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Problem

@ Common problem: find low rank approximation to a matrix A

» PCA: apply to covariance matrix
» Spectral analysis: PageRank, Cheever’s inequality for cuts, etc.
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Simple algorithm: the power method

AKA subspace iteration, subspace power iteration

@ Choose random Xy € R™k,

Moritz Hardt, Eric Price (IBM) The Noisy Power Method

[m]

=)



Simple algorithm: the power method

AKA subspace iteration, subspace power iteration

@ Choose random X € Rk,
@ Repeat:

Yir1 = AX;
Xi+1 = orthonormalize( Y;.1)
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Simple algorithm: the power method

AKA subspace iteration, subspace power iteration

@ Choose random Xy € R™k,
@ Repeat:

Yiv1 =AXi + G
Xi+1 = orthonormalize( Y;.1)

@ Converges towards U, the space of the top k eigenvalues.
@ Question 1: how quickly?

» [Stewart 69, ..., Halko-Martinsson-Tropp '10]
@ Question 2: how robust to noise?
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Simple algorithm: the power method

AKA subspace iteration, subspace power iteration

@ Choose random X, € Rk,
@ Repeat:

Yiv1 =AXi + G
Xi+1 = orthonormalize( Y;.1)

@ Converges towards U, the space of the top k eigenvalues.
@ Question 1: how quickly?

» [Stewart 69, ..., Halko-Martinsson-Tropp '10]
@ Question 2: how robust to noise?

» Application-specific bounds: [Hardt-Roth 13,
Mitliagkas-Caramanis-Jain ’13, Jain-Netrapalli-Sanghavi '13]
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Basic power method, k = 1

@ Choose a random unit vector x € R".
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Basic power method, k = 1

@ Choose a random unit vector x € R".
@ Output A%x, renormalized to unit vector.
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@ Choose a random unit vector x € R”.
@ Output A%x, renormalized to unit vector.
> Xt :AXt/HAX[” fort = 0,...,q— 1.
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Basic power method, k = 1

@ Choose a random unit vector x € R".
@ Output A%x, renormalized to unit vector.
> Xt :AXt/HAX[” for t = 0,...,q— 1.
@ Suppose A has eigenvectors vy, ..., vy, eigenvalues
A >Ado > A > 0.
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Basic power method, k = 1

@ Choose a random unit vector x € R".
@ Output A%x, renormalized to unit vector.
> Xt :AXt/HAX[” fort = 0,...,q— 1.
@ Suppose A has eigenvectors vy, ..., vy, eigenvalues
A >Ado > A > 0.
@ Start with xg = a1vq + asVo + -+ + apVp.
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Basic power method, k = 1

@ Choose a random unit vector x € R".
@ Output A%x, renormalized to unit vector.
> Xep1 = Ax¢/||Axi|| fort=0,...,9—1.
@ Suppose A has eigenvectors vy, ..., vy, eigenvalues
A >Ado > A > 0.
@ Start with xg = a1vq + asVo + -+ + apVp.
@ After q iterations,

Aqu = Z )\Iqa,'V,'
i
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Basic power method, k = 1

@ Choose a random unit vector x € R".
@ Output A%x, renormalized to unit vector.
> Xep1 = Ax¢/||Axi|| fort=0,...,9—1.
@ Suppose A has eigenvectors vy, ..., vy, eigenvalues
A >Ado > A > 0.
@ Start with xg = a1vq + asVo + -+ + apVp.
@ After q iterations,

A%y = Z)\ a,V,OCV1+Z(>\1> a1 Vi

i>2
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Basic power method, k = 1

@ Choose a random unit vector x € R".
@ Output A%x, renormalized to unit vector.
> Xep1 = Ax¢/||Axi|| fort=0,...,9—1.
@ Suppose A has eigenvectors vy, ..., vy, eigenvalues
A >Ado > A > 0.
@ Start with xg = a1vq + asVo + -+ + apVp.
@ After q iterations,

i>2

@ For g > log,, /s, %, have A9x proportional to v4 £ O(e).
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Basic power method, k = 1

@ Choose a random unit vector x € R".
@ Output A%x, renormalized to unit vector.
> Xep1 = Ax¢/||Axi|| fort=0,...,9—1.
@ Suppose A has eigenvectors vy, ..., vy, eigenvalues
A >Ado > A > 0.
@ Start with xg = a1vq + asVo + -+ + apVp.
@ After q iterations,

i>2

@ For g > log,, /s, %, have A9x proportional to v4 £ O(e).

q=0(

v _)\ log n)
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Handling noise, k = 1

@ Consider the iteration
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Handling noise, k = 1

@ Consider the iteration -7

Yir1 = Ax;+ G W
Xtr1 = Yert /| Yesll
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Handling noise, k = 1
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Xt+1 = Y1/ |V ||
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Handling noise, k = 1

@ Consider the iteration

Yier = A+ G

Xt+1 = Y1/ |V ||

@ What conditions on G will cause this to converge to within ¢?
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Handling noise, k = 1
@ Consider the iteration Y
Yir1 =Ax + G W
Xtr1 = Yert /| Yesll

@ What conditions on G will cause this to converge to within ¢?
» G must make progress at the beginning

1G1] < (M = A2)

Q-
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Handling noise, k = 1

@ Consider the iteration

Yir1 =Ax + G w
Xt+1 = Y1/ |V ||

@ What conditions on G will cause this to converge to within ¢?

» G must make progress at the beginning
» G must not perturb by € at the end.

1G1] < (M = A2) Gl < e(A = A2)

S|
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Handling noise, k = 1

@ Consider the iteration

Yir1 =Ax + G w

Xt+1 = Y1/ |V ||

@ What conditions on G will cause this to converge to within ¢?
» G must make progress at the beginning
» G must not perturb by ¢ at the end.
» Looser requirements in the middle.

1G1] < (M = A2) Gl < e(A = A2)

1
Vd
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Handling noise, k = 1

@ Consider the iteration

Yier = A+ G

Xt+1 = Y1/ |V ||

@ What conditions on G will cause this to converge to within ¢?

» G must make progress at the beginning
» G must not perturb by € at the end.
» Looser requirements in the middle.

@ Theorem: Converges to vy + O(e) if all the G satisfy

’
Gl < (A — Xo)— Gll <e(N =X
1G] < (M 2)\/(—1 |Gl < e(A = A2)

in O(2- log(d/e)) iterations.
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Noisy convergence proof (k = 1)

@ Use a potential-based argument to
P

show progress at each step. Potential:
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Noisy convergence proof (k = 1)

@ Use a potential-based argument to
P

show progress at each step. Potential:

2
\ 219
o

tand =

@ With no noise:

>js1 Afa? A
tan 91+1 = # < )\—?tan 0;
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Noisy convergence proof (k = 1)

@ Use a potential-based argument to
P

show progress at each step. Potential:

tand =
o
@ With no noise:
\/ Do X2a? h
tan 91+1 = # < 22 tan 6;
Ao 1

@ With noise G satisfying the conditions (|Gi|, || G|| small enough),

Ao\[3jsq0f + |Gl

Maq — |Gy

tan ;4 <
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Noisy convergence proof (k = 1)

@ Use a potential-based argument to
P

show progress at each step. Potential:

tand =
o
@ With no noise:
\/ Do X2a? h
tan 91+1 = # < 22 tan 6;
Ao 1

@ With noise G satisfying the conditions (|Gi|, || G|| small enough),

A 102+ |G
T F I8 g

tan 64 < <e+
- May — |Gy
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Noisy convergence proof (general k) X

@ Use “principal angle” 6 from X to U
let U € Rk have top k eigenvectors, V = U-~. WA U
/N
T . a? v
tang — | VTXH _ | Zi ’
U Xl ngk @;
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@ Use “principal angle” 6 from X to U
let U € Rk have top k eigenvectors, V = U-~. Y’A U
/N
T . a? v
tang — | VTXH _ | Zi ’
U Xl ngk @;

@ With no noise:

. \2a2
tan@ — M
J<k 7 7
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Noisy convergence proof (general k) X

@ Use “principal angle” 6 from X to U
let U € Rk have top k eigenvectors, V = U-~. WA U
/\
T . a? v
tan g := HVTXH _ | Zi ’
U Xl ngk @;
@ With no noise:

tan 91_;,_1 = Z/>k L ] < Ak—H tan 6;
ngk )‘/20412 Ak

@ With noise G “small enough” we will have

Mt VT X[+ 1IG
MJUTX| = [UTG

tanf; 4 <
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Noisy convergence proof (general k) X

@ Use “principal angle” 6 from X to U
let U € Rk have top k eigenvectors, V = U-~. WA U
/\
T . a? v
tan g := HVTXH _ | Zi ’
U Xl ngk @;
@ With no noise:

tan 91_;,_1 = Z/>k L ] < Ak‘H tan 6;
ngk )‘/20412 Ak

@ With noise G “small enough” we will have
Ak+1

et IVTX] + Gl e
< 2R+l
MIUTX = oTG) =0y tante

tanf; 4 <
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Noisy power method lemma

Theorem

Consider running the noisy power method on a random starting space

Xo € Rk Let U € R9*k have top k eigenvectors of A. If

’
SGIl < e(Ak — Akt1) 5|UTG| < (A — )\k+1)\/_k_d

then after L = O(—2k— log(d/e)) iterations,

Ak—Ak41

tan (X, U) Se «— ||(1- X X/ )U| < e
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Noisy power method lemma

Theorem

Consider running the noisy power method on a random starting space
Xo € Rk Let U € R9*k have top k eigenvectors of A. If

1
S[|Gl < e(Ak — Akt1) 5| UTGIl < (A — >\k+1)\/7—d
then after L = O(—2k— log(d/e)) iterations,

Ak—Ak41

tan (X, U) Se «— ||(1- X X/ )U| < e

U
X

The Noisy Power Method 2014-10-31

@ Can also iterate on a p > k dimensional subspace.
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Noisy power method lemma

Theorem

Consider running the noisy power method on a random starting space
Xo € R9%P. Let U e RI*K have top k eigenvectors of A. If

— Vk—1
51Gl < ek — Mr1)  SIUTG] < (= Aegr) YRV

Vd
then after L = O(5, =% — Ak log(d/e¢)) iterations,
tanO(Xp, U) Se <= (- XX)U| S e )
@ Can also iterate on a p > k dimensional subspace U

» kth singular value of X is typically ﬁ% g‘q.
X
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Theorem

Consider running the noisy power method on a random starting space
Xo € RI%2K_ Let U € RI*k have top k eigenvectors of A. If

k
5G|l < e(Ak = Akt) BIUTGI < (A = M)y
then after L = O(s—%— log(d/«)) iterations,

Ak —Ak41

tan©(X, U) Se <= (I = XX/ )U| S e

@ Can also iterate on a p > k dimensional subspace.

u
» kth singular value of X is typically ﬁ—\/\gm_
X
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Consider running the noisy power method on a random starting space
Xo € RI%2k [ et U € RI*k have top k eigenvectors of A. If

k
5Gll < e(Ak — Aks1) 51UTGI < (A = M)y

then after L = O(s—%— log(d/«)) iterations,

Ak —Ak41

tan©(X, U) Se <= (I = XX/ )U| S e

@ Can also iterate on a p > k dimensional subspace. U
» kth singular value of X is typically ﬁ%m_
@ If G is fairly uniform, expect ||UT G| ~ HG”\/% X
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Noisy power method lemma

Theorem

Consider running the noisy power method on a random starting space
Xo € RI%2k [ et U € RI*k have top k eigenvectors of A. If

k
S5/Gll < e(Ak = Akt1) 5|UTGI < (M — >\k+1)\/;

then after L = O(x, Ak -log(d/e)) iterations,

tan©(X, U) Se <= (I = XX/ )U| S e

v

@ Can also iterate on a p > k dimensional subspace. U
» kth singular value of X is typically \/’S}d 1

o If Gis fairly uniform, expect | UT G| ~ ||G]l,/% X
» First condition is the main one, iteration will converge to to Gl

Ak = Akt
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Conjectures to remove eigengap

Theorem

Consider running the noisy power method on a random starting space
Xo € RI%2k [ et U € RI*k have top k eigenvectors of A. If

k
5G|l < e(Ak — k1) 5|UT G < (A — >\k+1)\/;

at each iteration then after L = O(

v /\k log(d/e)) iterations,

tan (X, U) Se «— ||(1- X X/ )U| < e

@ If A\x = A\¢.1, our theorem is useless.
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Conjectures to remove eigengap

Conjecture (Can depend on Ax — Aok 1 €igengap)

Consider running the noisy power method on a random starting space
Xo € RI%2k et U € R9*K have top k eigenvectors of A. If

k
511Gl < e(Ak — Aok 1) 5|UTGI| < (A — )\2k+1)\/;
at each iteration then after L = O( AK_A;ZM log(d/e)) iterations,

tanO(X,, U) Se <= (- X X))U| < e

@ If A\x = A\g11, our theorem is useless.
@ If X is n x p, maybe the relevant eigengap is Ay — A\p41?
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Conjectures to remove eigengap

Conjecture (Can depend on Ax — Aok 1 €igengap)

Consider running the noisy power method on a random starting space

Xo € RI%2k et U € R9*K have top k eigenvectors of A. If

k
511Gl < e(Ak — Aok 1) 5|UTGI| < (A — )\2k+1)\/;
at each iteration then after L = O( AK_A;ZM log(d/e)) iterations,

tanO(X,, U) Se <= (- X X))U| < e

@ If A\x = A\g11, our theorem is useless.
@ If X is n x p, maybe the relevant eigengap is Ay — A\p41?
@ But do we need any eigengap at all?
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@ Yes for X to approximate U: (1= XXT)U| < e.
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@ Not clear for X to approximate A: |(/ — XXT)A|| < Aks1 + .
» This is weaker: doesn’t imply Frobenius approximation.
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Conjectures to remove eigengap

@ Do we need any eigengap at all?
@ Yes for X to approximate U: (1= XXT)U| < e.

@ Not clear for X to approximate A: |(/ — XXT)A|| < Aks1 + .
» This is weaker: doesn’t imply Frobenius approximation.

Conjecture

Consider running the noisy power method on a random starting space
Xo € RI%2k [ et U e R9*K have top k eigenvectors of A. If

k
16l < e UGl < \/;

at each iteration then after L = O(’\"—E+1 log(d/e)) iterations,

10/ = XL XA < Akst + O(e)
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Review of our theorem

Theorem

Consider running the noisy power method on a random starting space

Xo € R9%2K_ [ et U € RI*K have the top k eigenvectors of A. If

k
5G|l < e(Ak — Ak41) 5|UTG| < (A — )\k+1)\/;

at each iteration then after L = O(

v /\k log(d/e)) iterations,

tan©(X,, U) S e «— ||(I- X.X[)U|| < e

@ Gaussian G: if G;; ~ N(0,0?) then |G| < Vdo, |UTG|| < Vko
with high probability. Hence o = e(Ax — Ay1)/V/d is tolerable.
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Applications of the Noisy Power Method

@ Will discuss two applications of our theorem:

» Privacy-preserving spectral analysis [Hardt-Roth '13]
» Streaming PCA [Mitliagkas-Caramanis-Jain '13]

@ Both cases, get improved bound.
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Privacy-preserving spectral analysis

@ Can we find differentially private approximations to the top
eigenvectors?
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Privacy-preserving spectral analysis

@ Can we find differentially private approximations to the top
eigenvectors?

@ Think of A as related to adjacency matrix for graph (web links,
social network, etc.)

» Top eigenvectors are useful to study and reveal (e.g. PageRank,
Cheever cuts)
» Don’t want to reveal whether x and y are friends.

@ Randomized algorithm f is (e, 0) differentially private if: for any
A, A with ||[A — A'|| < 1, and for any subset S of the range,

Pr[f(A) € S] < e Pr[f(A) € S] +§
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Privacy-preserving spectral analysis

@ Can we find differentially private approximations to the top
eigenvectors?

@ Think of A as related to adjacency matrix for graph (web links,
social network, etc.)

» Top eigenvectors are useful to study and reveal (e.g. PageRank,
Cheever cuts)
» Don’t want to reveal whether x and y are friends.

@ Randomized algorithm f is (e, 0) differentially private if: for any
A, A with ||[A — A'|| < 1, and for any subset S of the range,

Pr[f(A) € S] < e Pr[f(A) € S] +§

e Typical dependence is poly(1 log(1/6)).
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Privacy-preserving spectral analysis

@ Hardt-Roth '12: Noisy power method X — AX + G preserves
privacy if G;; ~ N(O, 0?) for large enough o at each stage.
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@ Apply our theorem to see how well the result approximates U.

@ Complicated expression, but for example:

» Suppose A represents random graph with a planted sparse cut.
» Then the (e, §)-differentially private result is very close to U.
» [Hardt-Roth: kK = 1 case.]
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Privacy-preserving spectral analysis

@ Hardt-Roth '12: Noisy power method X — AX + G preserves
privacy if G;; ~ N(O, 0?) for large enough o at each stage.

@ Apply our theorem to see how well the result approximates U.

@ Complicated expression, but for example:

» Suppose A represents random graph with a planted sparse cut.

» Then the (e, §)-differentially private result is very close to U.
» [Hardt-Roth: kK = 1 case.]

@ Added bonus: algorithm uses sparsity of A.
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Streaming PCA

@ Can take samples x, xp,... ~ D in RY.
@ Want to estimate covariance matrix £ = E[xx].

Moritz Hardt, Eric Price (IBM) The Noisy Power Method 2014-10-31 16/18



Streaming PCA

@ Can take samples x, xp,... ~ D in RY.
@ Want to estimate covariance matrix £ = E[xx].
@ Easy answer is the empirical covariance:

~ 1 -
z:,—‘];XiXi.
j=
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Streaming PCA

@ Can take samples x, xp,... ~ D in RY.
@ Want to estimate covariance matrix £ = E[xx].
@ Easy answer is the empirical covariance:

~ 1 .
z:,—‘];XiXi.
j=

@ But uses n? space. Can we use O(nk) space if ¥ is nearly low
rank?
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Streaming PCA

@ Can take samples x, xp,... ~ D in RY.
@ Want to estimate covariance matrix £ = E[xx].
@ Easy answer is the empirical covariance:

~ 1 .
z:nle'xi.
j=

@ But uses n? space. Can we use O(nk) space if ¥ is nearly low
rank?

@ [Mitliagkas-Caramanis-Jain ’13] Yes, using more samples. Can do
one iteration of the power method in small space:
~ 10 .
1=
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Streaming PCA

@ Algorithm is: in every iteration, take a bunch of samples to move in
correct direction.
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@ Algorithm is: in every iteration, take a bunch of samples to move in
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correct direction.

@ How many iterations, and how many samples per iteration?
@ This is then a noisy power method problem:

X1 = IX+ (- D)X

@ Just need to bound norm of (£ — X)X in each iteration.
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» Gaussian, where X has k eigenvalues A1, ..., \x = ©(1) perturbed
by Gaussian noise N(0, o?) in each coordinate.
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Streaming PCA

@ Algorithm is: in every iteration, take a bunch of samples to move in
correct direction.

@ How many iterations, and how many samples per iteration?

@ This is then a noisy power method problem:

X1 = IX+ (- D)X

@ Just need to bound norm of (£ — X)X in each iteration.
@ Nice case: spiked covariance model

» Gaussian, where X has k eigenvalues A1, ..., \x = ©(1) perturbed
by Gaussian noise N(0, o?) in each coordinate.
> O(“g—z"edk) samples suffice.
» Factor k improvement on [Mitliagkas-Caramanis-Jain ’13]
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Streaming PCA

@ Algorithm is: in every iteration, take a bunch of samples to move in
correct direction.

@ How many iterations, and how many samples per iteration?

@ This is then a noisy power method problem:

X1 = IX+ (- D)X

@ Just need to bound norm of (£ — X)X in each iteration.
@ Nice case: spiked covariance model

» Gaussian, where X has k eigenvalues A1, ..., \ = ©(1) perturbed
by Gaussian noise N(0, o?) in each coordinate.

> 5(“2—2"6dk) samples suffice.

» Factor k improvement on [Mitliagkas-Caramanis-Jain ’13]
@ But also applies to less nice cases:

» Strong whenever D has exponential concentration.
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Streaming PCA

@ Algorithm is: in every iteration, take a bunch of samples to move in
correct direction.

@ How many iterations, and how many samples per iteration?

@ This is then a noisy power method problem:

X1 = IX+ (- D)X

@ Just need to bound norm of (£ — X)X in each iteration.
@ Nice case: spiked covariance model

» Gaussian, where X has k eigenvalues A1, ..., \ = ©(1) perturbed
by Gaussian noise N(0, o?) in each coordinate.

> 5(“2—2"6dk) samples suffice.
» Factor k improvement on [Mitliagkas-Caramanis-Jain ’13]
@ But also applies to less nice cases:

» Strong whenever D has exponential concentration.
» Nontrivial result for general distributions.
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Recap and open questions

@ Noisy power method is a useful tool.
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Recap and open questions

@ Noisy power method is a useful tool.
@ Can show tan©(X;, U) < eif

k
5|G|| < e(Ak — Aks1) 5|UTGI| < (A — >\k+1)\/;
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Recap and open questions

@ Noisy power method is a useful tool.
@ Can show tan©(X;, U) < eif

k
5|G|| < e(Ak — Aks1) 5|UTGI| < (A — >\k+1)\/;

@ Can we apply it to more problems?
@ Can we prove a theorem without the eigengap?
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