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Carrier screening

@ Want to figure out who carries a genetic mutation.
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@ Want to figure out who carries a genetic mutation.
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@ Test everyone!

@ Test 1,000,000 people, find 1,000 carriers.
@ Very inefficient.

@ |dea: mix together samples.
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@ Goal: find k carriers among n people.
@ Group testing: test groups to see if any member is positive.
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@ Group testing: test groups to see if any member is positive.

@ Doable with ©(log (})) = ©(k log(n/k)) tests.

@ Compressive sensing: estimate the number of positives in group.
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Group testing vs. compressive sensing

@ Goal: find k carriers among n people.

@ Group testing: test groups to see if any member is positive.

@ Doable with ©(log (})) = ©(k log(n/k)) tests.

@ Compressive sensing: estimate the number of positives in group.
» Trying to learn x € R". (Here, x € {0,1,2}".)

» Choose coefficients v € R".
» Measure (v, x) with noise.

@ Want to minimize number of tests.
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@ Expected fraction of DNA with mutation is k/n = 0.1%.
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Number of Measurements

Non-adaptive Adaptive
Group Testing Q(k?) O(klog(n/k))
Compressive Sensing | ©(klog(n/k)) | O(kloglog(n/k))

@ Expected fraction of DNA with mutation is k/n = 0.1%.

@ Group testing possible: machine distinguishes 0% and 0.1%.

@ Also distinguishes 50.0% and 50.1%.

@ Hope for log(n/k) bits/test, or ©(k) measurements.

@ Problem: any mixture has expected 0.1% mutation, so O(1) bits.

@ Idea: use knowledge from early measurements to make later
mixtures more concentrated with mutations.

@ This talk: O(kloglog(n/k)) adaptive linear measurements.
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General Compressive Sensing

@ Want to observe n-dimensional vector x

» Which of n people have a genetic mutation.
» Image
» Traffic pattern of packets on a network.
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General Compressive Sensing

@ Want to observe n-dimensional vector x
» Which of n people have a genetic mutation.
» Image
» Traffic pattern of packets on a network.

@ Normally takes n observations to find.

@ But we know some structure on the input:

» Genetics: most people don’t have the mutation.
» Images: mostly smooth with some edges.
» Traffic: Zipf distribution.

@ We use this structure to compress space (e.g. JPEG).
@ Can we use structure to save on observations?
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Cameras

@ 5 megapixel camera takes 15 million byte-size observations.
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Cameras

@ 5 megapixel camera takes 15 million byte-size observations.
@ Compresses it (JPEG) down to a million bytes.
@ Why do we need to bother with so many observations?
[Donoho,Candés-Tao]
@ Cheap in visible light (silicon), very expensive in infrared.
» $30,000 for 256x256 IR sensor.
@ Use structure to take only a few million observations.
» What structure? Sparsity.
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Sparsity
@ A vector is k-sparse if k components are non-zero.
@ Images are almost sparse in the wavelet basis:
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Sparsity
@ A vector is k-sparse if k components are non-zero.
@ Images are almost sparse in the wavelet basis:

@ Same kind of structure as in genetic testing!
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Linear sketching/Compressive sensing

@ Suppose an n-dimensional vector x is k-sparse in known basis.
@ Given Ax, a set of m << nlinear products.
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Linear sketching/Compressive sensing

@ Suppose an n-dimensional vector x is k-sparse in known basis.

@ Given Ax, a set of m << nlinear products.
@ Why linear? Many applications:

» Genetic testing: mixing blood samples.
» Streaming updates: A(x + A) = Ax + AA.
» Camera optics: filter in front of lens.

@ Then it is possible to recover x from Ax.

» Quickly
» Robustly: get close to x if x is close to k-sparse.

@ Note: impossible without using sparsity (A is underdetermined).
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Standard Sparse Recovery Framework
@ Specify distribution on m x n matrices A (independent of x).

@ Given linear sketch Ax, recover X.
@ Satisfying the recovery guarantee:

I%=X[2 < (1+€) min |x— x>
k-sparse X

with probability 2/3.
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Standard Sparse Recovery Framework
@ Specify distribution on m x n matrices A (independent of x).

@ Given linear sketch Ax, recover X.
@ Satisfying the recovery guarantee:
15— xll2<(1+€) min |x—xl2
k-sparse xx
with probability 2/3.

@ Solvable with O(1klog #) measurements
[Candés-Romberg-Tao 06, Gilbert-Li-Porat-Strauss '10]

@ Matching lower bound. [Do Ba-Indyk-P-Woodruff 10,
P-Woodruff '11]
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Adaptive Sparse Recovery Framework

@ Fori=1...r;

» Choose matrix A; based on previous observations (possibly
randomized).

» Observe A;x.

» Number of measurements m is total number of rows in all A;.

» Number of rounds is r.

@ Given linear sketch Ax, recover X.
@ Satisfying the recovery guarantee:

IX—xlla<(14+€) min ||x—Xk|2
k-sparse xx

with probability 2/3.
@ Solvable with O(1klog #) measurements
[Candés-Romberg-Tao 06, Gilbert-Li-Porat-Strauss '10]

@ Matching lower bound. [Do Ba-Indyk-P-Woodruff 10,
P-Woodruff '11]
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Adaptive result in comparison to previous work

@ Nonadaptive: ©(1klog 7).
@ Adaptive: O(klog ) with e = o(1)
([Haupt-Baraniuk-Castro-Nowak '09], in a slightly different setting)
@ This talk: O(%klog log ). [Indyk-P-Woodruff *11]
» Using r = O(loglog nlog* k) rounds.
@ Even when r =2, can get O(klogn+ 1klog(k/e))
» Separating dependence on n and e.
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Applications of Adaptivity

@ When does adaptivity make sense?
@ Genetic testing:

» Yes, but multiple rounds can be costly.
@ Cameras:

» Programmable pixels (mirrors or LCD display): Yes.
» Hardwired lens: No.

@ Streaming algorithms:

» Adaptivity corresponds to multiple passes.
» Router finding most common connections: No.
» Mapreduce finding most frequent URLs: Yes.
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Outline of Algorithm

Theorem

Adaptive 1 + e-approximate k-sparse recovery is possible with
O(1kloglog(n/k)) measurements.
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Outline of Algorithm

Theorem

Adaptive 1 + e-approximate k-sparse recovery is possible with
O(1kloglog(n/k)) measurements.

Lemma

Adaptive O(1)-approximate 1-sparse recovery is possible with
O(loglog n) measurements.

@ Lemma implies theorem using standard tricks ([GLPS10]).
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1-sparse recovery: non-adaptive lower bound

Lemma

Adaptive C-approximate 1-sparse recovery is possible with
O(loglog n) measurements for some C = O(1).
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Lemma

Adaptive C-approximate 1-sparse recovery is possible with
O(loglog n) measurements for some C = O(1).

@ Non-adaptive lower bound: why is this hard?
@ Hard case: x is random e; plus Gaussian noise w.

@ Noise ||w||3 = ©(1) so C-approximate recovery requires finding i.
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1-sparse recovery: non-adaptive lower bound

Lemma

Adaptive C-approximate 1-sparse recovery is possible with
O(loglog n) measurements for some C = O(1).

@ Non-adaptive lower bound: why is this hard?
@ Hard case: x is random e; plus Gaussian noise w.

@ Noise ||w||3 = ©(1) so C-approximate recovery requires finding i.

@ Observations (v, x) = v;+ (v,w) = v; + %z, forz~ N(0,©(1)).
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1-sparse recovery: non-adaptive lower bound
@ Observe (v, x) = v; + %z, where z ~ N(0,0(1))

Eric Price (MIT) Adaptive Sparse Recovery 2012-04-26 18/29



1-sparse recovery: non-adaptive lower bound
@ Observe (v, x) = v; + %z, where z ~ N(0,0(1))

Eric Price (MIT) Adaptive Sparse Recovery 2012-04-26 18/29



1-sparse recovery: non-adaptive lower bound
@ Observe (v, x) = v; + %z, where z ~ N(0,0(1))

Eric Price (MIT) Adaptive Sparse Recovery 2012-04-26 18/29



1-sparse recovery: non-adaptive lower bound
@ Observe (v, x) = v; + %z, where z ~ N(0,0(1))

Eric Price (MIT) Adaptive Sparse Recovery 2012-04-26 18/29



1-sparse recovery: non-adaptive lower bound
@ Observe (v, x) = v; + %z, where z ~ N(0,0(1))

Eric Price (MIT) Adaptive Sparse Recovery 2012-04-26 18/29



1-sparse recovery: non-adaptive lower bound
@ Observe (v, x) = v; + %z, where z ~ N(0,0(1))
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1-sparse recovery: non-adaptive lower bound
@ Observe (v, x) = v; + %z, where z ~ N(0,0(1))

RS
SRR
3K

@ Information capacity
(i, {v,x)) < %Iog(1 + SNR)

where SNR denotes the “signal-to-noise ratio,”

a2 2
SNR — E[signal] < Elv/]

Elnoise?] ™~ |v[3/n
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1-sparse recovery: non-adaptive lower bound

@ Observe (v, x) =v; + ”\‘;'lzz where z ~ N(0,0(1))

@ Information capacity
(i, {v,x)) < L Iog(1 + SNR)

where SNR denotes the “signal-to-noise ratio,”

a2 2
SNA — E[3|g.naI2] < IE[\;,] 1
Elnoise] ~ |lvllz/n

@ Finding /i needs Q(log n) non-adaptive measurements.
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1-sparse recovery: changes in adaptive setting

@ Information capacity
I(i, (v, x)) < %Iogﬁ + SNR).

where SNR denotes the “signal-to-noise ratio,”

2
SNR:@( Elv/] )
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where SNR denotes the “signal-to-noise ratio,”
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@ If i is independent of v, this is O(1).

Eric Price (MIT) Adaptive Sparse Recovery 2012-04-26 19/29



1-sparse recovery: changes in adaptive setting

@ Information capacity
I(i, (v, x)) < %Iogﬁ + SNR).

where SNR denotes the “signal-to-noise ratio,”

2
SNR:@( Elv/] )

IvIi5/n
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1-sparse recovery: changes in adaptive setting

@ Information capacity
I(i, (v, x)) < %Iog(1 + SNR).

where SNR denotes the “signal-to-noise ratio,”

2
SNR:@( Elv/] )

IvIi5/n

@ If i is independent of v, this is O(1).
@ As we learn about i, we can increase E[v?] for constant ||v||».
» Equivalently, for constant E[v?] we can decrease ||v||.
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1-sparse recovery: idea
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1-sparse recovery: idea

X=e+w
Signal l [ Candidate set

0 bits

1bit l
2 bits | I |

4 bits | I l

8 bits | [ l

v %

SNR = 216 I(i, (v, x)) < log SNR = 16
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Goal

@ Shown intuition for specific distribution on x
@ Match previous convergence for arbitrary x = xe; + w?

» o may not be 1.
» Work for a specific x with 3/4 probability.
» Distribution over A, for fixed w.
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Goal

@ Find i from x = xe; + w using log log n adaptive measurements.
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Goal

@ Find i from x = xe; + w using log log n adaptive measurements.

@ Define the signal-to-noise ratio
SNR(x) = o®/||w|3.

For Gaussian w, can fit roughly v SNR distinct Gaussians.
@ Given O(1) measurements, find S > j with

SNR(xs) > (SNR(x))*/?
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Goal

@ Find i from x = xe; + w using log log n adaptive measurements.

@ Define the signal-to-noise ratio
SNR(x) = o®/||w|3.

For Gaussian w, can fit roughly v SNR distinct Gaussians.
@ Given O(1) measurements, find S > j with

SNR(xs) > 5°(SNR(x))%/?

with probability 1 — O(3).
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Goal

@ Find i from x = xe; + w using log log n adaptive measurements.
@ Define the signal-to-noise ratio

SNR(x) = o?/||w|3.

For Gaussian w, can fit roughly v SNR distinct Gaussians.
@ Given O(1) measurements, find S > j with

SNR(xs) > 5°(SNR(x))%/?

with probability 1 — O(3).
@ Repeat on xs.
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Goal

@ Find i from x = xe; + w using log log n adaptive measurements.
@ Define the signal-to-noise ratio

SNR(x) = o?/|w|[3.

For Gaussian w, can fit roughly v SNR distinct Gaussians.
@ Given O(1) measurements, find S > j with

SNR(xs) > 5°(SNR(x))%/?

with probability 1 — O(3).
@ Repeat on xs.
@ Once SNR(x) reaches O(r?), will have S = {i}.

Eric Price (MIT) Adaptive Sparse Recovery 2012-04-26 22/29
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Getting log n bits when SNR is r?
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Recovery when SNR > r?
Getting log n bits when SNR is r?

@ Find i in 2 measurements with probability 1 — O(5).
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@ Find i in 2 measurements with probability 1 — O(5).
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Recovery when SNR > r?
Getting log n bits when SNR is r?

@ Find i in 2 measurements with probability 1 — O(5).

@ Observe

a=) jx b=) X

@ Theni~a/b
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Recovery when SNR > r?
Getting log n bits when SNR is r?

@ Find i in 2 measurements with probability 1 — O(9).

@ Observe

a=) jx b=) X

@ Then i ~ a/b, with error proportional to ||w||1.
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Recovery when SNR > r?
Getting log n bits when SNR is r?

AN

@ Find i in 2 measurements with probability 1 — O(9).
@ Observe, for s € {+1}" pairwise independently:

a=> jxs b=) xs

@ Then i ~ a/b, with error proportional to ||w||>.
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Recovery when SNR > r?
Getting log n bits when SNR is r?

AN

@ Find i in 2 measurements with probability 1 — O(9).
@ Observe, for s € {+1}" pairwise independently:

a=> jxs b=) xs
@ Then i ~ a/b, with error proportional to ||w||>.
@ |i—a/b| < n/(6v SNR) with probability 1 — O(5) (over s).
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Recovery when SNR > r?
Getting log n bits when SNR is r?

AN

@ Find i in 2 measurements with probability 1 — O(9).
@ Observe, for s € {+1}" pairwise independently:

a=) jxs; b= Xs;
@ Then i ~ a/b, with error proportional to ||w||>.
@ |i—a/b| < n/(6v SNR) with probability 1 — O(5) (over s).
@ For SNR > (n/6)2, done.
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@ Still|i — a/b| < n/(26v/ SNR) with 1 — O(8) probability.
@ So given aand b, know i in S of size |S| = n/(6v SNR)
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Getting log SNR bits for general SNR

W @

@ Still|i — a/b| < n/(26v/ SNR) with 1 — O(8) probability.
@ So given aand b, know i in S of size |S| =n/(0v SNR)
@ Want SNR(xs) ~ (6,/SNR(x))SNR(x

o = = = Z|= 9a0

Eric Price (MIT) Adaptive Sparse Recovery



Getting log SNR bits for general SNR

</

@ Still|i — a/b| < n/(26v/ SNR) with 1 — O(8) probability.
@ So given aand b, know i in S of size |S| =n/(0v SNR)
@ Want SNR(xs) ~ (6,/SNR(x))SNR(x

ol
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Getting log SNR bits for general SNR

A

@ Still|i — a/b| < n/(26v/ SNR) with 1 — O(8) probability.
@ So given aand b, know i in S of size |S| =n/(0v SNR)
@ Want SNR(xs) ~ (6,/SNR(x))SNR(x

1
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Getting log SNR bits for general SNR

@ Still|i — a/b| < n/(26v/ SNR) with 1 — O(8) probability.
@ So given aand b, know i in S of size |S| = n/(6v SNR)
@ Want SNR(xs) ~ (61/SNR(x))SNR(x).

A A A A d
v
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Getting log SNR bits for general SNR

XKL Q

@ Still|i — a/b| < n/(26v/ SNR) with 1 — O(8) probability.
@ So given aand b, know i in S of size |S| = n/(6v SNR)
@ Want SNR(xs) ~ (61/SNR(x))SNR(x).

A A A A A ﬂ

v \ A v

@ Randomly permute x beforehand! Then SNR shrinks in
expectation.
SNR(xs) > (8SNR(x))%/2
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Getting log SNR bits for general SNR

XKL Q

@ Still|i — a/b| < n/(26v/ SNR) with 1 — O(8) probability.
@ So given aand b, know i in S of size |S| = n/(6v SNR)
@ Want SNR(xs) ~ (61/SNR(x))SNR(x).

A A A A A d

v \ A v

@ Randomly permute x beforehand! Then SNR shrinks in
expectation.
SNR(xs) > (8SNR(x))%/2

@ Set 6 =0.1/2" in round r; still doubly exponential growth.
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End proof of key lemma

Lemma

Adaptive C-approximate 1-sparse recovery is possible with
O(loglog n) measurements for some C = O(1).
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Adaptive C-approximate 1-sparse recovery is possible with
O(loglog n) measurements for some C = O(1).

Theorem (Adaptive upper bound)

Adaptive 1 + e-approximate k-sparse recovery is possible with
O(1kloglog(n/k)) measurements.

@ Lemma implies theorem using standard tricks (a la [GLPS10]):
» Subsample at rate e/k and apply the lemma, O(k/e) times.
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End proof of key lemma

Lemma

Adaptive C-approximate 1-sparse recovery is possible with
O(loglog n) measurements for some C = O(1).

Theorem (Adaptive upper bound)

Adaptive 1 + e-approximate k-sparse recovery is possible with
O(1kloglog(n/k)) measurements.

@ Lemma implies theorem using standard tricks (a la [GLPS10]):

» Subsample at rate e/k and apply the lemma, O(k/e) times.
» Replace k by k/2, repeat.
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Experiments!

Does O(log n) — O(loglog n) really matter? What about the constants?
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Round complexity

@ Basic algorithm

» O(1kloglog(n/k)) measurements.
» O(log* kloglog n) rounds.
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Round complexity

@ Basic algorithm

» O(1lkloglog(n/k)) measurements.
» O(log* kloglog n) rounds.

@ Given O(rlog* k) rounds, O(Lkrlog'/"(n/k)) measurements.

@ Lower bound: given r rounds, Q(k/e + rlog'/" n) measurements.
[Arias-Castro-Candes-Davenport '11, P-Woodruff ’12]

» For k =1, tight up to O(log” k) factor in rounds.

@ Given two rounds, O(%klog(k/e) + klog(n/k)) measurements.
» Separates dependence on € and n.
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Results and future work

@ Nonadaptive sparse recovery requires ©(k log #) measurements.
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Results and future work

@ Nonadaptive sparse recovery requires ©(k log #) measurements.
@ Adaptive algorithm uses O(rlog™ k) rounds for O( krlog'/" 2)
measurements.
» Also: 2 rounds, O(%klog(k/e) + klog(n/k)) measurements.

@ Clearer characterization of measurement/round tradeoff?

» Algorithm is O(log* k) rounds off lower bound.
» Given 4 iterations, how many total blood tests do we need?

@ Incorporating adaptivity in constrained matrix designs?
e Relate k/e and nin tight bounds? Know Q(1k + rlog'/" n).
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» A perfect hash, so heavy hitters land in different blocks.
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Separating € and n

@ Hash to O(k?/e?) blocks, and probably all of:
» A perfect hash, so heavy hitters land in different blocks.
» Each heavy hitter dominates the noise in the same block.
» Overall, the noise grows by at most 1 + ¢/2 factor

@ Solve (1 + €)-approximate sparse recovery in reduced space:

O(Lklog(k/e))
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Separating € and n

@ Hash to O(k?/e?) blocks, and probably all of:
» A perfect hash, so heavy hitters land in different blocks.
» Each heavy hitter dominates the noise in the same block.
» Overall, the noise grows by at most 1 + ¢/2 factor
@ Solve (1 + €)-approximate sparse recovery in reduced space:
O(1klog(k/e))
@ Identifies O(k) blocks to search containing enough heavy hitter
mass.
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Separating € and n

@ Hash to O(k?/e?) blocks, and probably all of:

» A perfect hash, so heavy hitters land in different blocks.
» Each heavy hitter dominates the noise in the same block.
» Overall, the noise grows by at most 1 + ¢/2 factor

@ Solve (1 + €)-approximate sparse recovery in reduced space:
O(Lklog(k/e))

@ Identifies O(k) blocks to search containing enough heavy hitter
mass.

@ Heavy hitters are O(1)-heavy among their blocks, so O(log n) per
block suffices.
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Separating € and n

Hash to O(k?/€?) blocks, and probably all of:

» A perfect hash, so heavy hitters land in different blocks.

» Each heavy hitter dominates the noise in the same block.

» Overall, the noise grows by at most 1 + ¢/2 factor
Solve (1 + e)-approximate sparse recovery in reduced space:
O(Lklog(k/e))
Identifies O(k) blocks to search containing enough heavy hitter
mass.
Heavy hitters are O(1)-heavy among their blocks, so O(log n) per
block suffices.

Result: O(1klog(k/e) + klogn).
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