Improved Analysis of Sequential Sparse Matching Pursuit

Eric Price

November 12, 2015

Abstract

Sequential Sparse Matching Pursuit (SSMP) is a compressed sensing algorithm introduced in [BI] for nearly linear ℓ_1 recovery with optimal measurements. We present a simpler and more general proof of convergence than in the original paper. Our proof shows that SSMP works for all matrices satisfying an appropriate RIP-1.

1 Introduction

We give a new proof that SSMP converges in nearly linear time. The key result is a new proof that the innermost loop of SSMP always makes significant progress. The rest of the proof proceeds as in [BI], or indeed any other matching pursuit algorithm. Nevertheless, we include the complete proof for completeness.

2 Preliminaries

Here we define things.

$H_k(x)$, k-sparse, RIP-1.

3 Algorithm

For any vector $x \in \mathbb{R}^n$, define $H_k(x)$ to be the k largest coefficients of x. That is, $H_k(x)$ equals x over its k largest coefficients (in magnitude) and 0 otherwise.

```
1: procedure SSMP(A, b, k)    \triangleright Recover $k$-sparse approximation $x'$ to $x$ from $b = Ax + \mu$
2:     $x^0 = 0$
3:   for $j \leftarrow 1, \ldots, T = O(\log \|x\|_1 / \|\mu\|_1)$ do
4:       $x^{j,0} \leftarrow x^{j-1}$
5:         for $a \leftarrow 1, \ldots, (c-1)k$ do
6:             $(i, z) \leftarrow \text{arg min}_{(i,z)} \|b - A(x^j + ze_i)\|_1$
7:             $x^{j,a} \leftarrow x^{j,a-1} + ze_i$
8:       end for
9:     $x^j \leftarrow H_k(x^{j,(c-1)k})$ \hspace{1cm} \triangleright Extract the $k$ largest coefficients
10:   end for
11: return $x' = x^T$
12: end procedure
```

Algorithm 3.1: SSMP.
Define the remainders \(y^j = x - x^j \), \(y^{j,a} = x^j - x^{j,a} \). To show that SSMP works, we show that as long as \(\|y^{j,a}\|_1 = \omega(\|\mu\|_1) \), the successive \(y \) will decrease significantly. Hence the algorithm quickly converges to \(\|y^{j,a}\|_1 = O(\|\mu\|_1) \). In slightly more detail, we will show that when \(\|y^{j,a}\|_1 = \omega(\|\mu\|_1) \),

1. Each inner loop decreases the norm of the remainder (under \(A \)) by at least a \((1 - \frac{1}{O(k)}) \) fraction.
 In particular \(\|Ax^{j,a+1} - b\|_1 \leq (1 - \frac{1}{2k+a})^{1/2} \|Ax^{j,a} - b\|_1 \), for \(A \) satisfying an appropriate RIP.
2. Hence \(\|Ax^{j+1,(c-1)k} - b\|_1 \leq \frac{1}{8} \|Ax^{j} - b\|_1 \) for \(c = 127 \).
3. Hence \(\|x^{j+1,(c-1)k} - x\|_1 \leq \frac{1}{4} \|x^{j} - x\|_1 \).
4. Hence \(\|x^{j+1} - x\|_1 \leq \frac{1}{2} \|x^{j} - x\|_1 \).

The tricky part, and the novel part of this paper, is step 1. We discuss it in Section 4. The other parts are straightforward, and covered in Section 5.

4 Proof of Sequential Progress

Before proving Lemma 2, we will prove a lemma about nearly orthogonal vectors in the \(\ell_1 \) norm:

Lemma 1. Let \(x_1, \ldots, x_s, \mu \in \mathbb{R}^m \), and \(z = \mu + \sum x_i \). Suppose that \(\|\mu\|_1 < c \|z\|_1 \) and

\[
(1 - \delta)(\sum \|x_i\|_1) \leq \|\sum x_i\|_1,
\]

for some constants \(0 \leq c, \delta < 1/2 \). Then there exists an \(i \) such that \(\|z - x_i\|_1 \leq (1 - \frac{1}{2}(1 - 2\delta - 5c)) \|z\|_1 \).

Proof. Intuitively, the condition means the \(x_i \) form a chain that is nearly at its maximal length; it is nearly “taut.” Almost all the mass needs to be oriented toward the final vector \(z \); very little is “slack” that can be “wasted” by moving in superfluous directions. On average, the \(x_i \) are pointed in the right direction and fairly large; hence at least one \(x_i \) is both of these.

More formally, define the “projection” operator \(p(a, b) \) of \(a \) onto \(b \) to be the coordinatewise nearest neighbor of \(a \) to the intervals \([0, b_i]\) for each coordinate \(i \). That is, for positive coordinates \(b_i \geq 0 \), we define

\[
p(a, b)_i = \begin{cases} 0 & \text{if } a_i < 0 \\ a_i & \text{if } 0 \leq a_i \leq b_i \\ b_i & \text{if } a_i > b_i \end{cases}
\]

and analogously for negative coordinates (so \(p(a, b)_i = -p(-a, -b)_i \)). As a property of this operator, \(\|b - p(a, b)\|_1 = \|b\|_1 - \|p(a, b)\|_1 \) for all \(a, b \).

For simplicity of notation, let \(v_i = x_i \) for \(i \geq 1 \) and \(v_0 = \mu \), so \(z = \sum v_i \). Let \(u_i = p(v_i, z) \), and \(w_i = \|v_i - u_i\|_1 = \|v_i\|_1 - \|u_i\|_1 \). Then \(u_i \) is the part of \(v_i \) moving in the right direction, and \(w_i \) is the amount of mass “wasted” in the wrong direction. In particular,

\[
\|z - v_i\|_1 = \|z - u_i\|_1 + \|u_i - v_i\|_1 = \|z\|_1 - \|u_i\|_1 + w_i
\] \hspace{1cm} (1)

So we just want to show that some \(i \) has large \(\|u_i\|_1 - w_i \). First we will show that \(\|u_i\|_1 \) is large on average, then that \(w_i \) is small on average, which will show that the difference is large on average, and hence large for at least one \(i \).
We claim
\[\sum \| u_i \|_1 \geq \| z \|_1. \tag{2} \]

We will show that for any coordinate \(j \), \(\sum |(u_i)_j| \geq |z_j| \). WLOG suppose \(z_j \geq 0 \), so \((u_i)_j \geq 0\) for all \(i \). Then by the definition of projection, for each \(i \) either \((u_i)_j \geq (v_i)_j\) or \((u_i)_j = z_j\). If the latter ever happens, \(\sum (u_i)_j \geq \max (u_i)_j = z_j\); otherwise, \(\sum (u_i)_j \geq \sum (v_i)_j = z_j\).

Now, consider showing that the \(w_i \) are small. Intuitively, this is “wasted” mass that doesn’t help reach the goal: it’s in the wrong direction, or overshooting the mark. We don’t have enough slack to waste much mass, so \(\sum w_i \) must be small. In equations,
\[
\sum \| x_i \|_1 = \sum (w_i + \| u_i \|_1) \geq \| z \|_1 - \| u_0 \|_1 + \sum w_i \\
\frac{1}{1-\delta} \| \sum x_i \|_1 \geq \| \sum x_i \|_1 - \| \mu \|_1 - \| u_0 \|_1 + \sum w_i \\
\frac{\delta}{1-\delta} \| \sum x_i \|_1 \geq -2 \| \mu \|_1 + \sum w_i \\
2 \| \mu \|_1 + \frac{\delta}{1-\delta} (\| z \|_1 + \| \mu \|_1) \geq \sum w_i
\]
hence
\[
\sum w_i \leq \left(2 + \frac{\delta}{1-\delta} \right) \| \mu \|_1 + \frac{\delta}{1-\delta} \| z \|_1. \tag{3}
\]

Hence we have that the “non-wasted” mass \(u_i \) is large, and the “wasted” mass \(w_i \) is small. We just need to show that some particular \(i \) has large \(\| u_i \|_1 - w_i \), but this will be true on average.

Subtracting Equation 3 from Equation 2,
\[
\sum_{i \geq 1} \| u_i \|_1 - w_i \geq (\| z \|_1 - \| u_0 \|_1) - ((2 + \frac{\delta}{1-\delta}) \| \mu \|_1 + \frac{\delta}{1-\delta} \| z \|_1) \\
\geq (1 - \frac{\delta}{1-\delta}) \| z \|_1 - (3 + \frac{\delta}{1-\delta}) \| \mu \|_1 \\
\geq (1 - 3c - \frac{\delta(1+c)}{1-\delta}) \| z \|_1.
\]

So for \(\delta \leq 1/2 \),
\[
\sum_{i \geq 1} \| u_i \|_1 - w_i \geq (1 - 2\delta - 5c) \| z \|_1. \tag{4}
\]

Let \(j \) be such that \(\| u_j \|_1 - w_j \) is above the mean. Then by Equation 4 and Equation 1,
\[
\| u_j \|_1 - w_j \geq \frac{1}{s} (1 - 2\delta - 5c) \| z \|_1 \\
\| z - x_j \|_1 = \| z \|_1 - \| u_j \|_1 + w_j \\
\geq (1 - \frac{1}{s} (1 - 2\delta - 5c)) \| z \|_1
\]
as desired.
Now we can apply Lemma 1 to matrices satisfying the RIP:

Lemma 2. Suppose A satisfies an RIP-1 of order $(s, 1/10)$, $s > 1$. If y is s-sparse, and $\|w\|_1 \leq \frac{1}{30} \|y\|_1$, then there exists a 1-sparse z such that $\|A(y - z) + w\|_1 \leq (1 - \frac{1}{s})^{1/2} \|Ay + w\|_1$.

Proof. First, note that $\|w\|_1 \leq \frac{1}{30(1-\delta)} \|Ay\|_1 \leq \frac{1}{29} \|Ay\|_1 \leq \frac{1}{26} \|Ay + w\|_1$.

Let $y = y_1 + y_2 + \ldots + y_s$, for orthogonal 1-sparse y_i. Let $v_i = Ay_i$. Let $\delta = 1/10$, so we have by the RIP-1 of order (s, δ) that

$$
\left\| \sum v_i \right\|_1 = \|Ay\|_1 \geq (1 - \delta) \sum \|y_i\|_1 \geq (1 - \delta) \sum \|v_i\|_1
$$

Hence

$$(1 - \delta) \sum \|v_i\|_1 \leq \left\| \sum v_i \right\|_1 \leq \sum \|v_i\|_1.
$$

So we can apply Lemma 1: for any noise vector w with $\|w\|_1 \leq c \|Ay + w\|_1$, there exists a j with

$$
\|A(y - y_j) + w\|_1 \leq (1 - \frac{1}{s}(1 - 2\delta - 5c)) \|Ay + w\|_1.
$$

For $\delta \leq 1/10$ and $c \leq 1/25$, this gives

$$
\|A(y - y_j) + w\|_1 \leq (1 - \frac{3}{5s}) \|Ay + w\|_1 \leq (1 - \frac{1}{s})^{1/2} \|Ay + w\|_1
$$

for $s \geq 2$. So one of the y_j is an acceptable z for the result. □

A corollary will apply this to SSMP:

Corollary 3. In SSMP, if A satisfies an RIP-1 of order $((c+1)k, 1/10)$, and $\|\mu\|_1 \leq \frac{1}{30} \|x^{j,a} - x\|_1$, then

$$
\|Ax^{j,a+1} - b\|_1 \leq (1 - \frac{1}{2k+a})^{1/2} \|Ax^{j,a} - b\|_1
$$

for all j and a.

Proof. Note that $x^{j,a}$ is $k+a$-sparse, so $x^{j,a} - x$ is $2k+a \leq (c+1)k$-sparse. Hence Lemma 2 applies, and there exists some update z such that

$$
\|A(x^{j,a} + z) - b\|_1 = \|A(x^{j,a} - x + z) - \mu\|_1 \leq (1 - \frac{1}{2k+a})^{1/2} \|A(x^{j,a} - x) - \mu\|_1
$$

Because $x^{j,a+1}$ chooses an update that minimizes this quantity,

$$
\|Ax^{j,a+1} - b\|_1 \leq \|Ax^{j,a+1} - b\|_1 \leq (1 - \frac{1}{2k+a})^{1/2} \|Ax^{j,a} - b\|_1
$$

as desired. □
5 Full Proof of SSMP

From Corollary 3, we have

\[
\|Ax^{j+1, t} - b\|_1 \leq \left(\prod_{a=0}^{t-1} \left(1 - \frac{1}{2k + a}\right)^{1/2}\right) \|Ax^{j+1,0} - b\|_1
\]

\[
= \left(\prod_{a=0}^{t-1} \frac{2k + a - 1}{2k + a}\right)^{1/2} \|Ax^{j} - b\|_1
\]

\[
= \left(\frac{2k - 1}{2k + t - 1}\right)^{1/2} \|Ax^{j} - b\|_1
\]

\[
\leq \left(\frac{2k}{2k + t}\right)^{1/2} \|Ax^{j} - b\|_1
\]

so for \(t = 126k\), corresponding to the last iteration if \(c = 127\),

\[
\|Ax^{j+1, t} - b\|_1 \leq \frac{1}{8} \|Ax^{j} - b\|_1
\]

Because \(A\) satisfies an RIP we know

\[
\|A(x^{j+1, t} - x) - \mu\|_1 \geq \|A(x^{j+1, t} - x)\|_1 - \|\mu\|_1 \geq (1 - \delta) \|x^{j+1, t} - x\|_1 - \|\mu\|_1
\]

so since \(\delta < 1/2\),

\[
\|x^{j+1, t} - x\|_1 \leq 2 \|Ax^{j+1, t} - b\|_1 + 2 \|\mu\|_1
\]

\[
\leq \frac{1}{4} \|Ax^{j} - b\|_1 + 2 \|\mu\|_1
\]

\[
\leq \frac{1}{4} \|A(x^{j} - x)\|_1 + \frac{9}{4} \|\mu\|_1
\]

\[
\leq \frac{1}{4} \|x^{j} - x\|_1 + \frac{9}{4} \|\mu\|_1
\]

and by a well-known property of \(H_k\),

\[
\|x^{j+1} - x\|_1 \leq 2 \|x^{j+1, t} - x\|_1 \leq \frac{1}{2} \|x^{j} - x\|_1 + \frac{9}{2} \|\mu\|_1
\]

Now, if \(\|\mu\|_1 \leq \frac{1}{18} \|x^{j} - x\|_1\), we have \(\|x^{j+1} - x\|_1 \leq \frac{3}{4} \|x^{j} - x\|_1\). So the error decreases quickly until it is \(O(\|\mu\|_1)\).

References