard parallel repetition argument, this gives our
main result:

Theorem 3.1. We can recover x′ from Ax + ν and S
with

‖x′ − xS‖2 ≤ ε(‖x− xS‖2 + ‖ν‖2)

with probability at least 1 − 1
kc in O(ck) recovery time.

Our A has O( cε2 k) rows and sparsity O(c) per column.
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Proof. Lemma 3.8 gives an algorithm that achieves
O(k−1/3) probability of error. We will show here how
to achieve k−c probability of error with a linear cost in
c, via a standard parallel repetition argument.

Suppose our algorithm gives an x′ such that
‖x′ − xS‖2 ≤ µ with probability at least 1− p, and that
we run this algorithm m times independently in parallel
to get output vectors x1, . . . , xm. We output y given by
yi = medianj∈[m](x

j)i, and claim that with high proba-

bility ‖y − xS‖2 ≤ µ
√

3.
Let J = {j ∈ [m] |

∥∥xj − xS∥∥2
≤ µ}. Each

j ∈ [m] lies in J with probability at least 1 − p, so
the chance that |J | ≤ 3m/4 is less than

(
m
m/4

)
pm/4 ≤

(4ep)m/4. Suppose that |J | ≥ 3m/4. Then for all i ∈ S,∣∣{j ∈ J | (xj)i ≤ yi}∣∣ ≥ |J | − m
2 ≥ |J | /3 and similarly∣∣{j ∈ J | (xj)i ≥ yi}∣∣ ≥ |J | /3. Hence for all i ∈ S,

|yi − xi| is smaller than at least |J | /3 of the
∣∣(xj)i − xi∣∣

for j ∈ J . Hence

|J |µ2 ≥
∑
i∈S

∑
j∈J

((xj)i − xi)2 ≥
∑
i∈S

|J |
3

(yi − xi)2

=
|J |
3
‖y − x‖22

or
‖y − x‖2 ≤

√
3µ

with probability at least 1− (4ep)m/4.
Using Lemma 3.8 to get p = 1

16k1/3 and µ =
ε(‖x− xS‖2 + ‖ν‖2), with m = 12c repetitions we get
Theorem 3.1.

4 Applications

We give two applications where the set query algorithm
is a useful primitive.

4.1 Heavy Hitters of sub-Zipfian distri-
butions

For a vector x, let ri be the index of the ith largest el-
ement, so |xri | is non-increasing in i. We say that x is
Zipfian with parameter α if |xri | = Θ(|xr1 | i−α). We say
that x is sub-Zipfian with parameters (k, α) if there ex-
ists a non-increasing function f with |xri | = Θ(f(i)i−α)
for all i ≥ k. A Zipfian with parameter α is a sub-Zipfian
with parameter (k, α) for all k, using f(i) = |xr1 |.

The Zipfian heavy hitters problem is, given a linear
sketch Ax of a Zipfian x and a parameter k, to find a
k-sparse x′ with minimal ‖x− x′‖2 (up to some approx-
imation factor). We require that x′ be k-sparse (and no
more) because we want to find the heavy hitters them-
selves, not to find them as a proxy for approximating
x.

Zipfian distributions are common in real-world data
sets, and finding heavy hitters is one of the most impor-
tant problems in data streams. Therefore this is a very
natural problem to try to improve; indeed, the original
paper on Count-Sketch discussed it [CCF02]. They show
a result complementary to our work, namely that one can
find the support efficiently:

Lemma 4.1 (Section 4.1 of [CCF02]). If x is sub-Zipfian
with parameter (k, α) and α > 1/2, one can recover a
candidate support set S with |S| = O(k) from Ax such
that {r1, . . . , rk} ⊆ S. A has O(k log n) rows and recovery
succeeds with high probability in n.

Proof sketch. Let Sk = {r1, . . . , rk}. With O( 1
ε2 k log n)

measurements, Count-Sketch identifies each xi to within
ε
k ‖x− xSk

‖2 with high probability. If α > 1/2, this is
less than |xrk | /3 for appropriate ε. But |xr9k | ≤ |xrk | /3.
Hence only the largest 9k elements of x could be esti-
mated as larger than anything in xSk

, so the locations of
the largest 9k estimated values must contain Sk.

It is observed in [CCF02] that a two-pass algorithm
could identify the heavy hitters exactly. However, with a
single pass, no better method has been known for Zipfian
distributions than for arbitrary distributions; in fact, the
lower bound [DIPW10] on linear sparse recovery uses a
geometric (and hence sub-Zipfian) distribution.

As discussed in [CCF02], using Count-Sketch7 with
O( kε2 log n) rows gets a k-sparse x′ with

‖x′ − x‖2 ≤ (1 + ε)Err2(x, k) = Θ(
|xr1 |√
2α− 1

k1/2−α).

where, as in Section 1,

Err2(x, k) = min
k-sparse x̂

‖x̂− x‖2 .

The set query algorithm lets us improve from a 1 + ε
approximation to a 1 + o(1) approximation. This is not
useful for approximating x, since increasing k is much
more effective than decreasing ε. Instead, it is useful for
finding k elements that are quite close to being the actual
k heavy hitters of x.

Näıve application of the set query algorithm to the out-
put set of Lemma 4.1 would only get a close O(k)-sparse
vector, not a k-sparse vector. To get a k-sparse vector,
we must show a lemma that generalizes one used in the
proof of sparse recovery of Count-Sketch (first in [CM06],
but our description is more similar to [GI10]).

7Another analysis ([CM05]) uses Count-Min to achieve a better
polynomial dependence on ε, but at the cost of using the `1 norm.
Our result is an improvement over this as well.
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Lemma 4.2. Let x, x′ ∈ Rn. Let S and S′ be the loca-
tions of the largest k elements (in magnitude) of x and
x′, respectively. Then if

(*) ‖(x′ − x)S∪S′‖2 ≤ εErr2(x, k),

for ε ≤ 1, we have

‖x′S′ − x‖2 ≤ (1 + 3ε)Err2(x, k).

Previous proofs have shown the following weaker form:

Corollary 4.1. If we change the condition (*) to
‖x′ − x‖∞ ≤

ε√
2k

Err2(x, k), the same result holds.

The corollary is immediate from Lemma 4.2 and
‖(x′ − x)S∪S′‖2 ≤

√
|S ∪ S′| ‖(x′ − x)S∪S′‖∞.

Proof of Lemma 4.2. We have

‖x′S′ − x‖22 = ‖(x′ − x)S′‖22 +
∥∥xS\S′

∥∥2

2
+
∥∥x[n]\(S∪S′)

∥∥2

2

(3)

The tricky bit is to bound the middle term
∥∥xS\S′

∥∥2

2
. We

will show that it is not much larger than
∥∥xS′\S

∥∥2

2
.

Let d = |S \ S′|, and let a be the d-dimensional vector
corresponding to the absolute values of the coefficients
of x over S \ S′. That is, if S \ S′ = {j1, . . . , jd}, then
ai = |xji | for i ∈ [d]. Let a′ be analogous for x′ over
S \ S′, and let b and b′ be analogous for x and x′ over
S′ \ S, respectively.

Let E = Err2(x, k) = ‖x− xS‖2. We have∥∥xS\S′
∥∥2

2
−
∥∥xS′\S

∥∥2

2
= ‖a‖22 − ‖b‖

2
2

= (a− b) · (a+ b)

≤ ‖a− b‖2 ‖a+ b‖2
≤ ‖a− b‖2 (2 ‖b‖2 + ‖a− b‖2)

≤ ‖a− b‖2 (2E + ‖a− b‖2)

So we should bound ‖a− b‖2. We know that ||p| − |q|| ≤
|p− q| for all p and q, so

‖a− a′‖22 + ‖b− b′‖22 ≤
∥∥(x− x′)S\S′

∥∥2

2
+
∥∥(x− x′)S′\S

∥∥2

2

≤ ‖(x− x′)S∪S′‖22 ≤ ε
2E2.

We also know that a − b and b′ − a′ both contain all
nonnegative coefficients. Hence

‖a− b‖22 ≤ ‖a− b+ b′ − a′‖22
≤ (‖a− a′‖2 + ‖b′ − b‖2)

2

≤ 2 ‖a− a′‖22 + 2 ‖b− b′‖22
≤ 2ε2E2

‖a− b‖2 ≤
√

2εE.

Therefore∥∥xS\S′
∥∥2

2
−
∥∥xS′\S

∥∥2

2
≤
√

2εE(2E +
√

2εE)

≤ (2
√

2 + 2)εE2

≤ 5εE2.

Plugging into Equation 3, and using ‖(x′ − x)S′‖22 ≤
ε2E2,

‖x′S′ − x‖22 ≤ ε
2E2 + 5εE2 +

∥∥xS′\S
∥∥2

2
+
∥∥x[n]\(S∪S′)

∥∥2

2

≤ 6εE2 +
∥∥x[n]\S

∥∥2

2

= (1 + 6ε)E2

‖x′S′ − x‖2 ≤ (1 + 3ε)E.

With this lemma in hand, on Zipfian distributions we
can get a k-sparse x′ with a 1+o(1) approximation factor.

Theorem 4.1. Suppose x comes from a sub-Zipfian dis-
tribution with parameter α > 1/2. Then we can recover
a k-sparse x′ from Ax with

‖x′ − x‖2 ≤
ε√

log n
Err2(x, k).

with O( cε2 k log n) rows and O(n log n) recovery time, with
probability at least 1− 1

kc .

Proof. By Lemma 4.1 we can identify a set S of size O(k)
that contains all the heavy hitters. We then run the set
query algorithm of Theorem 3.1 with ε

3
√

logn
substituted

for ε. This gives an x̂ with

‖x̂− xS‖2 ≤
ε

3
√

log n
Err2(x, k).

Let x′ contain the largest k coefficients of x̂. By
Lemma 4.2 we have

‖x′ − x‖2 ≤ (1 +
ε√

log n
)Err2(x, k).

4.2 Block-sparse vectors

In this section we consider the problem of finding block-
sparse approximations. In this case, the coordinate set
{1 . . . n} is partitioned into n/b blocks, each of length
b. We define a (k, b)-block-sparse vector to be a vector
where all non-zero elements are contained in at most k/b
blocks. That is, we partition {1, . . . , n} into Ti = {(i −
1)b+ 1, . . . , ib}. A vector x is (k, b)-block-sparse if there
exist S1, . . . , Sk/b ∈ {T1, . . . , Tn/b} with supp(x) ⊆

⋃
Si.

Define

Err2(x, k, b) = min
(k,b)−block-sparse x̂

‖x− x̂‖2 .
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Finding the support of block-sparse vectors is closely
related to finding block heavy hitters, which is studied for
the `1 norm in [ABI08]. The idea is to perform dimen-
sionality reduction of each block into log n dimensions,
then perform sparse recovery on the resulting k logn

b -
sparse vector. The differences from previous work are
minor, so we relegate the details to Appendix C.

Lemma 4.3. For any b and k, there exists a family of
matrices A with O( k

ε5b log n) rows and column sparsity
O( 1

ε2 log n) such that we can recover a support S from
Ax in O( n

ε2b log n) time with

‖x− xS‖2 ≤ (1 + ε)Err2(x, k, b)

with probability at least 1− n−Ω(1).

Once we know a good support S, we can run Algo-
rithm 3.1 to estimate xS :

Theorem 4.2. For any b and k, there exists a family of
binary matrices A with O( 1

ε2 k+ k
ε5b log n) rows such that

we can recover a (k, b)-block-sparse x′ in O(k+ n
ε2b log n)

time with

‖x′ − x‖2 ≤ (1 + ε)Err2(x, k, b)

with probability at least 1− 1
kΩ(1) .

Proof. Let S be the result of Lemma 4.3 with approxi-
mation ε/3, so

‖x− xS‖2 ≤ (1 +
ε

3
)Err2(x, k, b).

Then the set query algorithm on x and S uses O(k/ε2)
rows to return an x′ with

‖x′ − xS‖2 ≤
ε

3
‖x− xS‖2 .

Therefore

‖x′ − x‖2 ≤ ‖x
′ − xS‖2 + ‖x− xS‖2

≤ (1 +
ε

3
) ‖x− xS‖2

≤ (1 +
ε

3
)2Err2(x, k, b)

≤ (1 + ε)Err2(x, k, b)

as desired.

If the block size b is at least log n and ε is constant,
this gives an optimal bound of O(k) rows.

5 Conclusion and Future Work

We show efficient recovery of vectors conforming to Zip-
fian or block sparse models, but leave open extending this

to other models. Our framework decomposes the task
into first locating the heavy hitters and then estimating
them, and our set query algorithm is an efficient gen-
eral solution for estimating the heavy hitters once found.
The remaining task is to efficiently locate heavy hitters
in other models.

Our analysis assumes that the columns of A are fully
independent. It would be valuable to reduce the inde-
pendence needed, and hence the space required to store
A.

We show k-sparse recovery of Zipfian distributions with
1 + o(1) approximation in O(k log n) space. Can the o(1)
be made smaller, or a lower bound shown, for this prob-
lem?
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A Negative Dependence

Negative dependence is a fairly common property in
balls-and-bins types of problems, and can often cleanly
be analyzed using the framework of negative association
([DR96, DPR96, JP83]).

Definition 1 (Negative Association). Let (X1, . . . , Xn)
be a vector of random variables. Then (X1, . . . , Xn) are
negatively associated if for every two disjoint index sets,
I, J ⊆ [n],

E[f(Xi, i ∈ I)g(Xj , j ∈ J)]

≤E[f(Xi, i ∈ I)]E[g(Xj , j ∈ J)]

for all functions f : R|I| → R and g : R|J| → R that are
both non-decreasing or both non-increasing.

If random variables are negatively associated then one
can apply most standard concentration of measure argu-
ments, such as Chebyshev’s inequality and the Chernoff
bound. This means it is a fairly strong property, which
makes it hard to prove directly. What makes it so useful
is that it remains true under two composition rules:

Lemma A.1 ([DR96], Proposition 7).

1. If (X1, . . . , Xn) and (Y1, . . . , Ym) are each nega-
tively associated and mutually independent, then
(X1, . . . , Xn, Y1, . . . , Ym) is negatively associated.

2. Suppose (X1, . . . , Xn) is negatively associated. Let
I1, . . . , Ik ⊆ [n] be disjoint index sets, for some pos-
itive integer k. For j ∈ [k], let hj : R|Ij | → R
be functions that are all non-decreasing or all non-
increasing, and define Yj = hj(Xi, i ∈ Ij). Then
(Y1, . . . , Yk) is also negatively associated.

Lemma A.1 allows us to relatively easily show that one
component of our error (the point error) is negatively as-
sociated without performing any computation. Unfortu-
nately, the other component of our error (the component
size) is not easily built up by repeated applications of
Lemma A.18. Therefore we show something much weaker
for this error, namely approximate negative correlation:

E[XiXj ]− E[Xi]E[Xj ] ≤
1

kΩ(1)
E[Xi] E[Xj ]

8This paper considers the component size of each hyperedge,
which clearly is not negatively associated: if one hyperedge is in a
component of size k than so is every other hyperedge. But one can
consider variants that just consider the distribution of component
sizes, which seems plausibly negatively associated. However, this
is hard to prove.

for all i 6= j. This is still strong enough to use Cheby-
shev’s inequality.

B Set Query in the `1 norm

This section works through all the changes to prove the
set query algorithm works in the `1 norm with w = O( 1

εk)
measurements.

We use Lemma 3.5 to get an `1 analog of Corollary 3.2:

‖x′ − xS‖1 =
∑
i∈S
|(x′ − xS)i|(4)

≤
∑
i∈S

2
∑
j∈S

Ci,j |Yj | = 2
∑
i∈S

Di |Yi| .

Then we bound the expectation, variance, and co-
variance of Di and |Yi|. The bound on Di works the
same as in Section 3.6: E[Di] = O(1), E[D2

i ] = O(1),
E[DiDj ]− E[Di]

2 ≤ O(log4 k/
√
k).

The bound on |Yi| is slightly different. We define

U ′q = |νq|+
∑

i∈[n]\S

|xi|Bi,q

and observe that U ′q ≥ |Vq|, and U ′q is NA. Hence

Z ′i = median
q∈Li

U ′q

is NA, and |Yi| ≤ Z ′i. Define

µ = E[U ′q] =
d

w
‖x− xS‖1 +

1

w
‖ν‖1

≤ ε

k
(‖x− xS‖1 + ‖ν‖1)

then

Pr[Z ′i ≥ cµ] ≤ 2|Li|(
1

c
)|Li|/2 ≤

(
4

c

)d−2

so E[Z ′i] = O(µ) and E[Z ′2i ] = O(µ2).
Now we will show the analog of Section 3.7. We know

‖x′ − xS‖2 ≤ 2
∑
i

DiZ
′
i

and
E[2

∑
i

DiZ
′
i] = 2

∑
i

E[Di] E[Z ′i] = kµ′

for some µ′ = O( εk (‖x− xS‖1 + ‖ν‖1)). Then

E[(
∑

DiZ
′
i)

2] =
∑
i

E[D2
i ] E[Z ′2i ] +

∑
i 6=j

E[DiDj ] E[Z ′iZ
′
j ]

≤
∑
i

O(µ′2) +
∑
i 6=j

(E[Di]
2 +O(log4 k/

√
k)) E[Z ′i]

2

= O(µ′2k
√
k log4 k) + k(k − 1) E[DiZ

′
i]

2

Var(2
∑
i

Z ′iDi) ≤ O(µ′2k
√
k log4 k).
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By Chebyshev’s inequality, we get

Pr[‖x′ − xS‖1 ≥ (1 + α)kµ′] ≤ O(
log4 k

α2
√
k

)

and the main theorem (for constant c = 1/3) follows.
The parallel repetition method of Section 3.7 works the
same as in the `2 case to support arbitrary c.

C Block Heavy Hitters

Lemma 4.3. For any b and k, there exists a family of
matrices A with O( k

ε5b log n) rows and column sparsity
O( 1

ε2 log n) such that we can recover a support S from
Ax in O( n

ε2b log n) time with

‖x− xS‖2 ≤ (1 + ε)Err2(x, k, b)

with probability at least 1− n−Ω(1).

Proof. This proof follows the method of [ABI08], but ap-
plies to the `2 norm and is in the (slightly stronger) sparse
recovery framework rather than the heavy hitters frame-
work. The idea is to perform dimensionality reduction,
then use an argument similar to those for Count-Sketch
(first in [CM06], but we follow more closely the descrip-
tion in [GI10]).

Define s = k/b and t = n/b, and decompose [n] into
equal sized blocks T1, . . . , Tt. Let x(Ti) ∈ Rb denote the
restriction of xTi to the coordinates Ti. Let U ⊆ [t]
have |U | = s and contain the s largest blocks in x, so
Err2(x, k, b) =

∥∥∑
i/∈U xTi

∥∥
2
.

Choose an i.i.d. standard Gaussian matrix ρ ∈ Rm×b
for m = O( 1

ε2 log n). Define yq,i = (ρx(Tq))i, so as a dis-

tribution over ρ, yq,i is a Gaussian with variance
∥∥x(Tq)

∥∥2

2
.

Let h1, . . . , hm : [t]→ [l] be pairwise independent hash
functions for some l = O( 1

ε3 s), and g1, . . . , gm : [t] →
{−1, 1} also be pairwise independent. Then we make
m hash tables H(1), . . . ,H(m) of size l each, and say that
the value of the jth cell in the ith hash table H(i) is given
by

H
(i)
j =

∑
q:hi(q)=j

gi(q)yq,i

Then the H
(i)
j form a linear sketch of ml = O( k

ε5b log n)
cells. We use this sketch to estimate the mass of each
block, and output the blocks that we estimate to have
the highest mass. Our estimator for ‖xTi

‖2 is

z′i = αmedian
j∈[m]

∣∣∣H(j)
hj(i)

∣∣∣
for some constant scaling factor α ≈ 1.48. Since we only
care which blocks have the largest magnitude, we don’t
actually need to use α.

We first claim that for each i and j with probability

1−O(ε), (H
(j)
hj(i)−yi,j)

2 ≤ O( ε
2

s (Err2(x, k, b))2). To prove

it, note that the probability any q ∈ U with q 6= i having
hj(q) = hj(i) is at most s

l ≤ ε3. If such a collision with
a heavy hitter does not happen, then

E[(H
(j)
hj(i) − yi,j)

2] = E[
∑

p 6=i,hj(p)=hj(i)

y2
p,j ]

≤
∑
p/∈U

1

l
E[y2

p,j ]

=
1

l

∑
p/∈U

∥∥xTp

∥∥2

2

=
1

l
(Err2(x, k, b))2

By Markov’s inequality and the union bound, we have

Pr[(H
(j)
hj(i) − yi,j)

2 ≥ ε2

s
(Err2(x, k, b))2] ≤ ε+ ε3 = O(ε)

Let Bi,j be the event that (H
(j)
hj(i) − yi,j)

2 >

O( ε
2

s (Err2(x, k, b))2), so Pr[Bi,j ] = O(ε). This is inde-
pendent for each j, so by the Chernoff bound

∑m
j=1Bi,j ≤

O(εm) with high probability in n.
Now, |yi,j | is distributed according to the positive half

of a Gaussian, so there is some constant α ≈ 1.48 such
that α |yi,j | is an unbiased estimator for ‖xTi

‖2. For any
C ≥ 1 and some δ = O(Cε), we expect less than 1−Cε

2 m

of the α |yi,j | to be below (1−δ) ‖xTi
‖2, less than 1−Cε

2 m
to be above (1 + δ) ‖xTi

‖2, and more than Cεm to be in
between. Because m ≥ Ω( 1

ε2 log n), the Chernoff bound
shows that with high probability the actual number of
α |yi,j | in each interval is within ε

2m = O( 1
ε log n) of its

expectation. Hence∣∣∣∣‖xTi
‖2 − αmedian

j∈[m]
|yi,j |

∣∣∣∣ ≤ δ ‖xTi
‖2 = O(Cε) ‖xTi

‖2 .

even if (C−1)ε
2 m of the yi,j were adversarially modified.

We can think of the events Bi,j as being such adversarial
modifications. We find that

|‖xTi
‖2 − zi| =

∣∣∣∣‖xTi
‖2 − αmedian

j∈[m]

∣∣∣H(j)
hj(i)

∣∣∣∣∣∣∣
≤ O(ε) ‖xTi

‖2 +O(
ε√
s

Err2(x, k, b)).

(‖xTi‖2 − zi)
2 ≤ O(ε2 ‖xTi‖

2
2 +

ε2

s
(Err2(x, k, b))2)

Define wi = ‖xTi
‖2, µ = Err2(x, k, b), and Û ⊆ [t] to

contain the s largest coordinates in z. Since z is com-
puted from the sketch, the recovery algorithm can com-
pute Û . The output of our algorithm will be the blocks
corresponding to Û .
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We know µ2 =
∑
i/∈U w

2
i =

∥∥w[t]\U
∥∥2

2
and |wi − zi| ≤

O(εwi + ε√
s
µ) for all i. We will show that∥∥∥w[t]\Û

∥∥∥2

2
≤ (1 +O(ε))µ2.

This is analogous to the proof of Count-Sketch, or to
Corollary 4.1. Note that∥∥∥w[t]\Û

∥∥∥2

2
=
∥∥∥wU\Û∥∥∥2

2
+
∥∥∥w[t]\(U∪Û)

∥∥∥2

2

For any i ∈ U \ Û and j ∈ Û \ U , we have zj > zi, so

wi − wj ≤ O(
ε√
s
µ+ εwi)

Let a = maxi∈U\Û wi and b = minj∈Û\U wj . Then

a ≤ b + O( ε√
s
µ + εa), and dividing by (1 − O(ε)) we

get a ≤ b(1 +O(ε)) +O( ε√
s
µ). Furthermore

∥∥∥wÛ\U∥∥∥2

2
≥

b2
∣∣∣Û \ U ∣∣∣, so

∥∥∥wU\Û∥∥∥2

2
≤

∥∥∥wÛ\U∥∥∥2

1 +O(ε)√∣∣∣Û \ U ∣∣∣ +O(
ε√
s
µ)


2 ∣∣∣Û \ U ∣∣∣

≤
(∥∥∥wÛ\U∥∥∥

2
(1 +O(ε)) +O(εµ)

)2

=
∥∥∥wÛ\U∥∥∥2

2
(1 +O(ε)) + (2 +O(ε))

∥∥∥wÛ\U∥∥∥
2
O(εµ)

+O(ε2µ2)

≤
∥∥∥wÛ\U∥∥∥2

2
+O(εµ2)

because
∥∥∥wÛ\U∥∥∥

2
≤ µ. Thus

∥∥w − wÛ∥∥2
=
∥∥∥w[t]\Û

∥∥∥2

2
≤ O(εµ2) +

∥∥∥wÛ\U∥∥∥2

2
+
∥∥∥w[t]\(U∪Û)

∥∥∥2

2

= O(εµ2) + µ2 = (1 +O(ε))µ2.

This is exactly what we want. If S =
⋃
i∈Û Ti contains

the blocks corresponding to Û , then

‖x− xS‖2 =
∥∥w − wÛ∥∥2

≤ (1+O(ε))µ = (1+O(ε))Err2(x, k, b)

Rescale ε to change 1+O(ε) into 1+ε and we’re done.
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