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Compressive Sensing

Given: A few linear measurements of an (approximately) k-sparse
vector x € R".
Goal: Recover x (approximately).

(| o
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Structure-aware

Recovery algorithm
tied to matrix structure
(e.g. Count-Sketch)
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Algorithms for compressive sensing

@ Goal: recover approximately k-sparse x from y = ®x.
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Algorithms for compressive sensing

@ Goal: recover approximately k-sparse x from y = ®x.
@ A lot of people use convex optimization:

min [ x|}4
st.dx=y
@ Also lterative Hard Thresholding, CoSaMP, OMP, StOMP, ROMP....

@ For all of these:

» the time it takes to multiply by  or &7 is the bottleneck.
» the Restricted Isometry Property is a sufficient condition.
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Restricted Isometry Property (RIP)
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Restricted Isometry Property (RIP)

~|

All of these submatrices

are well conditioned.

(1= llxIZ < x|z < (1 +€)l|x[13

for all k-sparse x € R”".

Eric Price (MIT)

o
Fast RIP matrices with fewer rows



Goals
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Goals

What properties should an RIP matrix have?

@ Good compression: m small
» Random Gaussian matrix: ©(klog (n/k)) rows.
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Goals

What properties should an RIP matrix have?
@ Good compression: m small
» Random Gaussian matrix: ©(k log n) rows.

@ Fast multiplication:

» Reconstruction dominated by log n multiplications by ®, 7.
» Random Gaussian matrix: ©(nklog n) time.

@ Goal: an RIP matrix with O(nlog n) multiplication and small m.

* Talk will assume n®' < k < n%®, so log k ~ log n =~ log(n/k).
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An open question

n
/—M

al

Let A contain random rows from a Fourier matrix.

You can multiply by Ain O(nlog n) time.

How many rows do you need to ensure that A has the RIP?
e m= O(klog* n) [CT06,RV08,CGV13].

Ideal:
@ m= O(klogn).

(Related: how about partial circulant matrices?)
e m = O(klog* n) [RRT12,KMR12].
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Another motivation:
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High dimensional data
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Another motivation:
Johnson Lindenstrauss (JL) Transforms

Linear map ¢

High dimensional data \

ScR”

o preserves the geometry of S
Low dimensional sketch

(1= O)lxll2 < lox]2 < (1 + )| x]l2 ®(S) € RT
(®x, DY) = (x,y) = €| x[2]ly ]2
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Johnson-Lindenstrauss Lemma

Theorem (variant of Johnson-Lindenstrauss ’84)
Let x € R". A random Gaussian matrix ¢ will have

(1 = 9lixllz < l[®x]l2 < (1 + €)lIx]|2

with probability 1 — 4, so long as

1
mZz e—zlog(1/5)
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Johnson-Lindenstrauss Lemma

Theorem (variant of Johnson-Lindenstrauss ’84)
Let x € R". A random Gaussian matrix ¢ will have

(1= alixllz < [|®x]l2 < (1 + €)llx]l2
with probability 1 — 4, so long as

1
m 2> e—zlog(1/5)

Set § = 1/2: embed 2% points into O(k) dimensions.
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What do we want in a JL matrix?

@ Target dimension should be small (close to g—zk for 2X points).
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What do we want in a JL matrix?

@ Target dimension should be small (close to g—zk for 2X points).

@ Fast multiplication.

» Approximate numerical algebra problems (e.g., linear regression,
low-rank approximation)
» k-means clustering
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@ Gaussians
» Dimension O(%k).
» % nk multiplication time.
@ Best way known for fast JL: by [Krahmer-Ward ’11], RIP = JL.
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» nlog n multiplication time.
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How do we get a JL matrix?

@ Gaussians
» Dimension O(%k).
» % nk multiplication time.
@ Best way known for fast JL: by [Krahmer-Ward ’11], RIP = JL.
» Existing results: dimension O(elzklog4 n).
» nlog n multiplication time.

@ And by [BDDW '08], JL = RIP; so equivalent.

TRound trip loses log n factor in dimension
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Our result: a fast RIP matrix with fewer rows

Subsampled Fourier

Randﬁsign flips K\J

E-—}m

@ New construction of fast RIP matrices: sparse times Fourier.
@ klog® nrows and nlog n multiplication time.

Theorem

Ifm~k Iog3 n, B ~ log® n, and A is a random partial Fourier matrix,
then ® has the RIP with probability at least2/3.
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Generalization

Our approach is actually works for more general A:

Subsampled Fourier
Random sign flips

Eric Price (MIT)

=] =
Fast RIP matrices with fewer rows



Generalization

Our approach is actually works for more general A:

Randﬂsign flips

Subsampled Fourier
(=4 ]

If Ais a “decent” RIP matrix:

}m
|
@ A has RIP (whp), but too many (mB) rows.
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Generalization
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Subsampled Fourier
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Am } B

If Ais a “decent” RIP matrix:

@ A has RIP (whp), but too many (mB) rows.
@ RIP-ness degrades “gracefully” as number of rows decreases:
» For all A; the RIP constant, although > 1, is still controlled.
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Generalization
Our approach is actually works for more general A:

Subsampled Fourier

Rwsign flips f_§_J

H A - e

. [ |
Am } B

If Ais a “decent” RIP matrix:

@ A has RIP (whp), but too many (mB) rows.

@ RIP-ness degrades “gracefully” as number of rows decreases:
» For all A; the RIP constant, although > 1, is still controlled.

Then ¢ is a good RIP matrix:
@ ¢ has the RIP (whp) with m = O(k log® n) rows.
@ Time to multiply by ® = time to multiply by A + mB.
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Results in the area

Construction Measurements m | Multiplication Time
Sparse JL matrices [KN12] g—zk logn emn

Partial Fourier [RV08,CGV13] g—zk Iog4 n nlogn

Partial Circulant [KMR12] 61—2/( Iog4 n n Iog n

Our result: Hash of partial Fourier E%k log® n nlogn

Our result: Hash of partial ciroulant g—zk log® n nlogn
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lterated Fourier [AC06,AL09,AR13] g—zk log nt nlogn
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Construction Measurements m | Multiplication Time
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Our result: Hash of partial ciroulant g—zk log® n nlogn

lterated Fourier [AC06,AL09,AR13] g—zk log nt nlogn

t Requires k < n'/2-9. This is the “easy” case:

Dimension: n——— klog*n —— klogn
Time: nlog n k2log® n
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Concentration of Measure

Let X4 is unit-norm k-sparse vectors.
We want to show for our distribution ® on matrices that

E sup |[|®x]|3 — [ x]3| <e,
XEX
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Concentration of Measure

Let X4 is unit-norm k-sparse vectors.
We want to show for our distribution ® on matrices that

E sup

XEX

[®x]3 ~ 1xI8| < e,

(Expectation of *) = *

Expected deviation of ®”® from mean I, in a funny norm.

Probabilists have lots of tools to analyze this.
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Common interface: m drivers, n bits = mn combinations.
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Tools

m

Common interface: m drivers, n bits = mn combinations

Common interface
for drill bits
Hex shanks
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Tools

Common interface: m drivers, n bits = mn combinations.

Common interface

for drill bits
Hex shanks
Common interface
for probability
Gaussians
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A Probabilist’s Toolbox

Convert to Gaussians

Symmetrization

Gaussian concentration

Hoeffding bound

Subgaussians

Berry-Esseen

Eric Price (MIT)
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A Probabilist’s Toolbox

Convert to Gaussians

Gaussian concentration

Subgaussians

Hoeffding bound

Will prove: symmetrization and Dudley’s entropy integral.

Gaussian

Berry-Esseen
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Symmetrization
Lemma (Symmetrization)
Suppose Xi, ..., X; are i.i.d. with mean .. For any norm ||-||,

1 Xu 172s»¢-”
i i

where s; € {£1} independently.

E <2E
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Lemma (Symmetrization)
Suppose Xi, ..., X; are i.i.d. with mean n. For any norm |||,

1 Xu 17§js,-)<,-|‘
i i

where s; € {£1} independently.

E <2E

How well does X concentrate about its mean?
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Symmetrization
Lemma (Symmetrization)

Suppose Xi, ..., X; are i.i.d. with mean n. For any norm |||,

E <2E

oo
i

%Zi:xi_ﬂ

where s; € {£1} independently.

How well does X concentrate about its mean?

Example (RIP)
For some norm ||-||, RIP constant of subsampled Fourier

IATA — 1
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Symmetrization
Lemma (Symmetrization)
Suppose Xi, ..., Xt are i.i.d. with mean p. For any norm ||-||,

1 Xu 1?23"(’H
i i

where s; € {£1} independently.

E <2E

How well does X concentrate about its mean?

Example (RIP)
For some norm ||-||, RIP constant of subsampled Fourier

IATA— 1| = > AT A —1].
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Symmetrization
Lemma (Symmetrization)
Suppose Xi, ..., X; are i.i.d. with mean n. For any norm |||,

1 Xu 17§js,-)<,-|‘
i i

where s; € {£1} independently.

E <2E

Proof.

v
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Symmetrization
Lemma (Symmetrization)
Suppose Xy, ..., Xt are i.i.d. with mean p. For any norm ||-||,

15 Xi—p 1§ SiXi
I < t ~
i i

where s; € {£1} independently.

E <2E

Proof.
Draw X, ..., X] independently from the same distribution.
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Lemma (Symmetrization)
Suppose Xi, ..., Xt are i.i.d. with mean p. For any norm ||-||,

15 Xi—p 1§ SiXi
I < t ~
i i

where s; € {£1} independently.

E <2E

Proof.
Draw X{, ..., X{ independently from the same distribution.

I} > X~ ELL 3 X

v
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Symmetrization
Lemma (Symmetrization)
Suppose Xi, ..., Xt are i.i.d. with mean p. For any norm ||-||,

15 Xi—p 15 SiXi
I < t ~
i i

where s; € {£1} independently.

E <2E

Proof.
Draw X{, ..., X{ independently from the same distribution.
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Lemma (Symmetrization)
Suppose Xi, ..., Xt are i.i.d. with mean p. For any norm ||-||,

15 Xi—p 15 SiXi
I < t ~
i i

where s; € {£1} independently.

E <2E

Proof.
Draw X{, ..., X{ independently from the same distribution.

Ell13 32X — Bl 3 X101 < B[l 3706 - X))l
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Symmetrization
Lemma (Symmetrization)
Suppose Xi, ..., Xt are i.i.d. with mean p. For any norm ||-||,

1 Xu 1YZS,-XIH
i i

where s; € {£1} independently.

E <2E

Proof.
Draw X{, ..., X{ independently from the same distribution.

Ell13 32X — Bl 3 X101 < B[l 3706 - X))l

1
, , , =E[H;Zsf(Xf—X,-’)H]
and apply the triangle inequality.

O]

v
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Symmetrization
Lemma (Symmetrization)
Suppose Xi, ..., X; are i.i.d. with mean .. For any norm ||-||,

1 Xu 172s»¢-”
i i

where s; € {£1} independently.

E <2E
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Symmetrization
Lemma (Symmetrization)
Suppose Xi, ..., X; are i.i.d. with mean .. For any norm ||-||,

1 X 172s»¢-” |12g,-x,-
i i i

where s; € {£1} independently and g; ~ N(0, 1) independently.

E <2E <3E

|
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Symmetrization
Lemma (Symmetrization)
Suppose Xy, ..., Xt are i.i.d. with mean p. For any norm ||-||,

1 X 1?23")("| 13 g%
i i i

where s; € {+1} independently and g; ~ N(0, 1) independently.

E <2E <3E

|

Proof.

v
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Symmetrization
Lemma (Symmetrization)
Suppose Xi, ..., Xt are i.i.d. with mean p. For any norm ||-||,

1 X 1?23")("| 13 g%
i i i

where s; € {+1} independently and g; ~ N(0, 1) independently.

E <2E <3E

|

Proof.
We have El[|g|] ~ .8 > 2/3.

v
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Symmetrization
Lemma (Symmetrization)
Suppose Xi, ..., Xt are i.i.d. with mean p. For any norm ||-||,

1 X 1?23"(’H 13 g%
i i i

where s; € {+1} independently and g; ~ N(0, 1) independently.

E <2E <3E

|

Proof.
We have El[|g|] ~ .8 > 2/3.

2E[|I>  siXill]

v
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Symmetrization
Lemma (Symmetrization)
Suppose Xi, ..., Xt are i.i.d. with mean p. For any norm ||-||,

1 X 1?23"(’H 13 g%
i i i

where s; € {+1} independently and g; ~ N(0, 1) independently.

E <2E <3E

|

Proof.
We have El[|g|] ~ .8 > 2/3.

2E[Y_ siXilll < 3E[Y_ sEllgill Xil]

v
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Symmetrization
Lemma (Symmetrization)
Suppose Xi, ..., Xt are i.i.d. with mean p. For any norm ||-||,

1 X 1YZS,-XIH 13 g%
i i i

where s; € {+1} independently and g; ~ N(0, 1) independently.

E <2E <3E

|

Proof.
We have El[|g|] ~ .8 > 2/3.

2E[|S" siXl] < 3E[IS sEllaillXil]
< 3E[|Y silgilXil]

v
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Symmetrization
Lemma (Symmetrization)
Suppose Xi, ..., Xt are i.i.d. with mean p. For any norm ||-||,

1 X 1YZS,-XIH 13 g%
i i i

where s; € {+1} independently and g; ~ N(0, 1) independently.

E <2E <3E

|

Proof.
We have El[|g|] ~ .8 > 2/3.

2E[Y_ siXilll < 3E[Y_ sEllgill Xil]

< 3E[|Y silgilXil]
= 3E[| 3 il =

v
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9 Concentration of measure: a toolbox

@ Gaussian Processes

© Proof

e Conclusion
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Gaussian Processes

@ Gaussian process Gy: a Gaussian at each point x € T.
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Gaussian Processes

@ Gaussian process Gy: a Gaussian at each point x € T.

Example (Maximum singular value of random Gaussian matrix)

Let A be arandom m x n Gaussian matrix. For any u € R™ and

v € R", define
Guy = uTAv = (uvT,A>.

Then Gy, ~ N(O, [luvT|2).
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Gaussian Processes

@ Gaussian process Gy: a Gaussian at each point x € T.

Example (Maximum singular value of random Gaussian matrix)

Let A be arandom m x n Gaussian matrix. For any u € R™ and

v € R", define
Guy = uTAv = (uvT,A>.

Then Gy, ~ N(O, [luvT|2).

E|Al2=E sup u'Av=E sup  Guy

u,veSm—1x gn—1 u,veSm—1x gn—1
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Gaussian Processes

@ Gaussian process Gy: a Gaussian at each point x € T.
@ Standard problem: E sup, 1 Gx.

Example (Maximum singular value of random Gaussian matrix)

Let A be arandom m x n Gaussian matrix. For any u € R™ and

v € R", define
Guy = uTAv = (uvT,A>.

Then Gy, ~ N(O, [luvT|2).

E|Al2=E sup u'Av=E sup  Guy

u,veSm—1x gn—1 u,veSm—1x gn—1
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Gaussian Processes

@ Gaussian process Gy: a Gaussian at each point x € T.
@ Standard problem: E sup, 1 Gx.

Example (Maximum singular value of random Gaussian matrix)

Let A be arandom m x n Gaussian matrix. For any u € R™ and

v € R", define
Guy = uTAv = (uvT,A>.

Then Gy, ~ N(O, [luvT|2).

E|Al2=E sup u'Av=E sup  Guy

u,veSm—1x gn—1 u,veSm—1x gn—1

@ Depends on the geometry of T.
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Gaussian Processes

@ Gaussian process Gy: a Gaussian at each point x € T.
@ Standard problem: E sup,r Gx.

Example (Maximum singular value of random Gaussian matrix)

Let A be arandom m x n Gaussian matrix. For any u € R™ and

v € R", define
Guy = uTAv = (uvT,A>.

Then Gy, ~ N(O, [luvT|2).

E|Al2=E sup u'Av=E sup  Guy

u,veSm—1x gn—1 u,veSm—1x gn—1

@ Depends on the geometry of T.
@ Distance: ||x — y|| is standard deviation of Gx — Gy,.
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Gaussian Processes

@ Gaussian process Gy: a Gaussian at each point x € T.
@ Standard problem: E sup,r Gx.

Example (Maximum singular value of random Gaussian matrix)

Let A be arandom m x n Gaussian matrix. For any u € R™ and

v € R", define
Guy = uTAv = (uvT,A>.

Then Gy, ~ N(O, [luvT|2).

E|Al2=E sup u'Av=E sup  Guy

u,veSm—1x gn—1 u,veSm—1x gn—1

@ Depends on the geometry of T.
@ Distance: ||x — y|| is standard deviation of Gx — Gy,.

@ Inexample: ||(u,v) — (¢, V)| = [luvT — u'V'T|.
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Gaussian Processes

@ Goal: Esup,.7 Gx, where Gx — Gy ~ N(0,||x — y||?).
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Gaussian Processes
@ Goal: Esup,.7 Gx, where Gx — G, ~ N(O, ||x — y|?).

Position = x
O max Color = Gy
(@] [ @]
¥ G 0
(0]
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Gaussian Processes

@ Goal: Esup,.7 Gx, where Gx — Gy ~ N(0,||x — y||?).
@ Ignoring geometry:

Position = x
O max Color = Gy
(@] [ @]
¥ G 0
(0]
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Gaussian Processes

@ Goal: Esup,.7 Gx, where Gx — Gy ~ N(0,||x — y||?).
@ Ignoring geometry:
> PriGy > omaxt] < €7F/2

Position = x
O max Color = Gy
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Gaussian Processes

@ Goal: Esup,.7 Gx, where Gx — G, ~ N(O, ||x — y|?).
@ Ignoring geometry:

> Pr[Gy > omaxt] < e /2

» Union bound: with high probability, Gy < omax+/log n.

~

Position = x
O max Color = Gy
(@] [ @]
¥ G 0
(0]
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Gaussian Processes

@ Goal: Esup,.7 Gx, where Gx — Gy ~ N(0,||x — y||?).
@ Ignoring geometry:

> Pr[Gy > omaxt] < e /2
» Union bound: with high probability, Gy < omax+/log n.

» Esup,cr Gx S omaxy/logn

Position = x
O max Color = Gy
(@] [ @]
¥ G 0
(0]
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Gaussian Processes

@ Goal: Esup,.7 Gx, where Gx — Gy ~ N(0,||x — y||?).
@ Ignoring geometry:

> PriGy > omaxt] < €7F/2
» Union bound: with high probability, Gx < omax+/log n.

» Esup,cr Gx S omaxy/logn

o%e

......... .

0Sye® Position = x

O max ®
Color = Gy
o%e o%e Osmall

TR . Sy e
°o. 20 .oo 20

B o0

.O.....
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Gaussian Processes

@ Goal: Esup,.7 Gx, where Gx — Gy ~ N(0,||x — y||?).
@ Ignoring geometry:

> PriGy > omaxt] < €7F/2
» Union bound: with high probability, Gx < omax+/log n.

» Esup,cr Gx S omaxy/logn

@ Two levels: omax+/1094 + osman+/l0g N.

o oSee’ Position = x
max Color = Gy
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Gaussian Processes: chaining
@ Bound E sup,. 7 Gx, where Gy — G, has variance ||x — y/||?.

@ Two levels: omax+/109 4 + osmai+/10g N.

0 max
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Gaussian Processes: chaining
@ Bound E sup,. 7 Gx, where Gy — G, has variance ||x — y/||?.

@ Two levels: omax+/109 4 + osmai+/10g N.
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Gaussian Processes: chaining
@ Bound E sup,. 7 Gx, where Gy — G, has variance ||x — y/||?.

@ Two levels: omax+/109 4 + osmai+/10g N.

01
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Gaussian Processes: chaining
@ Bound E sup,. 7 Gx, where Gy — G, has variance ||x — y/||?.

@ Two levels: omax+/109 4 + osmai+/10g N.
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Gaussian Processes: chaining
@ Bound E sup,. 7 Gx, where Gy — G, has variance ||x — y/||?.

@ Two levels: omax+/109 4 + osmai+/10g N.

oo # balls necessary:
N(o2)

(covering number
dependson T,|-|)
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Gaussian Processes: chaining

@ Bound E sup,. 7 Gx, where Gy — G, has variance ||x — y/||?.
@ Two levels: o1+/log N(o2) + o2+/log n.

oo # balls necessary:
N(o2)

(covering number
dependson T,|-|)
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Gaussian Processes: chaining
@ Bound E sup,. 7 Gx, where Gy — G, has variance ||x — y/||?.
@ Two levels: o1+/log N(o2) + o2+/log n.
@ Why stop at two?

oo # balls necessary:
N(o2)

(covering number
dependson T,|-|)
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Gaussian Processes: chaining
@ Bound E sup,. 7 Gx, where Gy — G, has variance ||x — y/||?.
@ Two levels: o1+/log N(o2) + o2+/log n.
@ Why stop at two?

Esup Gx < o1/log N(o2) +
xeT

oo # balls necessary:
N(o2)

(covering number
dependson T,|-|)

Eric Price (MIT) Fast RIP matrices with fewer rows 2013-04-05 29/52



Gaussian Processes: chaining
@ Bound E sup,. 7 Gx, where Gy — G, has variance ||x — y/||?.
@ Two levels: o1+/log N(o2) + o2+/log n.
@ Why stop at two?

Esup Gx < o1v/1og N(o2) + o24/log N(o3) +

xeT
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Gaussian Processes: chaining
@ Bound E sup,. 7 Gx, where Gy — G, has variance ||x — y/||?.
@ Two levels: o1+/log N(o2) + o2+/log n.
@ Why stop at two?

Esup Gx < o1+/log N(o2) + 0’2\/|Og N(o3) + 0’3\/|Og N(o4) +

xeT
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Gaussian Processes: chaining
@ Bound E sup,. 7 Gx, where Gy — G, has variance ||x — y/||?.
@ Two levels: o1+/log N(o2) + o2+/log n.
@ Why stop at two?

Esup Gx < o1+/log N(o2) + 0’2\/|Og N(o3) + 0’3\/|Og N(os)+ ---

xeT
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Gaussian Processes: chaining
@ Bound E sup,. 7 Gx, where Gy — G, has variance ||x — y/||?.
@ Two levels: o1+/log N(o2) + o2+/log n.
@ Why stop at two?
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Gaussian Processes: chaining
@ Bound E sup,. 7 Gx, where Gy — G, has variance ||x — y/||?.
@ Two levels: o1+/log N(o2) + o2+/log n.
@ Why stop at two?

9]
[og] [og] |OgN(O')
Esup Gy < > oh/logN (515
xeT X pr 2r (2”‘1)
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Gaussian Processes: chaining
@ Bound E sup,. 7 Gx, where Gy — G, has variance ||x — y/||?.
@ Two levels: o1+/log N(o2) + o2+/log n.
@ Why stop at two?

o0 log N
Esup Gx < / V0og N(o)do og (o)
0

xeT
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Gaussian Processes
Dudley’s Entropy Integral, Talagrand’s generic chaining

Theorem (Dudley’s Entropy Integral)
Define the norm ||-|| of a Gaussian process G by

||x — y|| = standard deviation of (Gx — Gy).
Then

Esup Gy < / VIog N(T, [, u)du
0

xeT
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Gaussian Processes
Dudley’s Entropy Integral, Talagrand’s generic chaining

Theorem (Dudley’s Entropy Integral)
Define the norm ||-|| of a Gaussian process G by

||x — y|| = standard deviation of (Gx — Gy).
Then

2o(T, 1) == Esup Gy < / V/Iog N(T. [, u)clu
xeT 0
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Gaussian Processes
Dudley’s Entropy Integral, Talagrand’s generic chaining

Theorem (Dudley’s Entropy Integral)
Define the norm ||-|| of a Gaussian process G by

||x — y|| = standard deviation of (Gx — Gy).
Then

2o(T. ) := Esup Gy < / V/Iog N(T. [, u)clu
xeT 0

@ Bound a random variable using geometry.
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Outline

@ Introduction

9 Concentration of measure: a toolbox

@ Lipschitz Concentration

© Proof

e Conclusion
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Lipschitz Concentration of Gaussians

Theorem
Iff:R" — R is C-Lipschitz and g ~ N(0, I,), then for any t > 0,

Pr[f(g) > E[f(g)] + Ct] < e 1),

@ f concentrates as well as individual Gaussians.
@ Can replace f with —f to get lower tail bound.
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Lipschitz Concentration of Gaussians
Theorem
Iff:R" — R is C-Lipschitz and g ~ N(0, I,), then for any t > 0,

Pr[f(g) > E[f(g)] + Ct] < e 1),

@ f concentrates as well as individual Gaussians.
@ Can replace f with —f to get lower tail bound.

Example
If g ~ N(O, /), then with probability 1 — 4,

Ilgllz < v'n+ O(+/log(1/9)).

v
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Lipschitz Concentration of Gaussians

Theorem
Iff:R" — R is C-Lipschitz and g ~ N(0, I,), then for any t > 0,

Pr[f(g) > E[f(g)] + Ct] < e 1),

@ f concentrates as well as individual Gaussians.
@ Can replace f with —f to get lower tail bound.

Example
If g ~ N(O, /), then with probability 1 — 4,

lgll2 < vn+ O(y/log(1/9)).
For n = O(1/€2log(1/4)), this is 1 & € approximation.

v

Eric Price (MIT) Fast RIP matrices with fewer rows 2013-04-05 32/52



Lipschitz Concentration of Gaussians

Theorem
Iff:R" — R is C-Lipschitz and g ~ N(0, I,), then for any t > 0,

Pr[f(g) > E[f(g)] + Ct] < e 1),

@ f concentrates as well as individual Gaussians.
@ Can replace f with —f to get lower tail bound.

Example
If g ~ N(O, /), then with probability 1 — 4,

lgll2 < vn+ O(y/log(1/9)).
For n = O(1/€2log(1/4)), this is 1 & € approximation.

— the Johnson-Lindenstrauss lemma.

v
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A Probabilist’s Toolbox (recap)

Convert to Gaussians

Gaussian concentration

[ Hoeffding bound
Subgaussians

Gaussian

Berry-Esseen
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Outline

@ Introduction

e Concentration of measure: a toolbox

© Proof

@ Overview

e Conclusion
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Goal

Random sign flips

}m
| |

} B

mB rows of Fourier matrix j k log®n

For ¥, denoting unit-norm k-sparse vectors, we want

E sup
XEX K

2 2
ﬂxnz — x| <

(Expectation of *) = *
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[m]

=
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Proof outline: Rudelson-Vershynin
Rudelson-Vershynin: subsampled Fourier, O(klog* n) rows.

E sup
|ATA 1|
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Proof outline: Rudelson-Vershynin
Rudelson-Vershynin: subsampled Fourier, O(klog* n) rows.

E sup
|ATA 1|
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Proof outline: Rudelson-Vershynin
Rudelson-Vershynin: subsampled Fourier, O(klog* n) rows.

Esup
IATA — 1|
v : supremum of Gaussian process
Y« : k-sparse unit vectors
Yo (X, [I-1)

|-l : @ norm that depends on A
(specified in a few slides)
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Proof outline: Rudelson-Vershynin
Rudelson-Vershynin: subsampled Fourier, O(klog* n) rows.

Esup
IATA — 1|
v : supremum of Gaussian process
Y« : k-sparse unit vectors
Yo (X, [I-1)

|-l : @ norm that depends on A
(specified in a few slides)
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Proof outline: Rudelson-Vershynin
Rudelson-Vershynin: subsampled Fourier, O(klog* n) rows.

Esup
IATA — 1|
v : supremum of Gaussian process
Y : k-sparse unit vectors
Yo (X, [I-1)
||I-]| - @ norm that depends on A
(specified in a few slides)
N, [I]], u)
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Proof outline: Rudelson-Vershynin

E sup

Rudelson-Vershynin: subsampled Fourier, O(klog* n) rows.
IATA —1|

Y2(Zk [I-11)

Nk, [I-], u)
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Proof outline: Rudelson-Vershynin

E sup

Rudelson-Vershynin: subsampled Fourier, O(klog* n) rows.
IATA —1|

Y2(Zk [I-11)

Nk, [I-], u)
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Proof outline: Rudelson-Vershynin

E sup

Rudelson-Vershynin: subsampled Fourier, O(klog* n) rows.
IATA —1|

Y2(Zk [I-11)

Nk, [I-], u)
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Proof outline: Rudelson-Vershynin

E sup

Rudelson-Vershynin: subsampled Fourier, O(klog* n) rows.
IATA —1|

E|z - E[]|
Y2(Zk 1)

lll

Elgl
Nk 1, )
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Proof outline: Rudelson-Vershynin

E sup

Rudelson-Vershynin: subsampled Fourier, O(klog* n) rows.
IATA —1|

E|z - E[]|
Y2(Zk 1)

Elgl
Nk 1, )

Eric Price (MIT)

| Illl

Fast RIP matrices with fewer rows



Proof outline: Rudelson-Vershynin

E sup

Rudelson-Vershynin: subsampled Fourier, O(klog* n) rows.
IATA —1|

E|z - E[]|
Y2(Zk 1)

Elgl
Nk 1, )
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Proof outline: Rudelson-Vershynin

E sup

Rudelson-Vershynin: subsampled Fourier, O(klog* n) rows.
IATA —1|

E|z - E[]|
Y2(Zk 1)

log? n loss

Elgl
Nk 1, )

log n loss

Eric Price (MIT)
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Proof outline

E sup

Rudelson-Vershynin: subsampled Fourier, O(klog* n) rows.
Nelson-P-Wootters: sparse times Fourier, O(k log® n) rows.
o7 —1|

Symmetrization

E|z - E[]|
Y2(Zk 1)

log? n loss

Nk, [I-I, u)

Elgl

=)
=

log n loss
Eric Price (MIT)
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Proof outline

E sup

Rudelson-Vershynin: subsampled Fourier, O(klog* n) rows.
Nelson-P-Wootters: sparse times Fourier, O(k log® n) rows.
o7 —1|

Ellz - Ef]|
Y2(Z 11D

il

il

log® n loss

Elgl
N 1l )

log n loss
Eric Price (MIT)
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Proof outline

E sup

Rudelson-Vershynin: subsampled Fourier, O(klog* n) rows.
Nelson-P-Wootters: sparse times Fourier, O(k log® n) rows.
o7 —1|

Ellz - Ef]|
Y2(Z 11D

il

i

log® n loss

Elgl
N 1l )

Eric Price (MIT)
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Proof part I: triangle inequality

H

—

E sup
XeXy

[
2 2
I &x|3 — lxI3|

< E sup
Y

XE2y

|®x|3 ~ | Ax[}3] + E

sup
XEX

2 2
JAxII8 — 115
Eric Price (MIT)
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Proof part I: triangle inequality

__g

—

|
E sup

XEX K

]
I &x|3 — lxI3|
< E sup
>

XE2i

|®x|3 ~ || Ax[}3] + E sup
XEX |
=E sup

XEX |

JAxII8 — 115
| X485 — Es |]XAs||§‘ + (RIP constant of A),

where X, is some matrix depending x and A, and s is the vector of
random sign flips used in H.
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Proof part I: triangle inequality

EsUpyes, |1Xas]3 — Es || Xas|3| + (RIP constant of A)
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Proof part I: triangle inequality

Esupycs, |[[Xasl2 — Es | Xas|3| + (RIP constant of A)

y

By assumption, this is small.
(Recall A has extra rows)

Eric Price (MIT)

=] =
Fast RIP matrices with fewer rows



Proof part I: triangle inequality

EsUpyes, |1Xas]3 — Es || Xas|3| + (RIP constant of A)

y

By assumption, this is small.
(Recall A has extra rows)
This is a Rademacher Chaos Process.

We have to do some work to show that it is small.
Eric Price (MIT)
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Fast RIP matrices with fewer rows



Proof part II: probability and geometry

By [KMR12] and some manipulation, can bound the Rademacher
chaos using

Y2(Zk, Il - 14)
\ k Some norm induced by A

The supremum of a Gaussian process over ¥, with norm ||-||a

Dudley’s entropy integral: can estimate this by bounding the covering
number N(Z, ||| 4, ).
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Definition of the Norm

for the norm || x| 4:

N(Zkv “HAa U)
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Definition of the Norm

for the norm || x| 4:

N(Zk, ||-la, u)
m
B B B B
Ax
= subset of X Asx | Asx
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Definition of the Norm

Nk, [|-lla, u)
for the norm ||x|| 4:
m
B B B B
Ax
= subset of x Asx | Agx
62 62 Ez €2
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Definition of the Norm

Nk, [|-lla, u)
for the norm ||x|| 4:
m
B B B B
Ax
= subset of x Asx | Agx
62 62 Ez €2
loo
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Definition of the Norm

N(Zkv ”HAa U)
for the norm || x|| 4

Ax
= subset of X
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Definition of the Norm

N(Zka ”HAa U)
for the norm || x|| 4

Ax
= subset of X

1x[[a = max||Aix][2.
ie[m]

Rudelson-Vershynin: estimates N(Xy, ||-|| 4, u) when B = 1.
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Progress

Esup Expected
o7o 1| ol Bl
Krahmer
Mendelson
Rauhut '13
Expected
2(Zk, 1)

sup norm

of Gaussian

| log? n loss |—>(

N(ZM ||||,U)

Dudley

)

Elgll
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Outline

@ Introduction

9 Concentration of measure: a toolbox

© Proof

@ Covering Number

e Conclusion
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Covering Number Bound

N(Zka HHA’ U)

Y = {k-sparse x | [[x]2 <1}
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Covering Number Bound

N(Z. ||-lla, u) < N(By, |I-|a, u/Vk)

Y = {k-sparse x | [[x]2 <1}

c VkB; = {x | |lx]ls < Vk}
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Covering number bound

N(By, ||-|a, u)
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Covering number bound

N(By, ||-|a, u)

@ Simpler to imagine: what about />?
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Covering number bound

N(By, ||-|a, u)

@ Simpler to imagine: what about />?
@ How many ¢, balls of radius u required to cover By?

N(B‘h ||||27 U)
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Covering number bound

N(By, ||-|a, u)

@ Simpler to imagine: what about />?
@ How many ¢, balls of radius u required to cover By?

N(B17 ||||27 U) S

~

{ (1/u)9(M by an easy volume argument
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Covering number bound

N(By, ||-|a, u)

@ Simpler to imagine: what about />?
@ How many ¢, balls of radius u required to cover By?

N(B17 ||||27 U) S

~

(1/u)9(M by an easy volume argument
nO(1/¥)  trickier; next few slides
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Covering number bound

N(By, ||-|a, u)

@ Simpler to imagine: what about />?
@ How many ¢, balls of radius u required to cover By?

N(B17 ||||27 U) S

~

(1/u)9(M by an easy volume argument
nO(1/¥)  trickier; next few slides

@ Latter bound is better when u > 1//n.
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Covering number bound

N(By, ||-|a, u)

@ Simpler to imagine: what about />?
@ How many ¢, balls of radius u required to cover By?

N(B17 ||||2a U) S

~

(1/u)9(M by an easy volume argument
nO(1/¥)  trickier; next few slides

@ Latter bound is better when u > 1//n.
@ Maurey’s empirical method: generalizes to arbitrary norms
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Covering number bound

N(By, ||-|a, u)

@ Simpler to imagine: what about />?
@ How many /» balls of radius u required to cover B;?

N(B1, -4, u) <

~

(vV/B/u)°(™ by an easy volume argument
nO(B/u) trickier; next few slides

@ Latter bound is better when u > 1//n.
@ Maurey’s empirical method: generalizes to arbitrary norms
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Covering Number Bound
Maurey’s empirical method

@ How many balls of radius u required to cover B, ?
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Covering Number Bound
Maurey’s empirical method

@ How many balls of radius u required to cover B, ?
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Covering Number Bound
Maurey’s empirical method

@ How many balls of radius u required to cover B; ?
@ Consider any x € By".
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Covering Number Bound
Maurey’s empirical method

Z1

@ How many balls of radius u required to cover B; ?
@ Consider any x € By".
@ Let z,..., 2 bei.i.d. randomized roundings of x to simplex.
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Covering Number Bound
Maurey’s empirical method

22

@ How many balls of radius u required to cover B; ?
@ Consider any x € By".
@ Let z,..., 2 bei.i.d. randomized roundings of x to simplex.
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Covering Number Bound
Maurey’s empirical method

Z3

@ How many balls of radius u required to cover B; ?
@ Consider any x € By".
@ Let z,..., 2 bei.i.d. randomized roundings of x to simplex.
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Covering Number Bound

Maurey’s empirical method
Z4

@ How many balls of radius u required to cover B; ?
@ Consider any x € By".
@ Let z,..., 2 bei.i.d. randomized roundings of x to simplex.
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Covering Number Bound
Maurey’s empirical method

Z5

@ How many balls of radius u required to cover B; ?
@ Consider any x € By".
@ Let z,..., 2 bei.i.d. randomized roundings of x to simplex.
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Covering Number Bound
Maurey’s empirical method

@ How many balls of radius u required to cover B; ?

@ Consider any x € B;".

@ Let zy,...,z bei.i.d. randomized roundings of x to simplex.
@ The sample mean z = } >~ zjconverges to x as t — oc.
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Covering Number Bound
Maurey’s empirical method

@ How many balls of radius u required to cover B; ?

@ Consider any x € B;".

@ Let zy,...,z bei.i.d. randomized roundings of x to simplex.
@ The sample mean z = } >~ zjconverges to x as t — oc.
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Covering Number Bound
Maurey’s empirical method

@ How many balls of radius u required to cover B; ?

@ Consider any x € B;".

@ Let zy,...,z bei.i.d. randomized roundings of x to simplex.
@ The sample mean z = } >~ zjconverges to x as t — oc.
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Covering Number Bound
Maurey’s empirical method

@ How many balls of radius u required to cover B; ?

@ Consider any x € B;".

@ Let zy,...,z bei.i.d. randomized roundings of x to simplex.
@ The sample mean z = } >~ zjconverges to x as t — oc.
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Covering Number Bound
Maurey’s empirical method

@ How many balls of radius u required to cover B; ?

@ Consider any x € B;".

@ Let zy,...,z bei.i.d. randomized roundings of x to simplex.
@ The sample mean z = } >~ zjconverges to x as t — oc.
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Covering Number Bound
Maurey’s empirical method

@ How many balls of radius u required to cover B; ?

@ Consider any x € B;".

@ Let zy,...,z bei.i.d. randomized roundings of x to simplex.
@ The sample mean z = } >~ zjconverges to x as t — oc.
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Covering Number Bound
Maurey’s empirical method

Radius u

@ How many balls of radius u required to cover B; ?

@ Consider any x € By".

@ Let zy,...,z bei.i.d. randomized roundings of x to simplex.
@ The sample mean z = } >~ zjconverges to x as t — oc.

@ Let t be large enough that, regardless of x,

Efllz = x||] < u.
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Covering Number Bound
Maurey’s empirical method

Radius u
1/t {

G

@ How many balls of radius u required to cover B; ?
@ Consider any x € By".
@ Let zy,...,z bei.i.d. randomized roundings of x to simplex.
@ The sample mean z = } >~ zjconverges to x as t — oc.
@ Let t be large enough that, regardless of x,
Efllz - x[] < u.

@ All x lie within u of at least one possible z.
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Covering Number Bound
Maurey’s empirical method

Radius u
1/t {

G

@ How many balls of radius u required to cover B; ?

@ Consider any x € By".

@ Let zy,...,z bei.i.d. randomized roundings of x to simplex.
@ The sample mean z = } >~ zjconverges to x as t — oc.

@ Let t be large enough that, regardless of x,

Efllz = x||] < u.

@ All x lie within u of at least one possible z.
» Then N(By, |||, u) < number of z
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Covering Number Bound
Maurey’s empirical method

Radius u
1/t {

G

@ How many balls of radius u required to cover B; ?

@ Consider any x € By".

@ Let zy,...,z bei.i.d. randomized roundings of x to simplex.
@ The sample mean z = } >~ zjconverges to x as t — oc.

@ Let t be large enough that, regardless of x,

Efllz = x||] < u.

@ All x lie within u of at least one possible z.
» Then N(Bi, ||-||, u) < number of z < (n+ 1)
» Only (n+ 1)! possible tuples (zi,...,z) = z.
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Covering Number Bound
Maurey’s empirical method

Radius u
1/t {

G

@ How many balls of radius u required to cover B; ?

@ Consider any x € By".

@ Let zy,...,z bei.i.d. randomized roundings of x to simplex.
@ The sample mean z = } >~ zjconverges to x as t — oc.

@ Let t be large enough that, regardless of x,

Efllz - x|l < u.

@ All x lie within u of at least one possible z.
» Then N(Bi, ||-||, u) < number of z < (n+ 1)
» Only (n+ 1)! possible tuples (zi,...,z) = z.
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Covering Number Bound
Maurey’s empirical method

Ut Radius u
O
Will show: E[||z — x| 4] < v/ B/t
@ Let zy,...,z bei.i.d. randomized roundings of x to simplex.

@ The sample mean z = } >~ zjconverges to x as t — oc.
@ Let t be large enough that, regardless of x,
Eflz—x|] < w.

@ All x lie within u of at least one possible z.
» Then N(By, |||, u) < number of z < (n+ 1),
» Only (n+ 1)! possible tuples (z1,...,2;) = z.
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Covering Number Bound
Maurey’s empirical method

Radius u
1/t {

G

Will show: E[||z — x|a] < v/B/t = N(T, |||, u) < n®/¥*

@ Let zy,...,z bei.i.d. randomized roundings of x to simplex.
@ The sample mean z = } >~ zjconverges to x as t — oc.
@ Let t be large enough that, regardless of x,

Efllz - x|l < u.

@ All x lie within u of at least one possible z.
» Then N(Bi, ||-||, u) < number of z < (n+ 1)*.
» Only (n+ 1)! possible tuples (zi,...,z) = z.
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Covering Number Bound
@ Goal: E[||lz— x|la] £ V/B/t.
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Covering Number Bound

@ Goal: E[||z— x||a] < v/B/t.
@ Symmetrize!

Ell} 3" 2~ xla
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Covering Number Bound

@ Goal: E[||z— x||a] < v/B/t.
@ Symmetrize!

Ellly 322~ xlal S Ellly - gl
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Covering Number Bound

@ Goal: E[||z— x||a] < v/B/t.
@ Symmetrize!

Ellly 322~ xlal S Ellly - gl
1
~ 2= Ellgla

where g € R" has

ber of z; at g;
g,-NN(O,num er(; zia e,)

independently in each coordinate.
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Covering Number Bound

@ Goal: E[||z— x||a] < v/B/t.
@ Symmetrize!

Ellly 322~ xlal S Ellly - gl
1
~ 2= Ellgla

where g € R" has

ber of z; at g;
g,-NN(O,num er(; zia e,)

independently in each coordinate.
@ Hence E[||g||3] = (fraction of z; that are nonzero) < 1
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Covering Number Bound

@ Goal: E[||z— x||a] < v/B/t.
@ Symmetrize!

Ellly 322~ xlal S Ellly - gl
1
~ 2= Ellgla

where g € R" has

ber of z; at g;
ngN(O,num er(; zia e,)

independently in each coordinate.
@ Hence E[||g||3] = (fraction of z; that are nonzero) < 1

o Goal: E[|g|l4] < VB. )
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Covering Number Bound

@ Goal: E[||z— x||a] < v/B/t.
@ Symmetrize!

Bl 32~ xlal S Ell; Y g2l
1
~ = Ellgl

where g € R" has

ber of z; at g;
ngN(Ojnum er(; zia e,)

independently in each coordinate.
@ Hence E[||g||3] = (fraction of z; that are nonzero) < 1

@ Goal: E[||g]|4] < VB.
o (Note: E[||gll2] <1 = N(Bi,lo,u) < n'/¥*)

Eric Price (MIT) Fast RIP matrices with fewer rows
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Progress

Esup
[T —1]

Expected
sup deviation

Krahmer
Mendelson

Expected
Rauhut '13

deviation

72(Zk, 1411

E|z - E[Z]|

Expected

Symmetrization
sup norm

Maurey:
. randomize
of Gaussian

Elgl
N(ZM ||||,U)

Covering

number
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Bounding the norm (intuition)
@ Just want to bound E[||g|| a]-

Ag Asg | Asg

g € R"” has Gaussian coordinates, k-sparse, total variance 1.
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Bounding the norm (intuition)
® Justwant to bound E[|g|la]. Each is N(0, 1)

Ag

ls ls ls ls

oo

g € R"” has Gaussian coordinates, k-sparse, total variance 1.

@ Each coordinate g; = F;g ~ N(0, 1).
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Bounding the norm (intuition)
® Justwant to bound E[|g|la]. Each is N(0, 1)

Ag

ls ls ls ls

loo

g € R"” has Gaussian coordinates, k-sparse, total variance 1.

@ Each coordinate g; = F;g ~ N(0,1).
@ Rudelson-Vershynin: B = 1
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Bounding the norm (intuition)
® Justwant to bound E[|g|la]. Each is N(0, 1)

Ag

ls ls ls ls

loo

g € R"” has Gaussian coordinates, k-sparse, total variance 1.

@ Each coordinate g; = F;g ~ N(0,1).
@ Rudelson-Vershynin: B =1

» Naive: [|g]|« < +/logn.
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Bounding the norm (intuition)
® Justwant to bound E[|g|la]. Each is N(0, 1)

4

ls ls ls ls

loo

g € R"” has Gaussian coordinates, k-sparse, total variance 1.

@ Each coordinate g; = F;g ~ N(0,1).
@ Rudelson-Vershynin: B =1

» Naive: [|g]|« < +/logn.

» Gives the log n loss in their bound.
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Bounding the norm (intuition)
® Justwant to bound E[|g|la]. Each is N(0, 1)

Ag

ls ls ls ls

H/—/
loo

g € R"” has Gaussian coordinates, k-sparse, total variance 1.

@ Each coordinate g; = F;g ~ N(0,1).
@ Rudelson-Vershynin: B =1

» Naive: ||g]l < +/logn.

» Gives the log n loss in their bound.
@ If the g; were independent:

|Agllz < VB+ O(y/logn) w.h.p.
T
Lipschitz concentration

(just like v/n+ /log(1/5) in tutorial)
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Bounding the norm (intuition)
® Justwant to bound E[|g|la]. Each is N(0, 1)

4

ls ls ls ls

loo

g € R"” has Gaussian coordinates, k-sparse, total variance 1.

@ Each coordinate g; = F;g ~ N(0,1).
@ Rudelson-Vershynin: B =1

» Naive: [|g]|« < +/logn.

» Gives the log n loss in their bound.
@ If the g; were independent:

|Aigllz < VB+ O(y/logn) w.h.p.
e Would get E[||g||a] < VB
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Bounding the norm (intuition)
® Justwant to bound E[|g|la]. Each is N(0, 1)

Ag

= Subset Of § vvvv
lo lo 2 2
H/—/
loo
g € R"” has Gaussian coordinates, k-sparse, total variance 1.
@ Each coordinate g; = Fjg ~ N(0,1).
@ Rudelson-Vershynin: B = 1

» Naive: ||g]l < +/logn.

» Gives the log n loss in their bound.
@ If the g; were independent:

|Agll2 < VB+ O(y/logn) w.h.p.

@ Would get E[||g||4] < v/B so union bound just loses a constant.

Eric Price (MIT) Fast RIP matrices with fewer rows 2013-04-05

48 /52



Bounding the norm (intuition)
® Justwant to bound E[|g|la]. Each is N(0, 1)

Ag

= Subset Of § vvvv
lo lo 2 2
H/—/
loo
g € R"” has Gaussian coordinates, k-sparse, total variance 1.
@ Each coordinate g; = Fjg ~ N(0,1).
@ Rudelson-Vershynin: B = 1

» Naive: ||g]l < +/logn.

» Gives the log n loss in their bound.
@ If the g; were independent:

|Agll2 < VB+ O(y/logn) w.h.p.

@ Would get E[||g||4] < v/B so union bound just loses a constant.

@ They’re not independent... but the A; satisfy “very weak” RIP.
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Bounding the norm (intuition)
® Justwant to bound E[|g|la]. Each is N(0, 1)

Ag

= Subset Of § vvvv
lo lo 2 2
H/—/
loo
g € R"” has Gaussian coordinates, k-sparse, total variance 1.
@ Each coordinate g; = Fjg ~ N(0,1).
@ Rudelson-Vershynin: B = 1

» Naive: ||g]l < +/logn.

» Gives the log n loss in their bound.
@ If the g; were independent:

|Ag2 < VB+ O(y/logn) w.h.p.

@ Would get E[||g||4] < v/B so union bound just loses a constant.

@ They’re not independent... but the A; satisfy “very weak” RIP.
» Bound ||Aig||2 using ||g||2, which has independent entries.

Eric Price (MIT) Fast RIP matrices with fewer rows 2013-04-05
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Bounding the norm (by example)
Just want to bound E[||g|| ]

Ag
= subset of g
Asg
—— ]
Lo Lo Lo
Lo
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Bounding the norm (by example)

Ag
= subset of g
Just want to bound E[||g|| ] =
——
@ Recal: x e Xy /Vk — z,...,z1 — @. PSS
R/—/
loo
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Bounding the norm (by example)

Ag
= subset of g
Just want to bound E[||g|| ] s
@ Recal: x e Xy /Vk — z,...,z1 — @. PSS
@ The full proof is complicated. o
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Bounding the norm (by example)

Ag
= subset of g
Just want to bound E[||g|| ] s
@ Recal: x e Xy /Vk — z,...,z1 — @. PSS
@ The full proof is complicated. o

@ Will assume
g; ~ N(0, x;)

(the “large t” limit).
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Bounding the norm (by example)

Ag
= subset of g
Just want to bound E[||g|| ] s
@ Recal: x e Xy /Vk — z,...,z1 — @. PSS
@ The full proof is complicated. o

@ Will assume
g; ~ N(0, x;)

(the “large t” limit).
@ Two examples:

Eric Price (MIT) Fast RIP matrices with fewer rows 2013-04-05 49 /52



Bounding the norm (by example)

Ag R
= subset of g
Just want to bound E[||g|| ] =
@ Recal: x e Xy /Vk — z,...,z1 — @. P S
@ The full proof is complicated. T
@ Will assume X
gi ~ N(0, x;)
(the “large t” limit). Xi
@ Two examples:
@ Very concentrated: x; = 1/V/k, rest is zero. i
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Bounding the norm (by example)

Ag R
= subset of g
Just want to bound E[||g|| ] T Aa | A |
@ Recal: x e Xy /Vk — z,...,z1 — @. P S
@ The full proof is complicated. T
@ Will assume X
gi ~ N(0, x;)
(the “large t” limit). Xi
@ Two examples: 1
@ Very concentrated: x; = 1/V/k, rest is zero. i
@ Veryspreadout:  xj =---=xx = 1/k.
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Bounding the norm (by example)

Ag R
= subset of g
Just want to bound E[||g|| ] =
@ Recal: x e Xy /Vk — z,...,z1 — @. P S
@ The full proof is complicated. o
@ Will assume X
gi ~ N(0, x;) D
(the “large t” limit). Xi
@ Two examples:
@ Very concentrated: x; = 1/V/k, rest is zero. i
Q
Example (1):
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Bounding the norm (by example)

Ag R
= subset of g
Just want to bound E[||g|| ] T Aa | A |
@ Recal: x e Xy /Vk — z,...,z1 — @. P S
@ The full proof is complicated. o
@ Will assume X
gi ~ N(0, x;) D
(the “large t” limit). Xi
@ Two examples:
@ Very concentrated: x; = 1/V/k, rest is zero. i
Q
Example (1):
o x|y < 1.
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Bounding the norm (by example)

Ag R
= subset of g
Just want to bound E[||g|| ] T Aa | A |
@ Recal: x e Xy /Vk — z,...,z1 — @. P S
@ The full proof is complicated. o
@ Will assume X
gi ~ N(0, x;) D
(the “large t” limit). Xi
@ Two examples:
@ Very concentrated: x; = 1/V/k, rest is zero. i
Q
Example (1):
o x|y < 1.

@ Fourier transform g is Gaussian with variance 1/V/k.
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Bounding the norm (by example)

Ag R
= subset of g
Just want to bound E[||g|| ] T Aa | A |
@ Recal: x e Xy /Vk — z,...,z1 — @. P S
@ The full proof is complicated. o
@ Will assume X
gi ~ N(0, x;) D
(the “large t” limit). Xi
@ Two examples:
@ Very concentrated: x; = 1/V/k, rest is zero. i
Q
Example (1):
o x|y < 1.

@ Fourier transform g is Gaussian with variance 1/V/k.
@ ||glloo S k4. /flogn < 1.
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Bounding the norm (by example)

Ag R
= subset of g
Just want to bound E[||g|| ] T Aa | A |
@ Recal: x e Xy /Vk — z,...,z1 — @. P S
@ The full proof is complicated. o
@ Will assume X
gi ~ N(0, x;) D
(the “large t” limit). Xi
@ Two examples:
@ Very concentrated: x; = 1/V/k, rest is zero. i
Q
Example (1):
o x|y < 1.

@ Fourier transform g is Gaussian with variance 1/V/k.

@ ||glloc S k4. \/logn < 1.
@ Hence ||Aig|2 < VB forall i.
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Bounding the norm (by example)

Ag R
= subset of g
Just want to bound E[||g|| ] T oo e |
@ Recal: x e Xy /Vk — z,...,z1 — @. P S
@ The full proof is complicated. T
@ Will assume X
gi ~ N(0, x;)
(the “large t” limit). Xi
@ Two examples: —1
Q i
@ Veryspreadout:  xj =---=xx = 1/k.
Example (1):
° x[ls < 1.

@ Fourier transform g is Gaussian with variance 1/V/k.

@ ||glloc S k4. \/logn < 1.
@ Hence ||Aig|2 < VB forall i.
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Bounding the norm (example 2)
Just want to bound EJ[||g||a] when g; ~ N(0, 1/k) for i € [K].
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Bounding the norm (example 2)

Just want to bound EJ[||g||a] when g; ~ N(0, 1/k) for i € [K].

@ ||Aig||2 is C-Lipschitz with factor
C = |Ailme-1/Vk
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Bounding the norm (example 2)
Just want to bound EJ[||g||a] when g; ~ N(0, 1/k) for i € [K].

@ ||Aig||2 is C-Lipschitz with factor

C=|Allmp-1/Vk A9
@ Then with high probability, 7—/
2

|Aigll2 < VB+ Cy/logn
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Bounding the norm (example 2)
Just want to bound EJ[||g||a] when g; ~ N(0, 1/k) for i € [K].

@ ||Aig||2 is C-Lipschitz with factor

C=|Allmp-1/Vk A9
@ Then with high probability, 7—/
2

|Aigll2 < VB+ Cy/logn

@ Naive bound:
|Aillgie < ||Aillr=VBk = C< VB
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Bounding the norm (example 2)
Just want to bound EJ[||g||a] when g; ~ N(0, 1/k) for i € [K].

@ ||Aig||2 is C-Lipschitz with factor

C=|Ailge-1/Vk Aig
@ Then with high probability, T
2

|Aigll2 < VB+ Cy/logn

@ Naive bound:
|Aillgie < |AillFr = VBk = C< VB

@ “Very weak” RIP bound, with B = log® n:
|Aillrie < (| Aillr/+/logn
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Bounding the norm (example 2)
Just want to bound EJ[||g||a] when g; ~ N(0, 1/k) for i € [K].

@ ||Aig||2 is C-Lipschitz with factor

C=|Ailge-1/Vk Aig
@ Then with high probability, T
2

|Aigll2 < VB+ Cy/logn

@ Naive bound:
|Aillgie < |AillFr = VBk = C< VB

@ “Very weak” RIP bound, with B = log® n:
|Aillrie < (| Aillr/+/logn

@ So

C<+/B/logn = |Aglz <VB w.hp
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Bounding the norm (example 2)
Just want to bound EJ[||g||a] when g; ~ N(0, 1/k) for i € [K].

@ ||Aig||2 is C-Lipschitz with factor

C=|Ailge-1/Vk Aig
@ Then with high probability, T
2

|Aigll2 < VB+ Cy/logn

@ Naive bound:
|Aillgie < |AillFr = VBk = C< VB

@ “Very weak” RIP bound, with B = log® n:
|Aillrie < (| Aillr/+/logn

@ So
C<+/B/logn = |Aglz <VB w.hp
@ So E||g||a = max|Agll> < VB.
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Unrolling everything

Esup
[oT® —1

Expected

sup deviation

Expected

o E|z-E[z
deviation I i

Krahmer
Mendelson
Rauhut '13

Expected
sup norm
of Gaussian

Dudley

Covering
number

Ellgl /B

72(Zk, 1)

Maurey:
randomize

N [l u)

Union bound just loses a constant factor

o 5 =

it
N
el
2
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Unrolling everything

Esup
[oT® —1

Expected

sup deviation

E |z - E[Z]| B/t

Krahmer
Mendelson
Rauhut '13

Expected
sup norm
of Gaussian

Dudley

Covering
number

Ellgl /B

72(Zk, 1)

Maurey:
randomize

N [l u)

Sample mean z expects to lie within u of x for t > B/u?

[m] = =
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Unrolling everything

Esup

Expected
[®7o 1|

sup deviation

Elz - EZ]| B/t

Krahmer
Mendelson
Rauhut '13

Expected
sup norm
of Gaussian

Dudley

72(Zk, 1)

Elsl VB

B/ N(Ek, -l u)

Covering number of By is (n+ 1)5/u2

=] =
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Unrolling everything

Esup Expected
lo7e —1| | sup deviation
Krahmer
Mendelson
Rauhut '13
3
\/kBlog® n

72(Zk, 1)

kB NS 1) -/

Ez - EfZ]| B/t

L

Ellgl /B

Entropy integral is

Eric Price (MIT)

kBlog® n

£
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Unrolling everything

klog® n Esup
\/7 Tm eTe )

Ez - EfZ]| B/t

\kBlog®n  %2(Zk D

Ellgl /B

nkB/u? N, [I-1, v)

U

4B

3
RIP constant € < klog™n

5 -
Fast RIP matrices with fewer rows
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Summary and Open Questions

@ We get fast RIP matrices with O(k log® n) rows.
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Summary and Open Questions

@ We get fast RIP matrices with O(k log® n) rows.
@ Is the extra log? n necessary?
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Summary and Open Questions

@ We get fast RIP matrices with O(k log® n) rows.

@ Is the extra log? n necessary?
» Loss seems to be from Dudley’s entropy integral:

sup» <> sup
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Summary and Open Questions

@ We get fast RIP matrices with O(k log® n) rows.

@ Is the extra log? n necessary?
» Loss seems to be from Dudley’s entropy integral:

sup» <> sup

» Generic chaining: tight but harder to use. [Fernique, Talagrand]
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Summary and Open Questions

@ We get fast RIP matrices with O(k log® n) rows.

@ Is the extra log? n necessary?
» Loss seems to be from Dudley’s entropy integral:

sup» <> sup

» Generic chaining: tight but harder to use. [Fernique, Talagrand]

@ For JL, is the extra log® n necessary?
» [Krahmer-Ward] only needs “model-based” RIP; could save log n.
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Summary and Open Questions

@ We get fast RIP matrices with O(k log® n) rows.

@ Is the extra log? n necessary?
» Loss seems to be from Dudley’s entropy integral:

sup ) <) sup

» Generic chaining: tight but harder to use. [Fernique, Talagrand]

@ For JL, is the extra log® n necessary?
» [Krahmer-Ward] only needs “model-based” RIP; could save log n.

@ Any other constructions?
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Summary and Open Questions

@ We get fast RIP matrices with O(k log® n) rows.

@ Is the extra log? n necessary?
» Loss seems to be from Dudley’s entropy integral:

sup ) <) sup

» Generic chaining: tight but harder to use. [Fernique, Talagrand]

@ For JL, is the extra log® n necessary?
» [Krahmer-Ward] only needs “model-based” RIP; could save log n.

@ Any other constructions?
@ Lots of cool techniques in the field; can we use them elsewhere?
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Summary and Open Questions

@ We get fast RIP matrices with O(k log® n) rows.

@ Is the extra log? n necessary?
» Loss seems to be from Dudley’s entropy integral:

sup ) <) sup

» Generic chaining: tight but harder to use. [Fernique, Talagrand]

@ For JL, is the extra log® n necessary?
» [Krahmer-Ward] only needs “model-based” RIP; could save log n.

@ Any other constructions?
@ Lots of cool techniques in the field; can we use them elsewhere?

Thanks!
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Thoughts on loss
@ Recall that

N(Bj, b, u) < n'/¥*
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Thoughts on loss

@ Recall that ,
N(Bi, l2,u) < n'/

@ So the entropy integral gives
’}/2(81 s 62) < |093/2 n.
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Thoughts on loss

@ Recall that ,
N(Bi, l2,u) < n'/

@ So the entropy integral gives
’}/2(81 s 62) < |093/2 n.
@ But the associated Gaussian process is just:

72(B1,£2) = E sup(g, x)
XEB;

for g ~ N(0, In). (Check: E[({g, x) — (g.¥))?] = X — yl3)
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Thoughts on loss

@ Recall that ,
N(Bi, l2,u) < n'/

@ So the entropy integral gives
72(81 s 62) < |093/2 n.
@ But the associated Gaussian process is just:

72(B1,£2) = E sup(g, x)
XEB;

for g ~ N(0, In). (Check: E[({(g, x) — (g, y))?] = [Ix — y3)
@ We can compute this directly:

E sup(g, x) = |9l = /log n.

X€B1
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Thoughts on loss

@ Recall that ,
N(Bi, l2,u) < n'/

@ So the entropy integral gives
72(81 s 62) < |093/2 n.
@ But the associated Gaussian process is just:

72(B1,£2) = E sup(g, x)
XEB;

for g ~ N(0, In). (Check: E[((g. x) — (g, ¥))?] = lIx - ylI3)
@ We can compute this directly:

Esup(g,x) = |9l = vlogn.

XEB;
@ Generic chaining: there exists a partition Aq, Ao, ... such that

2 ~sup »  \/log|Ai1]d(x, A))
X
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Thoughts on loss
@ Recall that
N(By, b, u) < n'/**
@ So the entropy integral gives
v2(By, £2) < log®/? n.
@ But the associated Gaussian process is just:

72(B1,£2) = E sup(g, x)
XEB;

for g ~ N(0, In). (Check: E[((g. x) — (g, ¥))?] = lIx - ylI3)
@ We can compute this directly:

Esup(g,x) = |9l = vlogn.

XEB;
@ Generic chaining: there exists a partition Aq, Ao, ... such that

2~ sup Y +/log|A; 1[d(x, A))
X

@ Dudley: choose A, so sup d(x, A;) < a¢/2'.
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Covering Number Bound
Maurey’s empirical method

@ Answer is n!, where t is such that

’
E .= ]E[||?Zz,- —x|] <.
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Covering Number Bound
Maurey’s empirical method

@ Answer is n', where t is such that E[} " z]

’
E .= ]E[||?Zz,- —xX[] <.
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Covering Number Bound
Maurey’s empirical method

@ Answer is n', where t is such that E[} " z]
1
E=E[l; Y zi—x|]<u
@ Symmetrize:

1
E < LElIY gizil]
for gi ~ N(0,1) i.i.d.
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Covering Number Bound
Maurey’s empirical method

@ Answer is n', where t is such that E[} Y z]

’
E .= ]E[||?Zz,- —xX[] <.

@ Symmetrize:
1
E < LElIY gizil]

for gi ~ N(0,1) i.i.d.
@ Then g := > g;z; is an independent Gaussian in each coordinate.
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Covering Number Bound
Maurey’s empirical method

@ Answer is n', where t is such that E[} Y z]

’
E .= ]E[||?ZZ,- —xX[] <.

@ Symmetrize:
1
E < LElIY gizil]
for gi ~ N(0,1) i.i.d.
@ Then g := > g;z; is an independent Gaussian in each coordinate.
@ In lo,

1 1 v/number nonzero z; 1
+Ellgl2) < FEllgl3]'"? = ; =

<

giving an n°1/¥*) pound.

Eric Price (MIT) Fast RIP matrices with fewer rows 2013-04-05 55/52



Bounding the norm in our case (part 1)
@ x € ¥x/vk C By rounded to z1, . .., z; symmetrized to g.

G(x) = Ezgllglla
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Bounding the norm in our case (part 1)
@ x € ¥x/vk C By rounded to z1, . .., z; symmetrized to g.

G(x) =Ezgllglla

@ First: split x into “large” and “small” coordinates.

G(x) < g(Xlarge) + G(Xsmar)

@ Xjage: LOcations where x; > (log n)/k
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Bounding the norm in our case (part 1)
@ x € ¥x/vk C By rounded to z1, . .., z; symmetrized to g.
G(x) = Ezgllglla
@ First: split x into “large” and “small” coordinates.

G(x) < g(Xlarge) + G(Xsmar)

@ Xjage: LOcations where x; > (log n)/k
» Bound:
||Xlarge||1
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Bounding the norm in our case (part 1)
@ x € ¥x/vk C By rounded to z1, . .., z; symmetrized to g.
G(x) = Ezgllglla
@ First: split x into “large” and “small” coordinates.

G(x) < g(Xlarge) + G(Xsmar)

@ Xjage: LOcations where x; > (log n)/k
» Bound:
HXlarge||1

» Given || x|3 < 1/k, maximal || Xrgel|1 if spread out.
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Bounding the norm in our case (part 1)
@ x € ¥x/vk C By rounded to z1, . .., z; symmetrized to g.
G(x) = Ezgllglla
@ First: split x into “large” and “small” coordinates.

G(x) < g(Xlarge) + G(Xsmar)

@ Xjage: LOcations where x; > (log n)/k
» Bound:
HXlarge||1

» Given || x|3 < 1/k, maximal || Xrgel|1 if spread out.
> k/(log® n) of value (log n)/k
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Bounding the norm in our case (part 1)
@ x € ¥x/vk C By rounded to z1, . .., z; symmetrized to g.
G(x) = Ezgllglla
@ First: split x into “large” and “small” coordinates.

G(x) < g(Xlarge) + G(Xsmar)

@ Xjage: LOcations where x; > (log n)/k
» Bound:
(| Xtargel[1 < 1/log n.

» Given || x|3 < 1/k, maximal || Xrgel|1 if spread out.
> k/(log® n) of value (log n)/k
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Bounding the norm in our case (part 1)
@ x € ¥x/vk C By rounded to z1, . .., z; symmetrized to g.
G(x) =Ezgll9lla
@ First: split x into “large” and “small” coordinates.
G(x) < G(Xiarge) + G (Xsmar)

@ Xjage: LOcations where x; > (log n)/k
» Bound:
(| Xtargel[1 < 1/log n.

» Given || x|3 < 1/k, maximal || Xrgel|1 if spread out.
> k/(log® n) of value (log n)/k
» Absorbs the loss from union bound.
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Bounding the norm in our case (part 1)
@ x € ¥x/vk C By rounded to z1, . .., z; symmetrized to g.

G(x) =Ezgllglla

@ First: split x into “large” and “small” coordinates.

G(x) < g(Xlarge) + G(Xsmar)

@ Xjage: LOcations where x; > (log n)/k
» Bound:
(| Xtargel[1 < 1/log n.

» Given || x|3 < 1/k, maximal || Xrgel|1 if spread out.
> k/(log® n) of value (log n)/k
» Absorbs the loss from union bound.

@ So can focus on || x|l < (logn)/k.
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Bounding the norm in our case (part 2)

@ k-sparse x rounded to zy, ..., z; symmetrized to g.
® [[X[oo < (logn)/k
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Bounding the norm in our case (part 2)

@ k-sparse x rounded to zy, ..., z; symmetrized to g.
® [[X[loo < (logn)/k
@ gi ~ N(0,02) for 02 = {#2z; at vertex e} /t?
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Bounding the norm in our case (part 2)

@ k-sparse x rounded to zy, ..., z; symmetrized to g.
® [[X[loo < (logn)/k
@ gi ~ N(0,02) for 02 = {#2z; at vertex e;}/1? ~ x;/t.
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Bounding the norm in our case (part 2)
@ k-sparse x rounded to zy, ..., z; symmetrized to g.
® |x[le < (log n)/k
@ gi ~ N(0,02) for 02 = {#2z; at vertex e;}/1? ~ x;/t.

@ ||Aig||2 is C-Lipschitz with factor I:I
C = [Aillar - [lolle 7—/
2
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Bounding the norm in our case (part 2)
@ k-sparse x rounded to zy, ..., z; symmetrized to g.
® |x[le < (log n)/k
@ gi ~ N(0,02) for 02 = {#2z; at vertex e;}/1? ~ x;/t.

@ ||Aig||2 is C-Lipschitz with factor I:I
C = [Aillar - [lolle 7—/
2

@ Naive bound:

C S NAillF - VIxllso/t
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Bounding the norm in our case (part 2)
@ k-sparse x rounded to zy, ..., z; symmetrized to g.
® |x[le < (log n)/k
@ gi ~ N(0,02) for 02 = {#2z; at vertex e;}/1? ~ x;/t.

@ ||Aig||2 is C-Lipschitz with factor I:I
C = [Aillar - [lolle 7—/
2

@ Naive bound:

C S IAilF - Vlixllso/t < VBk - \/logn/(kt) = \/Blog n/t
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Bounding the norm in our case (part 2)
@ k-sparse x rounded to zy, ..., z; symmetrized to g.
® |x[le < (log n)/k
@ gi ~ N(0,02) for 02 = {#2z; at vertex e;}/1? ~ x;/t.

@ ||Aig||2 is C-Lipschitz with factor I:I
C = [Aillar - [lolle 7—/
2

@ Naive bound:
C S Aille - VIxlleo/t < VBK - /log n/(kt) = \/Blog n/t
@ “Very weak” RIP bound:
1Al i < log* n(vVB + Vk)
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Bounding the norm in our case (part 2)
@ k-sparse x rounded to zy, ..., z; symmetrized to g.
® |x[le < (log n)/k
@ gi ~ N(0,02) for 02 = {#2z; at vertex e;}/1? ~ x;/t.

@ ||Aig||2 is C-Lipschitz with factor I:I
C = [Aillar - [lolle 7—/
2

@ Naive bound:
C S 1Al - VIXllo/t < VBk - \/log n/(kt) = \/Blog n/t
@ “Very weak” RIP bound: for some B = log® n,
1Al < log* n(vB+ V) < [|Aill¢/ log n.
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Bounding the norm in our case (part 2)
@ k-sparse x rounded to zy, ..., z; symmetrized to g.
® |x[le < (log n)/k
@ gi ~ N(0,02) for 02 = {#2z; at vertex e;}/1? ~ x;/t.

@ ||Aig||2 is C-Lipschitz with factor I:I
C = [Aillar - [lolle 7—/
2

@ Naive bound:
C S 1Al - VIXllo/t < VBk - \/log n/(kt) = \/Blog n/t
@ “Very weak” RIP bound: for some B = log® n,
1Al < log* n(vB+ V) < [|Aill¢/ log n.

@ Gives

C < +v/B/(tlogn)
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Bounding the norm in our case (part 2)
@ k-sparse x rounded to zy, ..., z; symmetrized to g.
® |x[le < (log n)/k
@ g; ~ N(0,0?) for 02 = {#2z; at vertex g;}/t? ~ x;/t.

@ ||Aig||2 is C-Lipschitz with factor E
C = |Aillmp - llolloo 7’
2

@ Naive bound:
C S 1Al - VIXllo/t < VBk - \/log n/(kt) = \/Blog n/t
@ “Very weak” RIP bound: for some B = log® n,
1Al pie < log* n(vVB+ Vk) < ||Aj|l/log .

@ Gives
C < +v/B/(tlogn)

@ So with high probability, ||A;g|l2 < +/B/t+ Cy/logn < \/B/t.
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Bounding the norm in our case (part 2)
@ k-sparse x rounded to zy, ..., z; symmetrized to g.
® |x[le < (log n)/k
@ g; ~ N(0,0?) for 02 = {#2z; at vertex g;}/t? ~ x;/t.

@ ||Aig||2 is C-Lipschitz with factor E
C = |Aillmp - llolloo 7’
2

@ Naive bound:
C S 1Al - VIXllo/t < VBk - \/log n/(kt) = \/Blog n/t
@ “Very weak” RIP bound: for some B = log® n,
1Al pie < log* n(vVB+ Vk) < ||Aj|l/log .

@ Gives

C < +v/B/(tlogn)
@ So with high probability, ||A;g|l2 < +/B/t+ Cy/logn < \/B/t.
® S0 E|g|4 = max|Agl. < /BJt.
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