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Problem

Common problem: find low rank approximation to a matrix A
I PCA: apply to covariance matrix
I Spectral analysis: PageRank, Cheever’s inequality for cuts, etc.
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Simple algorithm: the power method
AKA subspace iteration, subspace power iteration

Choose random X0 ∈ Rn×k .

Repeat:

Yt+1 = AXt

+ G

Xt+1 = orthonormalize(Yt+1)

Converges towards U, the space of the top k eigenvalues.
Question 1: how quickly?

I [Stewart ’69, ..., Halko-Martinsson-Tropp ’10]

Question 2: how robust to noise?

I Application-specific bounds: [Hardt-Roth ’13,
Mitliagkas-Caramanis-Jain ’13, Jain-Netrapalli-Sanghavi ’13]
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Basic power method, k = 1

Choose a random unit vector x ∈ Rn.

Output Aqx , renormalized to unit vector.

I xt+1 = Axt/‖Axt‖ for t = 0, . . . ,q − 1.

Suppose A has eigenvectors v1, . . . , vn, eigenvalues
λ1 > λ2 ≥ · · ·λn ≥ 0.
Start with x0 = α1v1 + α2v2 + · · ·+ αnvn.
After q iterations,

Aqx0 =
∑

i

λq
i αivi

∝ v1 +
∑
i≥2

(
λi

λ1

)q αi

α1
vi

For q ≥ logλ1/λ2
d
εα1

, have Aqx proportional to v1 ±O(ε).

q = O(
λ1

λ1 − λ2
log n)
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λ1 > λ2 ≥ · · ·λn ≥ 0.
Start with x0 = α1v1 + α2v2 + · · ·+ αnvn.
After q iterations,

Aqx0 =
∑

i

λq
i αivi

∝ v1 +
∑
i≥2

(
λi

λ1

)q αi

α1
vi

For q ≥ logλ1/λ2
d
εα1

, have Aqx proportional to v1 ±O(ε).
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Handling noise, k = 1

Consider the iteration

yt+1 = Axt + G
xt+1 = yt+1/‖yt+1‖

What conditions on G will cause this to converge to within ε?

I G must make progress at the beginning
I G must not perturb by ε at the end.
I Looser requirements in the middle.

Theorem: Converges to v1 ±O(ε) if all the G satisfy

|G1| ≤ (λ1 − λ2)
1√
d

‖G‖ ≤ ε(λ1 − λ2)

in O( λ1
λ2−λ1

log(d/ε)) iterations.
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|G1| ≤ (λ1 − λ2)
1√
d

‖G‖ ≤ ε(λ1 − λ2)

in O( λ1
λ2−λ1

log(d/ε)) iterations.
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Noisy convergence proof (k = 1)

θUse a potential-based argument to
show progress at each step. Potential:

tan θ =

√∑
j>1 α

2
j

α1

With no noise:

tan θt+1 =

√∑
j>1 λ

2
j α

2
j

λ1α1
≤ λ2

λ1
tan θt

With noise G satisfying the conditions (|G1|, ‖G‖ small enough),

tan θt+1 ≤
λ2

√∑
j>1 α

2
j + ‖G‖

λ1α1 − |G1|

≤ ε+ (
λ2

λ1
)1/4 tan θt
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Noisy convergence proof (general k )

θ
U

X

Use “principal angle” θ from X to U
let U ∈ Rd×k have top k eigenvectors, V = U⊥.

tan θ :=
‖V T X‖
‖UT X‖

=

√√√√∑j>k α
2
j∑

j≤k α
2
j

With no noise:

tan θt+1 =

√√√√∑j>k λ
2
j α

2
j∑

j≤k λ
2
j α

2
j

≤ λk+1

λk
tan θt

With noise G “small enough” we will have

tan θt+1 ≤
λk+1‖V T X‖+ ‖G‖
λk‖UT X‖ − ‖UT G‖

≤ ε+ (
λk+1

λk
)1/4 tan θt
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Noisy power method lemma

θ

X

U

Theorem
Consider running the noisy power method on a random starting space
X0 ∈ Rd×k . Let U ∈ Rd×k have top k eigenvectors of A. If

5‖G‖ ≤ ε(λk − λk+1) 5‖UT G‖ ≤ (λk − λk+1)
1√
kd

then after L = O( λk
λk−λk+1

log(d/ε)) iterations,

tan Θ(XL,U) . ε ⇐⇒ ‖(I − XLX T
L )U‖ . ε

Can also iterate on a p > k dimensional subspace.

I k th singular value of X is typically
√

p−
√

k−1√
d

.

If G is fairly uniform, expect ‖UT G‖ ≈ ‖G‖
√

k
d

I First condition is the main one, iteration will converge to to ‖G‖
λk−λk+1

.
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Noisy power method lemma

θ

X

U

Theorem
Consider running the noisy power method on a random starting space
X0 ∈ Rd×2k . Let U ∈ Rd×k have top k eigenvectors of A. If
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√
k
d
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Conjectures to remove eigengap

Theorem
Consider running the noisy power method on a random starting space
X0 ∈ Rd×2k . Let U ∈ Rd×k have top k eigenvectors of A. If

5‖G‖ ≤ ε(λk − λk+1) 5‖UT G‖ ≤ (λk − λk+1)

√
k
d

at each iteration then after L = O( λk
λk−λk+1

log(d/ε)) iterations,

tan Θ(XL,U) . ε ⇐⇒ ‖(I − XLX T
L )U‖ . ε

If λk = λk+1, our theorem is useless.

If X is n × p, maybe the relevant eigengap is λk − λp+1?
But do we need any eigengap at all?
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Consider running the noisy power method on a random starting space
X0 ∈ Rd×2k . Let U ∈ Rd×k have top k eigenvectors of A. If

5‖G‖ ≤ ε(λk − λ2k+1) 5‖UT G‖ ≤ (λk − λ2k+1)

√
k
d

at each iteration then after L = O( λk
λk−λ2k+1

log(d/ε)) iterations,

tan Θ(XL,U) . ε ⇐⇒ ‖(I − XLX T
L )U‖ . ε

If λk = λk+1, our theorem is useless.
If X is n × p, maybe the relevant eigengap is λk − λp+1?

But do we need any eigengap at all?

Moritz Hardt, Eric Price (IBM) The Noisy Power Method 2014-10-31 9 / 18



Conjectures to remove eigengap

Conjecture (Can depend on λk − λ2k+1 eigengap)
Consider running the noisy power method on a random starting space
X0 ∈ Rd×2k . Let U ∈ Rd×k have top k eigenvectors of A. If

5‖G‖ ≤ ε(λk − λ2k+1) 5‖UT G‖ ≤ (λk − λ2k+1)

√
k
d

at each iteration then after L = O( λk
λk−λ2k+1

log(d/ε)) iterations,

tan Θ(XL,U) . ε ⇐⇒ ‖(I − XLX T
L )U‖ . ε

If λk = λk+1, our theorem is useless.
If X is n × p, maybe the relevant eigengap is λk − λp+1?
But do we need any eigengap at all?

Moritz Hardt, Eric Price (IBM) The Noisy Power Method 2014-10-31 9 / 18



Conjectures to remove eigengap

Do we need any eigengap at all?

Yes for X to approximate U: ‖(I − XX T )U‖ ≤ ε.
Not clear for X to approximate A: ‖(I − XX T )A‖ ≤ λk+1 + ε.

I This is weaker: doesn’t imply Frobenius approximation.

Conjecture
Consider running the noisy power method on a random starting space
X0 ∈ Rd×2k . Let U ∈ Rd×k have top k eigenvectors of A. If

‖G‖ ≤ ε ‖UT G‖ ≤ ε
√

k
d

at each iteration then after L = O(
λk+1
ε log(d/ε)) iterations,

‖(I − XLX T
L )A‖ ≤ λk+1 + O(ε)
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Review of our theorem

Theorem
Consider running the noisy power method on a random starting space
X0 ∈ Rd×2k . Let U ∈ Rd×k have the top k eigenvectors of A. If

5‖G‖ ≤ ε(λk − λk+1) 5‖UT G‖ ≤ (λk − λk+1)

√
k
d

at each iteration then after L = O( λk
λk−λk+1

log(d/ε)) iterations,

tan Θ(XL,U) . ε ⇐⇒ ‖(I − XLX T
L )U‖ . ε

Gaussian G: if Gi,j ∼ N(0, σ2) then ‖G‖ .
√

dσ, ‖UT G‖ .
√

kσ
with high probability. Hence σ = ε(λk − λk+1)/

√
d is tolerable.
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Outline

1 Applications
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Applications of the Noisy Power Method

Will discuss two applications of our theorem:
I Privacy-preserving spectral analysis [Hardt-Roth ’13]
I Streaming PCA [Mitliagkas-Caramanis-Jain ’13]

Both cases, get improved bound.
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Privacy-preserving spectral analysis

Can we find differentially private approximations to the top
eigenvectors?

Think of A as related to adjacency matrix for graph (web links,
social network, etc.)

I Top eigenvectors are useful to study and reveal (e.g. PageRank,
Cheever cuts)

I Don’t want to reveal whether x and y are friends.

Randomized algorithm f is (ε, δ) differentially private if: for any
A,A′ with ‖A− A′‖ ≤ 1, and for any subset S of the range,

Pr[f (A) ∈ S] ≤ eε Pr[f (A′) ∈ S] + δ

Typical dependence is poly(1
ε log(1/δ)).
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Privacy-preserving spectral analysis

Hardt-Roth ’12: Noisy power method X → AX + G preserves
privacy if Gi,j ∼ N(0, σ2) for large enough σ at each stage.

Apply our theorem to see how well the result approximates U.
Complicated expression, but for example:

I Suppose A represents random graph with a planted sparse cut.
I Then the (ε, δ)-differentially private result is very close to U.
I [Hardt-Roth: k = 1 case.]

Added bonus: algorithm uses sparsity of A.
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Streaming PCA

Can take samples x1, x2, . . . ∼ D in Rd .

Want to estimate covariance matrix Σ = E[xxT ].
Easy answer is the empirical covariance:

Σ̂ =
1
n

n∑
i=1

xixT
i .

But uses n2 space. Can we use O(nk) space if Σ is nearly low
rank?
[Mitliagkas-Caramanis-Jain ’13] Yes, using more samples. Can do
one iteration of the power method in small space:

Xt+1 = Σ̂X =
1
n

n∑
i=1

xixT
i X

Moritz Hardt, Eric Price (IBM) The Noisy Power Method 2014-10-31 16 / 18



Streaming PCA

Can take samples x1, x2, . . . ∼ D in Rd .
Want to estimate covariance matrix Σ = E[xxT ].

Easy answer is the empirical covariance:

Σ̂ =
1
n

n∑
i=1

xixT
i .

But uses n2 space. Can we use O(nk) space if Σ is nearly low
rank?
[Mitliagkas-Caramanis-Jain ’13] Yes, using more samples. Can do
one iteration of the power method in small space:

Xt+1 = Σ̂X =
1
n

n∑
i=1

xixT
i X

Moritz Hardt, Eric Price (IBM) The Noisy Power Method 2014-10-31 16 / 18



Streaming PCA

Can take samples x1, x2, . . . ∼ D in Rd .
Want to estimate covariance matrix Σ = E[xxT ].
Easy answer is the empirical covariance:

Σ̂ =
1
n

n∑
i=1

xixT
i .

But uses n2 space. Can we use O(nk) space if Σ is nearly low
rank?
[Mitliagkas-Caramanis-Jain ’13] Yes, using more samples. Can do
one iteration of the power method in small space:

Xt+1 = Σ̂X =
1
n

n∑
i=1

xixT
i X

Moritz Hardt, Eric Price (IBM) The Noisy Power Method 2014-10-31 16 / 18



Streaming PCA

Can take samples x1, x2, . . . ∼ D in Rd .
Want to estimate covariance matrix Σ = E[xxT ].
Easy answer is the empirical covariance:

Σ̂ =
1
n

n∑
i=1

xixT
i .

But uses n2 space. Can we use O(nk) space if Σ is nearly low
rank?

[Mitliagkas-Caramanis-Jain ’13] Yes, using more samples. Can do
one iteration of the power method in small space:

Xt+1 = Σ̂X =
1
n

n∑
i=1

xixT
i X

Moritz Hardt, Eric Price (IBM) The Noisy Power Method 2014-10-31 16 / 18



Streaming PCA

Can take samples x1, x2, . . . ∼ D in Rd .
Want to estimate covariance matrix Σ = E[xxT ].
Easy answer is the empirical covariance:

Σ̂ =
1
n

n∑
i=1

xixT
i .

But uses n2 space. Can we use O(nk) space if Σ is nearly low
rank?
[Mitliagkas-Caramanis-Jain ’13] Yes, using more samples. Can do
one iteration of the power method in small space:

Xt+1 = Σ̂X =
1
n

n∑
i=1

xixT
i X

Moritz Hardt, Eric Price (IBM) The Noisy Power Method 2014-10-31 16 / 18



Streaming PCA

Algorithm is: in every iteration, take a bunch of samples to move in
correct direction.

How many iterations, and how many samples per iteration?
This is then a noisy power method problem:

Xt+1 = Σx + (Σ̂− Σ)X

Just need to bound norm of (Σ̂− Σ)X in each iteration.
Nice case: spiked covariance model

I Gaussian, where Σ has k eigenvalues λ1, . . . , λk = Θ(1) perturbed
by Gaussian noise N(0, σ2) in each coordinate.

I Õ( 1+σ6

ε2 dk) samples suffice.
I Factor k improvement on [Mitliagkas-Caramanis-Jain ’13]

But also applies to less nice cases:

I Strong whenever D has exponential concentration.
I Nontrivial result for general distributions.
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Recap and open questions

Noisy power method is a useful tool.

Can show tan Θ(XL,U) ≤ ε if

5‖G‖ ≤ ε(λk − λk+1) 5‖UT G‖ ≤ (λk − λk+1)

√
k
d

Can we apply it to more problems?
Can we prove a theorem without the eigengap?
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