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Carrier screening

Want to figure out who carries a genetic mutation.

Test everyone!
Test 1,000,000 people, find 1,000 carriers.
Very inefficient.
Idea: mix together samples.
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Group testing

vs. compressive sensing

Goal: find k carriers among n people.

Group testing: test groups to see if any member is positive.
Doable with Θ(log

(n
k

)
) = Θ(k log(n/k)) tests.

Compressive sensing: estimate the number of positives in group.

I Trying to learn x ∈ Rn. (Here, x ∈ {0,1,2}n.)
I Choose coefficients v ∈ Rn.
I Measure 〈v , x〉 with noise.

Want to minimize number of tests.
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Number of Measurements

Non-adaptive Adaptive

Group Testing Ω(k2) Θ(k log(n/k))

Compressive Sensing

Θ(k log(n/k)) ???

Expected fraction of DNA with mutation is k/n = 0.1%.
Group testing possible: machine distinguishes 0% and 0.1%.
Also distinguishes 50.0% and 50.1%.
Hope for log(n/k) bits/test, or Θ(k) measurements.
Problem: any mixture has expected 0.1% mutation, so O(1) bits.
Idea: use knowledge from early measurements to make later
mixtures more concentrated with mutations.
This talk: O(k log log(n/k)) adaptive linear measurements.
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General Compressive Sensing

Want to observe n-dimensional vector x
I Which of n people have a genetic mutation.
I Image
I Traffic pattern of packets on a network.

Normally takes n observations to find.
But we know some structure on the input:

I Genetics: most people don’t have the mutation.
I Images: mostly smooth with some edges.
I Traffic: Zipf distribution.

We use this structure to compress space (e.g. JPEG).
Can we use structure to save on observations?

Eric Price (MIT) Adaptive Sparse Recovery 2012-04-26 8 / 29



General Compressive Sensing

Want to observe n-dimensional vector x
I Which of n people have a genetic mutation.
I Image
I Traffic pattern of packets on a network.

Normally takes n observations to find.

But we know some structure on the input:
I Genetics: most people don’t have the mutation.
I Images: mostly smooth with some edges.
I Traffic: Zipf distribution.

We use this structure to compress space (e.g. JPEG).
Can we use structure to save on observations?

Eric Price (MIT) Adaptive Sparse Recovery 2012-04-26 8 / 29



General Compressive Sensing

Want to observe n-dimensional vector x
I Which of n people have a genetic mutation.
I Image
I Traffic pattern of packets on a network.

Normally takes n observations to find.
But we know some structure on the input:

I Genetics: most people don’t have the mutation.
I Images: mostly smooth with some edges.
I Traffic: Zipf distribution.

We use this structure to compress space (e.g. JPEG).
Can we use structure to save on observations?

Eric Price (MIT) Adaptive Sparse Recovery 2012-04-26 8 / 29



General Compressive Sensing

Want to observe n-dimensional vector x
I Which of n people have a genetic mutation.
I Image
I Traffic pattern of packets on a network.

Normally takes n observations to find.
But we know some structure on the input:

I Genetics: most people don’t have the mutation.
I Images: mostly smooth with some edges.
I Traffic: Zipf distribution.

We use this structure to compress space (e.g. JPEG).

Can we use structure to save on observations?

Eric Price (MIT) Adaptive Sparse Recovery 2012-04-26 8 / 29



General Compressive Sensing

Want to observe n-dimensional vector x
I Which of n people have a genetic mutation.
I Image
I Traffic pattern of packets on a network.

Normally takes n observations to find.
But we know some structure on the input:

I Genetics: most people don’t have the mutation.
I Images: mostly smooth with some edges.
I Traffic: Zipf distribution.

We use this structure to compress space (e.g. JPEG).
Can we use structure to save on observations?

Eric Price (MIT) Adaptive Sparse Recovery 2012-04-26 8 / 29



Cameras

5 megapixel camera takes 15 million byte-size observations.

Compresses it (JPEG) down to a million bytes.
Why do we need to bother with so many observations?
[Donoho,Candès-Tao]
Cheap in visible light (silicon), very expensive in infrared.

I $30,000 for 256x256 IR sensor.

Use structure to take only a few million observations.

I What structure? Sparsity.
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Sparsity
A vector is k -sparse if k components are non-zero.
Images are almost sparse in the wavelet basis:

Same kind of structure as in genetic testing!
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Linear sketching/Compressive sensing

Suppose an n-dimensional vector x is k -sparse in known basis.
Given Ax , a set of m << n linear products.

Why linear? Many applications:
I Genetic testing: mixing blood samples.
I Streaming updates: A(x + ∆) = Ax + A∆.
I Camera optics: filter in front of lens.

Then it is possible to recover x from Ax .
I Quickly
I Robustly: get close to x if x is close to k -sparse.

Note: impossible without using sparsity (A is underdetermined).
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Standard Sparse Recovery Framework
Specify distribution on m × n matrices A (independent of x).

I Choose matrix Ai based on previous observations (possibly
randomized).

I Observe Aix .
I Number of measurements m is total number of rows in all Ai .
I Number of rounds is r .

Given linear sketch Ax , recover x̂ .
Satisfying the recovery guarantee:

‖x̂ − x‖2 6 (1 + ε) min
k -sparse xk

‖x − xk‖2

with probability 2/3.

Solvable with O( 1
εk log n

k ) measurements
[Candès-Romberg-Tao ’06, Gilbert-Li-Porat-Strauss ’10]
Matching lower bound. [Do Ba-Indyk-P-Woodruff ’10,
P-Woodruff ’11]
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Adaptive Sparse Recovery Framework
For i = 1 . . . r :

I Choose matrix Ai based on previous observations (possibly
randomized).

I Observe Aix .
I Number of measurements m is total number of rows in all Ai .
I Number of rounds is r .
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Adaptive result in comparison to previous work

Nonadaptive: Θ( 1
εk log n

k ).

Adaptive: O(k log n
k ) with ε = o(1)

([Haupt-Baraniuk-Castro-Nowak ’09], in a slightly different setting)
This talk: O( 1

εk log log n
k ). [Indyk-P-Woodruff ’11]

I Using r = O(log log n log∗ k) rounds.

Even when r = 2, can get O(k log n + 1
εk log(k/ε))

I Separating dependence on n and ε.
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εk log(k/ε))

I Separating dependence on n and ε.
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Applications of Adaptivity

When does adaptivity make sense?

Genetic testing:

I Yes, but multiple rounds can be costly.

Cameras:

I Programmable pixels (mirrors or LCD display): Yes.
I Hardwired lens: No.

Streaming algorithms:

I Adaptivity corresponds to multiple passes.
I Router finding most common connections: No.
I Mapreduce finding most frequent URLs: Yes.
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Outline of Algorithm

Theorem
Adaptive 1 + ε-approximate k-sparse recovery is possible with
O( 1
εk log log(n/k)) measurements.

Lemma
Adaptive O(1)-approximate 1-sparse recovery is possible with
O(log log n) measurements.

Lemma implies theorem using standard tricks ([GLPS10]).
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1-sparse recovery: non-adaptive lower bound

Lemma
Adaptive C-approximate 1-sparse recovery is possible with
O(log log n) measurements for some C = O(1).

Non-adaptive lower bound: why is this hard?
Hard case: x is random ei plus Gaussian noise w .

Noise ‖w‖22 = Θ(1) so C-approximate recovery requires finding i .

Observations 〈v , x〉 = vi + 〈v ,w〉 = vi +
‖v‖2√

n z, for z ∼ N(0,Θ(1)).
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1-sparse recovery: non-adaptive lower bound
Observe 〈v , x〉 = vi +

‖v‖2√
n z, where z ∼ N(0,Θ(1))

Information capacity

I(i , 〈v , x〉) 6 1
2

log(1 + SNR)

where SNR denotes the “signal-to-noise ratio,”

SNR =
E[signal2]
E[noise2]

.
E[v2

i ]

‖v‖22/n
= 1

Finding i needs Ω(log n) non-adaptive measurements.
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1-sparse recovery: changes in adaptive setting

Information capacity

I(i , 〈v , x〉) 6 1
2

log(1 + SNR).

where SNR denotes the “signal-to-noise ratio,”

SNR = Θ

(
E[v2

i ]

‖v‖22/n

)
.

If i is independent of v , this is O(1).
As we learn about i , we can increase E[v2

i ] for constant ‖v‖2.

I Equivalently, for constant E[v2
i ] we can decrease ‖v‖2.
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1-sparse recovery: idea
x = ei + w

0 bits

v

Candidate setSignal

SNR = 2 I(i , 〈v , x〉) 6 log SNR = 1
〈v , x〉 = vi + 〈v ,w〉
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0 bits
1 bit

2 bits

v
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1-sparse recovery: idea
x = ei + w

0 bits
1 bit

2 bits
4 bits

v

Candidate setSignal

SNR = 28 I(i , 〈v , x〉) 6 log SNR = 8
〈v , x〉 = vi + 〈v ,w〉
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1-sparse recovery: idea
x = ei + w

0 bits
1 bit

2 bits
4 bits
8 bits

v

Candidate setSignal

SNR = 216 I(i , 〈v , x〉) 6 log SNR = 16
〈v , x〉 = vi + 〈v ,w〉
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Goal

Shown intuition for specific distribution on x

Match previous convergence for arbitrary x = αei + w?

I α may not be 1.
I Work for a specific x with 3/4 probability.
I Distribution over A, for fixed w .
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Goal

Find i from x = αei + w using log log n adaptive measurements.

Define the signal-to-noise ratio

SNR(x) = α2/‖w‖22.

For Gaussian w , can fit roughly
√

SNR distinct Gaussians.

Given O(1) measurements, find S 3 i with

SNR(xS) >

δ2

(SNR(x))3/2

with probability 1 − O(δ).

Repeat on xS.
Once SNR(x) reaches O(n2), will have S = {i}.
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Recovery when SNR > n2

Getting log n bits when SNR is n2

Find i in 2 measurements with probability 1 − O(δ).
Observe

, for s ∈ {±1}n pairwise independently:

a =
∑

jxj

sj

b =
∑

xj

sj

Then i ≈ a/b

, with error proportional to ‖w‖2.

|i − a/b| < n/(δ
√

SNR) with probability 1 − O(δ) (over s).
For SNR > (n/δ)2, done.
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SNR) with probability 1 − O(δ) (over s).

For SNR > (n/δ)2, done.
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Getting log SNR bits for general SNR

Still |i − a/b| < n/(2δ
√

SNR) with 1 − O(δ) probability.
So given a and b, know i in S of size |S| = n/(δ

√
SNR)

Want SNR(xS) ≈ (δ
√

SNR(x))SNR(x).

Randomly permute x beforehand! Then SNR shrinks in
expectation.

SNR(xS) > (δSNR(x))3/2

Set δ = 0.1/2r in round r ; still doubly exponential growth.
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End proof of key lemma

Lemma
Adaptive C-approximate 1-sparse recovery is possible with
O(log log n) measurements for some C = O(1).

Theorem (Adaptive upper bound)
Adaptive 1 + ε-approximate k-sparse recovery is possible with
O( 1
εk log log(n/k)) measurements.

Lemma implies theorem using standard tricks (a la [GLPS10]):

I Subsample at rate ε/k and apply the lemma, O(k/ε) times.
I Replace k by k/2, repeat.
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Experiments!

Does O(log n)→ O(log log n) really matter? What about the constants?
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Round complexity

Basic algorithm
I O( 1

ε
k log log(n/k)) measurements.

I O(log∗ k log log n) rounds.

Given O(r log∗ k) rounds, O( 1
εkr log1/r (n/k)) measurements.

Lower bound: given r rounds, Ω(k/ε+ r log1/r n) measurements.
[Arias-Castro-Càndes-Davenport ’11, P-Woodruff ’12]

I For k = 1, tight up to O(log∗ k) factor in rounds.

Given two rounds, O( 1
εk log(k/ε) + k log(n/k)) measurements.

I Separates dependence on ε and n.
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Results and future work

Nonadaptive sparse recovery requires Θ(k log n
k ) measurements.

Adaptive algorithm uses O(r log∗ k) rounds for O( 1
εkr log1/r n

k )
measurements.

I Also: 2 rounds, O( 1
ε

k log(k/ε) + k log(n/k)) measurements.

Clearer characterization of measurement/round tradeoff?
I Algorithm is O(log∗ k) rounds off lower bound.
I Given 4 iterations, how many total blood tests do we need?

Incorporating adaptivity in constrained matrix designs?
Relate k/ε and n in tight bounds? Know Ω( 1

εk + r log1/r n).

Eric Price (MIT) Adaptive Sparse Recovery 2012-04-26 29 / 29



Results and future work

Nonadaptive sparse recovery requires Θ(k log n
k ) measurements.

Adaptive algorithm uses O(r log∗ k) rounds for O( 1
εkr log1/r n

k )
measurements.

I Also: 2 rounds, O( 1
ε

k log(k/ε) + k log(n/k)) measurements.

Clearer characterization of measurement/round tradeoff?
I Algorithm is O(log∗ k) rounds off lower bound.
I Given 4 iterations, how many total blood tests do we need?

Incorporating adaptivity in constrained matrix designs?
Relate k/ε and n in tight bounds? Know Ω( 1

εk + r log1/r n).

Eric Price (MIT) Adaptive Sparse Recovery 2012-04-26 29 / 29



Results and future work

Nonadaptive sparse recovery requires Θ(k log n
k ) measurements.

Adaptive algorithm uses O(r log∗ k) rounds for O( 1
εkr log1/r n

k )
measurements.

I Also: 2 rounds, O( 1
ε

k log(k/ε) + k log(n/k)) measurements.

Clearer characterization of measurement/round tradeoff?
I Algorithm is O(log∗ k) rounds off lower bound.
I Given 4 iterations, how many total blood tests do we need?

Incorporating adaptivity in constrained matrix designs?
Relate k/ε and n in tight bounds? Know Ω( 1

εk + r log1/r n).

Eric Price (MIT) Adaptive Sparse Recovery 2012-04-26 29 / 29



Results and future work

Nonadaptive sparse recovery requires Θ(k log n
k ) measurements.

Adaptive algorithm uses O(r log∗ k) rounds for O( 1
εkr log1/r n

k )
measurements.

I Also: 2 rounds, O( 1
ε

k log(k/ε) + k log(n/k)) measurements.

Clearer characterization of measurement/round tradeoff?
I Algorithm is O(log∗ k) rounds off lower bound.
I Given 4 iterations, how many total blood tests do we need?

Incorporating adaptivity in constrained matrix designs?
Relate k/ε and n in tight bounds? Know Ω( 1

εk + r log1/r n).

Eric Price (MIT) Adaptive Sparse Recovery 2012-04-26 29 / 29



Results and future work

Nonadaptive sparse recovery requires Θ(k log n
k ) measurements.

Adaptive algorithm uses O(r log∗ k) rounds for O( 1
εkr log1/r n

k )
measurements.

I Also: 2 rounds, O( 1
ε

k log(k/ε) + k log(n/k)) measurements.

Clearer characterization of measurement/round tradeoff?
I Algorithm is O(log∗ k) rounds off lower bound.
I Given 4 iterations, how many total blood tests do we need?

Incorporating adaptivity in constrained matrix designs?

Relate k/ε and n in tight bounds? Know Ω( 1
εk + r log1/r n).

Eric Price (MIT) Adaptive Sparse Recovery 2012-04-26 29 / 29



Results and future work

Nonadaptive sparse recovery requires Θ(k log n
k ) measurements.

Adaptive algorithm uses O(r log∗ k) rounds for O( 1
εkr log1/r n

k )
measurements.

I Also: 2 rounds, O( 1
ε

k log(k/ε) + k log(n/k)) measurements.

Clearer characterization of measurement/round tradeoff?
I Algorithm is O(log∗ k) rounds off lower bound.
I Given 4 iterations, how many total blood tests do we need?

Incorporating adaptivity in constrained matrix designs?
Relate k/ε and n in tight bounds? Know Ω( 1

εk + r log1/r n).

Eric Price (MIT) Adaptive Sparse Recovery 2012-04-26 29 / 29



Eric Price (MIT) Adaptive Sparse Recovery 2012-04-26 30 / 29



Separating ε and n

Hash to O(k2/ε2) blocks, and probably all of:

I A perfect hash, so heavy hitters land in different blocks.
I Each heavy hitter dominates the noise in the same block.
I Overall, the noise grows by at most 1 + ε/2 factor

Solve (1 + ε)-approximate sparse recovery in reduced space:
O( 1
εk log(k/ε))

Identifies O(k) blocks to search containing enough heavy hitter
mass.
Heavy hitters are O(1)-heavy among their blocks, so O(log n) per
block suffices.
Result: O( 1

εk log(k/ε) + k log n).

Eric Price (MIT) Adaptive Sparse Recovery 2012-04-26 31 / 29



Separating ε and n

Hash to O(k2/ε2) blocks, and probably all of:
I A perfect hash, so heavy hitters land in different blocks.

I Each heavy hitter dominates the noise in the same block.
I Overall, the noise grows by at most 1 + ε/2 factor

Solve (1 + ε)-approximate sparse recovery in reduced space:
O( 1
εk log(k/ε))

Identifies O(k) blocks to search containing enough heavy hitter
mass.
Heavy hitters are O(1)-heavy among their blocks, so O(log n) per
block suffices.
Result: O( 1

εk log(k/ε) + k log n).

Eric Price (MIT) Adaptive Sparse Recovery 2012-04-26 31 / 29



Separating ε and n

Hash to O(k2/ε2) blocks, and probably all of:
I A perfect hash, so heavy hitters land in different blocks.
I Each heavy hitter dominates the noise in the same block.

I Overall, the noise grows by at most 1 + ε/2 factor

Solve (1 + ε)-approximate sparse recovery in reduced space:
O( 1
εk log(k/ε))

Identifies O(k) blocks to search containing enough heavy hitter
mass.
Heavy hitters are O(1)-heavy among their blocks, so O(log n) per
block suffices.
Result: O( 1

εk log(k/ε) + k log n).

Eric Price (MIT) Adaptive Sparse Recovery 2012-04-26 31 / 29



Separating ε and n

Hash to O(k2/ε2) blocks, and probably all of:
I A perfect hash, so heavy hitters land in different blocks.
I Each heavy hitter dominates the noise in the same block.
I Overall, the noise grows by at most 1 + ε/2 factor

Solve (1 + ε)-approximate sparse recovery in reduced space:
O( 1
εk log(k/ε))

Identifies O(k) blocks to search containing enough heavy hitter
mass.
Heavy hitters are O(1)-heavy among their blocks, so O(log n) per
block suffices.
Result: O( 1

εk log(k/ε) + k log n).

Eric Price (MIT) Adaptive Sparse Recovery 2012-04-26 31 / 29



Separating ε and n

Hash to O(k2/ε2) blocks, and probably all of:
I A perfect hash, so heavy hitters land in different blocks.
I Each heavy hitter dominates the noise in the same block.
I Overall, the noise grows by at most 1 + ε/2 factor

Solve (1 + ε)-approximate sparse recovery in reduced space:
O( 1
εk log(k/ε))

Identifies O(k) blocks to search containing enough heavy hitter
mass.
Heavy hitters are O(1)-heavy among their blocks, so O(log n) per
block suffices.
Result: O( 1

εk log(k/ε) + k log n).

Eric Price (MIT) Adaptive Sparse Recovery 2012-04-26 31 / 29



Separating ε and n

Hash to O(k2/ε2) blocks, and probably all of:
I A perfect hash, so heavy hitters land in different blocks.
I Each heavy hitter dominates the noise in the same block.
I Overall, the noise grows by at most 1 + ε/2 factor

Solve (1 + ε)-approximate sparse recovery in reduced space:
O( 1
εk log(k/ε))

Identifies O(k) blocks to search containing enough heavy hitter
mass.

Heavy hitters are O(1)-heavy among their blocks, so O(log n) per
block suffices.
Result: O( 1

εk log(k/ε) + k log n).

Eric Price (MIT) Adaptive Sparse Recovery 2012-04-26 31 / 29



Separating ε and n

Hash to O(k2/ε2) blocks, and probably all of:
I A perfect hash, so heavy hitters land in different blocks.
I Each heavy hitter dominates the noise in the same block.
I Overall, the noise grows by at most 1 + ε/2 factor

Solve (1 + ε)-approximate sparse recovery in reduced space:
O( 1
εk log(k/ε))

Identifies O(k) blocks to search containing enough heavy hitter
mass.
Heavy hitters are O(1)-heavy among their blocks, so O(log n) per
block suffices.

Result: O( 1
εk log(k/ε) + k log n).

Eric Price (MIT) Adaptive Sparse Recovery 2012-04-26 31 / 29



Separating ε and n

Hash to O(k2/ε2) blocks, and probably all of:
I A perfect hash, so heavy hitters land in different blocks.
I Each heavy hitter dominates the noise in the same block.
I Overall, the noise grows by at most 1 + ε/2 factor

Solve (1 + ε)-approximate sparse recovery in reduced space:
O( 1
εk log(k/ε))

Identifies O(k) blocks to search containing enough heavy hitter
mass.
Heavy hitters are O(1)-heavy among their blocks, so O(log n) per
block suffices.
Result: O( 1

εk log(k/ε) + k log n).

Eric Price (MIT) Adaptive Sparse Recovery 2012-04-26 31 / 29


	Motivating Example
	Formal Introduction to Sparse Recovery/Compressive Sensing
	Algorithm
	Conclusion
	Appendix

