The Noisy Power Method

Moritz Hardt Eric Price

IBM IBM → UT Austin

2014-10-31
Problem

- Common problem: find *low rank* approximation to a matrix A
 - PCA: apply to covariance matrix
 - Spectral analysis: PageRank, Cheever's inequality for cuts, etc.
Simple algorithm: the power method
AKA subspace iteration, subspace power iteration

- Choose random $X_0 \in \mathbb{R}^{n \times k}$.
Simple algorithm: the power method
AKA subspace iteration, subspace power iteration

- Choose random $X_0 \in \mathbb{R}^{n \times k}$.
- Repeat:

\[
Y_{t+1} = AX_t \\
X_{t+1} = \text{orthonormalize}(Y_{t+1})
\]

Converges towards U, the space of the top k eigenvalues.

Question 1: how quickly?

Introduction:

- Stewart '69
- Halko-Martinsson-Tropp '10

Question 2: how robust to noise?

Application-specific bounds:

- Hardt-Roth '13
- Mitliagkas-Caramanis-Jain '13
- Jain-Netrapalli-Sanghavi '13
Simple algorithm: the power method
AKA subspace iteration, subspace power iteration

- Choose random $X_0 \in \mathbb{R}^{n \times k}$.
- Repeat:

 \[
 Y_{t+1} = AX_t \\
 X_{t+1} = \text{orthonormalize}(Y_{t+1})
 \]

- Converges towards U, the space of the top k eigenvalues.
Choose random $X_0 \in \mathbb{R}^{n \times k}$.

Repeat:

$$Y_{t+1} = AX_t$$

$$X_{t+1} = \text{orthonormalize}(Y_{t+1})$$

Converges towards U, the space of the top k eigenvalues.

Question 1: how quickly?

Question 2: how robust to noise?
Simple algorithm: the power method
AKA subspace iteration, subspace power iteration

- Choose random $X_0 \in \mathbb{R}^{n \times k}$.
- Repeat:

 $$Y_{t+1} = AX_t$$
 $$X_{t+1} = \text{orthonormalize}(Y_{t+1})$$

- Converges towards U, the space of the top k eigenvalues.
- Question 1: how quickly?
 - [Stewart ’69, ..., Halko-Martinsson-Tropp ’10]
Simple algorithm: the power method
AKA subspace iteration, subspace power iteration

- Choose random $X_0 \in \mathbb{R}^{n \times k}$.
- Repeat:

$$Y_{t+1} = AX_t + G$$

$$X_{t+1} = \text{orthonormalize}(Y_{t+1})$$

- Converges towards U, the space of the top k eigenvalues.
- Question 1: how quickly?
 - [Stewart ’69, ..., Halko-Martinsson-Tropp ’10]
- Question 2: how robust to noise?
Simple algorithm: the power method
AKA subspace iteration, subspace power iteration

Choose random $X_0 \in \mathbb{R}^{n \times k}$.

Repeat:

$$Y_{t+1} = AX_t + G$$

$$X_{t+1} = \text{orthonormalize}(Y_{t+1})$$

Converges towards U, the space of the top k eigenvalues.

Question 1: how quickly?

- [Stewart ’69, ..., Halko-Martinsson-Tropp ’10]

Question 2: how robust to noise?

- Application-specific bounds: [Hardt-Roth ’13, Mitliagkas-Caramanis-Jain ’13, Jain-Netrapalli-Sanghavi ’13]
Basic power method, $k = 1$

- Choose a random unit vector $x \in \mathbb{R}^n$.

\[x_{t+1} = \frac{Ax_t}{\|Ax_t\|} \text{ for } t = 0, \ldots, q - 1. \]

Suppose A has eigenvectors v_1, \ldots, v_n, eigenvalues $\lambda_1 > \lambda_2 \geq \cdots \geq \lambda_n \geq 0$.

Start with $x_0 = \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n$.

After q iterations,

\[A^q x_0 = \sum_i \lambda_q^i \alpha_i v_i \propto v_1 + \sum_{i \geq 2} (\lambda_i^q/\lambda_1)^{q-1} \alpha_i v_i \]

For $q \geq \log \lambda_1/\lambda_2 d \epsilon \alpha_1$, have $A^q x$ proportional to $v_1 \pm O(\epsilon)$.

\[q = O(\lambda_1/\lambda_2 \log n) \]
Basic power method, $k = 1$

- Choose a random unit vector $x \in \mathbb{R}^n$.
- Output $A^q x$, renormalized to unit vector.

- $x_{t+1} = Ax_t / \|Ax_t\|$, for $t = 0, \ldots, q-1$.

Suppose A has eigenvectors v_1, \ldots, v_n, eigenvalues $\lambda_1 > \lambda_2 \geq \ldots \geq \lambda_n \geq 0$.

Start with $x_0 = \alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n$.

After q iterations, $A^q x_0 \propto v_1 + \sum_{i \geq 2} (\lambda_i / \lambda_1)^q \alpha_i v_i$.

For $q = O(\log \lambda_1 / \lambda_2 d \epsilon \alpha_1)$, have $A^q x \propto v_1 \pm O(\epsilon)$.

$\lambda = O(\lambda_1 \lambda_1^{-1} \log n)$.

Moritz Hardt, Eric Price (IBM)
Basic power method, $k = 1$

- Choose a random unit vector $x \in \mathbb{R}^n$.
- Output $A^q x$, renormalized to unit vector.
 - $x_{t+1} = Ax_t/\|Ax_t\|$ for $t = 0, \ldots, q - 1$.

Suppose A has eigenvectors v_1, \ldots, v_n, eigenvalues $\lambda_1 > \lambda_2 \geq \cdots \geq \lambda_n \geq 0$.

Start with $x_0 = \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n$. After q iterations, $A^q x_0 = \sum_i \lambda_i^q \alpha_i v_i \propto v_1 + \sum_{i \geq 2} (\lambda_i/\lambda_1)^q \alpha_i v_i$.

For $q \geq \log \lambda_1/\lambda_2 d \epsilon \alpha_1$, have $A^q x \propto v_1 \pm O(\epsilon)$.

$q = O(\lambda_1/\lambda_2 \log n)$.
Basic power method, $k = 1$

- Choose a random unit vector $x \in \mathbb{R}^n$.
- Output $A^q x$, renormalized to unit vector.

\[x_{t+1} = \frac{A x_t}{\|A x_t\|} \text{ for } t = 0, \ldots, q - 1. \]
Basic power method, $k = 1$

- Choose a random unit vector $x \in \mathbb{R}^n$.
- Output $A^q x$, renormalized to unit vector.
 - $x_{t+1} = Ax_t/\|Ax_t\|$ for $t = 0, \ldots, q - 1$.

Moritz Hardt, Eric Price (IBM)
Basic power method, \(k = 1 \)

- Choose a random unit vector \(x \in \mathbb{R}^n \).
- Output \(A^q x \), renormalized to unit vector.
 - \(x_{t+1} = Ax_t/\|Ax_t\| \) for \(t = 0, \ldots, q - 1 \).
Basic power method, $k = 1$

- Choose a random unit vector $x \in \mathbb{R}^n$.
- Output $A^q x$, renormalized to unit vector.
 - $x_{t+1} = Ax_t/\|Ax_t\|$ for $t = 0, \ldots, q - 1$.

Suppose A has eigenvectors v_1, \ldots, v_n, eigenvalues $\lambda_1 > \lambda_2 \geq \cdots \geq \lambda_n \geq 0$.

Start with $x_0 = \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n$.

After q iterations, $A^q x_0 = \sum_i \lambda_i^q \alpha_i v_i \propto v_1 \pm O(\epsilon)$.

For $q = O(\sqrt{\log n})$, have $A^q x$ proportional to v_1.

Moritz Hardt, Eric Price (IBM)

The Noisy Power Method

2014-10-31
Basic power method, $k = 1$

- Choose a random unit vector $x \in \mathbb{R}^n$.
- Output $A^q x$, renormalized to unit vector.
 - $x_{t+1} = A x_t / \|A x_t\|$ for $t = 0, \ldots, q - 1$.

Moritz Hardt, Eric Price (IBM)
Basic power method, $k = 1$

- Choose a random unit vector $x \in \mathbb{R}^n$.
- Output $A^q x$, renormalized to unit vector.
 - $x_{t+1} = Ax_t / \|Ax_t\|$ for $t = 0, \ldots, q - 1$.

Suppose A has eigenvectors v_1, \ldots, v_n, eigenvalues $\lambda_1 > \lambda_2 \geq \cdots \geq \lambda_n \geq 0$.

Start with $x_0 = \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n$.

After q iterations, $A^q x_0 \propto v_1 + \sum_{i \geq 2} (\lambda_i/\lambda_1)^q \alpha_i v_i$.

For $q \geq \log \lambda_1/\lambda_2 d/\epsilon \alpha_1$, have $A^q x$ proportional to $v_1 \pm O(\epsilon)$.

$q = O(\lambda_1/\lambda_1 - \lambda_2 \log n)$.
Basic power method, \(k = 1 \)

- Choose a random unit vector \(x \in \mathbb{R}^n \).
- Output \(A^q x \), renormalized to unit vector.
 - \(x_{t+1} = A x_t / \| A x_t \| \) for \(t = 0, \ldots, q - 1 \).
Basic power method, \(k = 1 \)

- Choose a random unit vector \(x \in \mathbb{R}^n \).
- Output \(A^q x \), renormalized to unit vector.
 - \(x_{t+1} = Ax_t/\|Ax_t\| \) for \(t = 0, \ldots, q-1 \).
Basic power method, $k = 1$

- Choose a random unit vector $x \in \mathbb{R}^n$.
- Output $A^q x$, renormalized to unit vector.
 - $x_{t+1} = A x_t / \| A x_t \|$ for $t = 0, \ldots, q - 1$.

Suppose A has eigenvectors v_1, \ldots, v_n, eigenvalues $\lambda_1 > \lambda_2 \geq \ldots \geq \lambda_n \geq 0$.

Start with $x_0 = \alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n$.

After q iterations, $A^q x_0 \propto v_1 + \sum_{i \geq 2} (\lambda_i / \lambda_1)^q \alpha_i v_i$.

For $q \geq \log \lambda_1 / \lambda_2 d \epsilon \alpha_1$, have $A^q x$ proportional to $v_1 + O(\epsilon)$.
Basic power method, \(k = 1 \)

- Choose a random unit vector \(x \in \mathbb{R}^n \).
- Output \(A^q x \), renormalized to unit vector.
 - \(x_{t+1} = Ax_t / \|Ax_t\| \) for \(t = 0, \ldots, q - 1 \).
Basic power method, $k = 1$

- Choose a random unit vector $x \in \mathbb{R}^n$.
- Output $A^q x$, renormalized to unit vector.
 - $x_{t+1} = Ax_t/\|Ax_t\|$ for $t = 0, \ldots, q - 1$.

Moritz Hardt, Eric Price (IBM)
Basic power method, $k = 1$

- Choose a random unit vector $x \in \mathbb{R}^n$.
- Output $A^q x$, renormalized to unit vector.
 - $x_{t+1} = Ax_t/\|Ax_t\|$ for $t = 0, \ldots, q - 1$.

Suppose A has eigenvectors v_1, \ldots, v_n, eigenvalues $\lambda_1 > \lambda_2 \geq \cdots \geq \lambda_n \geq 0$.

Start with $x_0 = \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n$.

After q iterations, $A^q x_0 \propto v_1 \pm O(\epsilon)$.

For $q \geq \log \lambda_1 / \lambda_2$,

- $\epsilon \alpha_1$,
Basic power method, \(k = 1 \)

- Choose a random unit vector \(x \in \mathbb{R}^n \).
- Output \(A^q x \), renormalized to unit vector.
 - \(x_{t+1} = A x_t / \| A x_t \| \) for \(t = 0, \ldots, q - 1 \).
Basic power method, \(k = 1 \)

- Choose a random unit vector \(x \in \mathbb{R}^n \).
- Output \(A^q x \), renormalized to unit vector.
 - \(x_{t+1} = Ax_t / \|Ax_t\| \) for \(t = 0, \ldots, q - 1 \).
Basic power method, $k = 1$

- Choose a random unit vector $x \in \mathbb{R}^n$.
- Output $A^q x$, renormalized to unit vector.

 $x_{t+1} = A x_t / \|A x_t\|$ for $t = 0, \ldots, q - 1$.

Basic power method, $k = 1$

- Choose a random unit vector $x \in \mathbb{R}^n$.
- Output $A^q x$, renormalized to unit vector.
 - $x_{t+1} = Ax_t / \|Ax_t\|$ for $t = 0, \ldots, q - 1$.
Basic power method, $k = 1$

- Choose a random unit vector $x \in \mathbb{R}^n$.
- Output $A^q x$, renormalized to unit vector.

 $x_{t+1} = Ax_t/\|Ax_t\|$ for $t = 0, \ldots, q - 1$.

Suppose A has eigenvectors v_1, \ldots, v_n, eigenvalues $\lambda_1 > \lambda_2 \geq \cdots \geq \lambda_n \geq 0$. Start with $x_0 = \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n$. After q iterations, $A^q x_0 \propto v_1 + \sum_{i \geq 2} (\lambda_i/\lambda_1)^q \alpha_i v_i$.

For $q \geq \log \lambda_1/\lambda_2 d \epsilon \alpha_1$, have $A^q x$ proportional to $v_1 \pm O(\epsilon)$.

$q = O(\lambda_1/\lambda_2 \log n)$.
Basic power method, $k = 1$

- Choose a random unit vector $x \in \mathbb{R}^n$.
- Output $A^q x$, renormalized to unit vector.
 - $x_{t+1} = Ax_t / \|Ax_t\|$ for $t = 0, \ldots, q - 1$.

Suppose A has eigenvectors v_1, \ldots, v_n, eigenvalues $\lambda_1 > \lambda_2 \geq \cdots \geq \lambda_n \geq 0$.

Start with $x_0 = \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n$.

After q iterations, $A^q x_0 \propto v_1 + \sum_{i \geq 2} (\lambda_i / \lambda_1)^q \alpha_i v_i$

For $q \geq \log \lambda_1 / \lambda_2 \rho_1$, have $A^q x$ proportional to $v_1 \pm O(\epsilon)$.

$q = O(\lambda_1 \lambda_2^{-1} \log n)$.
Basic power method, $k = 1$

- Choose a random unit vector $x \in \mathbb{R}^n$.
- Output $A^q x$, renormalized to unit vector.
 - $x_{t+1} = Ax_t / \|Ax_t\|$ for $t = 0, \ldots, q - 1$.

Moritz Hardt, Eric Price (IBM)
The Noisy Power Method
2014-10-31
Basic power method, \(k = 1 \)

- Choose a random unit vector \(x \in \mathbb{R}^n \).
- Output \(A^q x \), renormalized to unit vector.

- \(x_{t+1} = Ax_t/\|Ax_t\| \) for \(t = 0, \ldots, q - 1 \).
Basic power method, $k = 1$

- Choose a random unit vector $x \in \mathbb{R}^n$.
- Output $A^q x$, renormalized to unit vector.
 - $x_{t+1} = A x_t / \| A x_t \|$ for $t = 0, \ldots, q - 1$.

Suppose A has eigenvectors v_1, \ldots, v_n, eigenvalues $\lambda_1 > \lambda_2 \geq \cdots \geq \lambda_n \geq 0$.

Start with $x_0 = \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n$.

After q iterations, $A^q x_0 \propto v_1 + \sum_{i \geq 2} (\lambda_i/\lambda_1)^q \alpha_i v_i$.

For $q \geq \log \lambda_1/\lambda_2 d \epsilon \alpha_1$, have $A^q x$ proportional to $v_1 \pm O(\epsilon)$.

$q = O((\lambda_1/\lambda_2)^{1/2} \log n)$.
Basic power method, $k = 1$

- Choose a random unit vector $x \in \mathbb{R}^n$.
- Output $A^q x$, renormalized to unit vector.
 - $x_{t+1} = A x_t / \|Ax_t\|$ for $t = 0, \ldots, q - 1$.

Moritz Hardt, Eric Price (IBM)

The Noisy Power Method

2014-10-31 4 / 18
Basic power method, \(k = 1 \)

- Choose a random unit vector \(x \in \mathbb{R}^n \).
- Output \(A^q x \), renormalized to unit vector.
 - \(x_{t+1} = A x_t / \| A x_t \| \) for \(t = 0, \ldots, q - 1 \).
Basic power method, $k = 1$

- Choose a random unit vector $x \in \mathbb{R}^n$.
- Output $A^q x$, renormalized to unit vector.
 - $x_{t+1} = Ax_t / \|Ax_t\|$ for $t = 0, \ldots, q - 1$.
- Suppose A has eigenvectors v_1, \ldots, v_n, eigenvalues $\lambda_1 > \lambda_2 \geq \cdots \lambda_n \geq 0$.

Moritz Hardt, Eric Price (IBM)
Basic power method, $k = 1$

- Choose a random unit vector $x \in \mathbb{R}^n$.
- Output $A^q x$, renormalized to unit vector.
 - $x_{t+1} = Ax_t/\|Ax_t\|$ for $t = 0, \ldots, q - 1$.
- Suppose A has eigenvectors v_1, \ldots, v_n, eigenvalues $\lambda_1 > \lambda_2 \geq \cdots \lambda_n \geq 0$.
- Start with $x_0 = \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n$.
Basic power method, $k = 1$

- Choose a random unit vector $x \in \mathbb{R}^n$.
- Output $A^q x$, renormalized to unit vector.
 $\triangleright x_{t+1} = Ax_t/\|Ax_t\|$ for $t = 0, \ldots, q - 1$.
- Suppose A has eigenvectors v_1, \ldots, v_n, eigenvalues $\lambda_1 > \lambda_2 \geq \cdots \geq \lambda_n \geq 0$.
- Start with $x_0 = \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n$.
- After q iterations,
 $$A^q x_0 = \sum_i \lambda_i^q \alpha_i v_i$$

Basic power method, $k = 1$

- Choose a random unit vector $x \in \mathbb{R}^n$.
- Output $A^q x$, renormalized to unit vector.

 - $x_{t+1} = A x_t / \| A x_t \|$ for $t = 0, \ldots, q - 1$.
- Suppose A has eigenvectors v_1, \ldots, v_n, eigenvalues $\lambda_1 > \lambda_2 \geq \cdots \geq \lambda_n \geq 0$.
- Start with $x_0 = \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n$.
- After q iterations,

\[
A^q x_0 = \sum_i \lambda_i^q \alpha_i v_i \propto v_1 + \sum_{i \geq 2} \left(\frac{\lambda_i}{\lambda_1} \right)^q \frac{\alpha_i}{\alpha_1} v_i
\]
Basic power method, $k = 1$

- Choose a random unit vector $x \in \mathbb{R}^n$.
- Output $A^q x$, renormalized to unit vector.
 - $x_{t+1} = Ax_t / \|Ax_t\|$ for $t = 0, \ldots, q - 1$.
- Suppose A has eigenvectors v_1, \ldots, v_n, eigenvalues $\lambda_1 > \lambda_2 \geq \cdots \geq \lambda_n \geq 0$.
- Start with $x_0 = \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n$.
- After q iterations,
 \[
 A^q x_0 = \sum_i \lambda_i^q \alpha_i v_i \propto v_1 + \sum_{i \geq 2} \left(\frac{\lambda_i}{\lambda_1} \right)^q \frac{\alpha_i}{\alpha_1} v_i
 \]
- For $q \geq \log_{\lambda_1/\lambda_2} \frac{d}{\epsilon \alpha_1}$, have $A^q x$ proportional to $v_1 \pm O(\epsilon)$.

Moritz Hardt, Eric Price (IBM)

The Noisy Power Method

2014-10-31
Basic power method, $k = 1$

- Choose a random unit vector $x \in \mathbb{R}^n$.
- Output $A^q x$, renormalized to unit vector.
 - $x_{t+1} = A x_t / \|A x_t\|$ for $t = 0, \ldots, q - 1$.
- Suppose A has eigenvectors v_1, \ldots, v_n, eigenvalues $\lambda_1 > \lambda_2 \geq \cdots \geq \lambda_n \geq 0$.
- Start with $x_0 = \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n$.
- After q iterations,

 $$A^q x_0 = \sum_i \lambda_i^q \alpha_i v_i \propto v_1 + \sum_{i \geq 2} \left(\frac{\lambda_i}{\lambda_1} \right)^q \frac{\alpha_i}{\alpha_1} v_i$$

- For $q \geq \log_\lambda \frac{d}{\epsilon \alpha_1}$, have $A^q x$ proportional to $v_1 \pm O(\epsilon)$.

 $$q = O\left(\frac{\lambda_1}{\lambda_1 - \lambda_2} \log n \right)$$
Handling noise, $k = 1$

- Consider the iteration

\[y_{t+1} = Ax_t + G \]
\[x_{t+1} = y_{t+1} / \| y_{t+1} \| \]

What conditions on G will cause this to converge to within ϵ?

- G must make progress at the beginning
- G must not perturb by ϵ at the end.
- Looser requirements in the middle.

Theorem:
Converges to $v_1 \pm O(\epsilon)$ if all the G satisfy

\[|G_1| \leq (\lambda_1 - \lambda_2) \frac{1}{\sqrt{d} \| G \|} \leq \epsilon (\lambda_1 - \lambda_2)^{\log(d/\epsilon)} \] in $O(\lambda_1 \lambda_2 - \lambda_1 \log(d/\epsilon))$ iterations.
Handling noise, $k = 1$

Consider the iteration

\[
y_{t+1} = Ax_t + G
\]

\[
x_{t+1} = y_{t+1} / \|y_{t+1}\|
\]
Handling noise, $k = 1$

- Consider the iteration

$$y_{t+1} = Ax_t + G$$
$$x_{t+1} = y_{t+1} / \|y_{t+1}\|$$
Handling noise, $k = 1$

- Consider the iteration

$$y_{t+1} = Ax_t + G$$
$$x_{t+1} = y_{t+1} / \|y_{t+1}\|$$

What conditions on G will cause this to converge to within ϵ?

- G must make progress at the beginning
- G must not perturb by ϵ at the end.
- Looser requirements in the middle.

Theorem:
Converges to $v_1 \pm O(\epsilon)$ if all the G satisfy
$$|G_1| \leq (\lambda_1 - \lambda_2) \frac{1}{\sqrt{d}} \|G\| \leq \epsilon (\lambda_1 - \lambda_2)$$
in $O(\lambda_1 \lambda_2 - \lambda_1 \log (d/\epsilon))$ iterations.
Handling noise, $k = 1$

- Consider the iteration

\[y_{t+1} = Ax_t + G \]
\[x_{t+1} = y_{t+1} / \|y_{t+1}\| \]

What conditions on G will cause this to converge to within ϵ?

▶ G must make progress at the beginning
▶ G must not perturb by ϵ at the end.
▶ Looser requirements in the middle.

Theorem:
Converges to $\mathbf{v}_1 \pm O(\epsilon)$ if all the G satisfy
\[|G_1| \leq (\lambda_1 - \lambda_2) \frac{1}{\sqrt{d}} \|G\| \leq \epsilon (\lambda_1 - \lambda_2) \]
in $O(\lambda_1 \lambda_2^{-1} \log (d/\epsilon))$ iterations.
Handling noise, $k = 1$

- Consider the iteration

$$y_{t+1} = Ax_t + G$$

$$x_{t+1} = y_{t+1}/\|y_{t+1}\|$$

What conditions on G will cause this to converge to within ϵ?

- G must make progress at the beginning
- G must not perturb by ϵ at the end.
- Looser requirements in the middle.

Theorem: Converges to $v_1 \pm O(\epsilon)$ if all the Gs satisfy

$$|G_1| \leq (\lambda_1 - \lambda_2) \frac{1}{\sqrt{d}} \|G\| \leq \epsilon (\lambda_1 - \lambda_2)$$

in $O(\lambda_1 \lambda_2 - \lambda_1 \log(d/\epsilon))$ iterations.
Handling noise, \(k = 1 \)

- Consider the iteration

\[
y_{t+1} = Ax_t + G
\]

\[
x_{t+1} = y_{t+1} / \|y_{t+1}\|
\]
Handling noise, $k = 1$

Consider the iteration

$$y_{t+1} = Ax_t + G$$

$$x_{t+1} = y_{t+1} / \| y_{t+1} \|$$

What conditions on G will cause this to converge to within ϵ?

- G must make progress at the beginning.
- G must not perturb by ϵ at the end.
- Looser requirements in the middle.

Theorem: Converges to $v_1 \pm O(\epsilon)$ if all the G satisfy

$$|G_1| \leq (\lambda_1 - \lambda_2) \frac{1}{\sqrt{d}} \| G \| \leq \epsilon (\lambda_1 - \lambda_2)$$

in $O(\lambda_1 \lambda_2 - \lambda_1 \log (d/\epsilon))$ iterations.
Handling noise, $k = 1$

Consider the iteration

$$y_{t+1} = Ax_t + G$$
$$x_{t+1} = y_{t+1} / \|y_{t+1}\|$$

What conditions on G will cause this to converge to within ϵ?

- G must make progress at the beginning
- G must not perturb by ϵ at the end.
- Looser requirements in the middle.

Theorem: Converges to $v_1 \pm O(\epsilon)$ if all the Gs satisfy

$$|G_1| \leq (\lambda_1 - \lambda_2) \frac{1}{\sqrt{d}} \|G\| \leq \epsilon (\lambda_1 - \lambda_2)$$

in $O((\lambda_1 - \lambda_2) - \lambda_1 \log(d/\epsilon))$ iterations.
Handling noise, $k = 1$

- Consider the iteration

\[y_{t+1} = Ax_t + G \]
\[x_{t+1} = y_{t+1} / \| y_{t+1} \| \]
Handling noise, \(k = 1 \)

- Consider the iteration

\[
y_{t+1} = Ax_t + G \\
x_{t+1} = y_{t+1} / \|y_{t+1}\| \]

What conditions on \(G \) will cause this to converge to within \(\epsilon \)?

- \(G \) must make progress at the beginning
- \(G \) must not perturb by \(\epsilon \) at the end.
- Looser requirements in the middle.

Theorem:

Converges to \(v_1 \pm O(\epsilon) \) if all the \(G \) satisfy

\[
|G_1| \leq (\lambda_1 - \lambda_2) \frac{1}{\sqrt{d}} \|G\| \leq \epsilon (\lambda_1 - \lambda_2) \]

in \(O(\lambda_1 \lambda_2 - \lambda_1 \log (d/\epsilon)) \) iterations.
Handling noise, $k = 1$

- Consider the iteration

$$y_{t+1} = Ax_t + G$$
$$x_{t+1} = y_{t+1} / \|y_{t+1}\|$$
Handling noise, $k = 1$

Consider the iteration

$$y_{t+1} = Ax_t + G$$
$$x_{t+1} = y_{t+1} / \|y_{t+1}\|$$

Theorem: Converges to $v_1 \pm O(\epsilon)$ if all the G satisfy

$$|G_1| \leq (\lambda_1 - \lambda_2) \frac{1}{\sqrt{d}} \|G\| \leq \epsilon (\lambda_1 - \lambda_2)$$

in $O(\lambda_1 \lambda_2 - \lambda_1 \log (d/\epsilon))$ iterations.

Moritz Hardt, Eric Price (IBM)
Handling noise, $k = 1$

- Consider the iteration

\[
y_{t+1} = Ax_t + G
\]

\[
x_{t+1} = y_{t+1} / \|y_{t+1}\|
\]
Handling noise, $k = 1$

- Consider the iteration

$$y_{t+1} = Ax_t + G$$

$$x_{t+1} = y_{t+1} / \| y_{t+1} \|$$
Handling noise, $k = 1$

Consider the iteration

$$y_{t+1} = Ax_t + G$$
$$x_{t+1} = y_{t+1} / \| y_{t+1} \|$$

Theorem:
Converges to $v_{1} \pm O(\epsilon)$ if all the Gs satisfy
$$|G_1| \leq (\lambda_1 - \lambda_2) 1/\sqrt{d} \|G\| \leq \epsilon (\lambda_1 - \lambda_2)$$ in $O(\lambda_1 \lambda_2 - \lambda_1 \log (d/\epsilon))$ iterations.
Handling noise, $k = 1$

- Consider the iteration

\[
y_{t+1} = Ax_t + G
\]

\[
x_{t+1} = y_{t+1} / \|y_{t+1}\|
\]

What conditions on G will cause this to converge to within ϵ?

▶ G must make progress at the beginning
▶ G must not perturb by ϵ at the end.
▶ Looser requirements in the middle.

Theorem: Converges to $v_1 \pm O(\epsilon)$ if all the G satisfy

\[
|G_1| \leq (\lambda_1 - \lambda_2) \frac{1}{\sqrt{d}} \|G\| \leq \epsilon (\lambda_1 - \lambda_2)
\]

in $O(\lambda_1 \lambda_2 - \lambda_1 \log (d/\epsilon))$ iterations.
Handling noise, $k = 1$

- Consider the iteration

\[
y_{t+1} = Ax_t + G \\
x_{t+1} = y_{t+1} / \|y_{t+1}\|
\]
Handling noise, $k = 1$

Consider the iteration

\[
\begin{align*}
y_{t+1} &= A x_t + G \\
x_{t+1} &= y_{t+1} / \| y_{t+1} \|
\end{align*}
\]
Handling noise, \(k = 1 \)

- Consider the iteration

\[
\begin{align*}
 y_{t+1} &= Ax_t + G \\
 x_{t+1} &= y_{t+1} / \|y_{t+1}\|
\end{align*}
\]
Handling noise, $k = 1$

- Consider the iteration

\[y_{t+1} = Ax_t + G \]

\[x_{t+1} = y_{t+1} / \| y_{t+1} \| \]

What conditions on G will cause this to converge to within ϵ?

- G must make progress at the beginning.
- G must not perturb by ϵ at the end.
- Looser requirements in the middle.

Theorem: Converges to $v_1 \pm O(\epsilon)$ if all the Gs satisfy

\[|G_1| \leq (\lambda_1 - \lambda_2) \frac{1}{\sqrt{d}} \| G \| \leq \epsilon (\lambda_1 - \lambda_2) \text{ in } O((\lambda_1 - \lambda_2) \log (d/\epsilon)) \text{ iterations.} \]
Handling noise, \(k = 1 \)

- Consider the iteration

\[
y_{t+1} = Ax_t + G
\]

\[
x_{t+1} = y_{t+1} / \| y_{t+1} \|
\]

What conditions on \(G \) will cause this to converge to within \(\epsilon \)?

- \(G \) must make progress at the beginning
- \(G \) must not perturb by \(\epsilon \) at the end.
- Looser requirements in the middle.

Theorem: Converges to \(v_1 \pm O(\epsilon) \) if all the \(G \) satisfy

\[
|G_1| \leq \left(\lambda_1 - \lambda_2 \right) \frac{1}{\sqrt{d}} \| G \| \leq \epsilon \left(\lambda_1 - \lambda_2 \right) \log \left(\frac{d}{\epsilon} \right)
\]

in \(O\left(\lambda_1 \lambda_2 - \lambda_1 \log \left(\frac{d}{\epsilon} \right) \right) \) iterations.
Handling noise, $k = 1$

- Consider the iteration

\[y_{t+1} = Ax_t + G \]
\[x_{t+1} = y_{t+1} / \|y_{t+1}\| \]
Handling noise, $k = 1$

- Consider the iteration

$$y_{t+1} = Ax_t + G$$

$$x_{t+1} = y_{t+1} / \|y_{t+1}\|$$

What conditions on G will cause this to converge to within ϵ?

- G must make progress at the beginning
- G must not perturb by ϵ at the end.
- Looser requirements in the middle.

Theorem: Converges to $v_1 \pm O(\epsilon)$ if all the Gs satisfy

$$|G_1| \leq (\lambda_1 - \lambda_2) \frac{1}{\sqrt{d}} \frac{1}{\|G\|} \leq \epsilon (\lambda_1 - \lambda_2)$$
in $O(\lambda_1 \lambda_2 - \lambda_1 \log (d/\epsilon))$ iterations.
Handling noise, $k = 1$

Consider the iteration

\[
y_{t+1} = A x_t + G \\
x_{t+1} = y_{t+1} / \| y_{t+1} \|
\]
Handling noise, \(k = 1 \)

- Consider the iteration

\[
y_{t+1} = Ax_t + G \\
x_{t+1} = y_{t+1} / \|y_{t+1}\|
\]

What conditions on \(G \) will cause this to converge to within \(\epsilon \)?

- \(G \) must make progress at the beginning
- \(G \) must not perturb by \(\epsilon \) at the end.
- Looser requirements in the middle.

Theorem: Converges to \(v_1 \pm O(\epsilon) \) if all the \(G \) satisfy

\[
|G_1| \leq (\lambda_1 - \lambda_2) \frac{1}{\sqrt{d}} \|G\| \leq \epsilon (\lambda_1 - \lambda_2) \text{ in } O(\frac{\lambda_1 - \lambda_2}{\lambda_1 \lambda_2} \log(d/\epsilon)) \text{ iterations.}
\]
Handling noise, $k = 1$

- Consider the iteration

$$y_{t+1} = Ax_t + G$$
$$x_{t+1} = y_{t+1}/\|y_{t+1}\|$$
Handling noise, \(k = 1 \)

- Consider the iteration

\[
y_{t+1} = Ax_t + G \\
x_{t+1} = y_{t+1} / \|y_{t+1}\|
\]

What conditions on \(G \) will cause this to converge to within \(\epsilon \)?

- \(G \) must make progress at the beginning
- \(G \) must not perturb by \(\epsilon \) at the end.
- Looser requirements in the middle.

Theorem:

Converges to \(v_1 \pm O(\epsilon) \) if all the \(G \) satisfy

\[
|G_1| \leq (\lambda_1 - \lambda_2) \frac{1}{\sqrt{d}} \|G\| \leq \epsilon (\lambda_1 - \lambda_2) \log (d/\epsilon)
\]

in \(O(\lambda_1 \lambda_2 - \lambda_1 \log (d/\epsilon)) \) iterations.
Handling noise, $k = 1$

Consider the iteration

$$y_{t+1} = Ax_t + G$$
$$x_{t+1} = y_{t+1} / \| y_{t+1} \|$$

What conditions on G will cause this to converge to within ϵ?

▶ G must make progress at the beginning
▶ G must not perturb by ϵ at the end.
▶ Looser requirements in the middle.

Theorem: Converges to $v_1 \pm O(\epsilon)$ if all the G satisfy

$$|G_1| \leq (\lambda_1 - \lambda_2) \frac{1}{\sqrt{d}} \|G\| \leq \epsilon (\lambda_1 - \lambda_2)$$

in $O(\lambda_1^{-\lambda_2} - \lambda_1 \log(d/\epsilon))$ iterations.
Handling noise, $k = 1$

- Consider the iteration

\[
y_{t+1} = Ax_t + G
\]

\[
x_{t+1} = y_{t+1} / \| y_{t+1} \|
\]

What conditions on G will cause this to converge to within ϵ?

- G must make progress at the beginning
- G must not perturb by ϵ at the end.
- Looser requirements in the middle.

Theorem: Converges to $v_1 \pm O(\epsilon)$ if all the G satisfy

\[
|G_1| \leq (\lambda_1 - \lambda_2) \frac{1}{\sqrt{d}} \|G\| \leq \epsilon (\lambda_1 - \lambda_2)
\]

in $O(\lambda_1 \lambda_2 - \lambda_1 \log(d/\epsilon))$ iterations.
Handling noise, \(k = 1 \)

- Consider the iteration

\[
y_{t+1} = Ax_t + G
\]
\[
x_{t+1} = y_{t+1} / \|y_{t+1}\|
\]

What conditions on \(G \) will cause this to converge to within \(\epsilon \)?

- \(G \) must make progress at the beginning
- \(G \) must not perturb by \(\epsilon \) at the end.
- Looser requirements in the middle.

Theorem: Converges to \(v_1 \pm O(\epsilon) \) if all the \(G \) satisfy

\[
|G_1| \leq (\lambda_1 - \lambda_2) \frac{1}{\sqrt{d}} \|G\| \leq \epsilon (\lambda_1 - \lambda_2) \text{ in } O(\lambda_1 \lambda_2 - \lambda_1 \log (d/\epsilon)) \text{ iterations.}
\]
Handling noise, $k = 1$

Consider the iteration

$$y_{t+1} = Ax_t + G$$

$$x_{t+1} = y_{t+1}/\|y_{t+1}\|$$

What conditions on G will cause this to converge to within ϵ?

- G must make progress at the beginning.
- G must not perturb by ϵ at the end.
- Looser requirements in the middle.

Theorem: Converges to $v_1 \pm O(\epsilon)$ if all the G satisfy $|G_1| \leq (\lambda_1 - \lambda_2) \frac{1}{\sqrt{d}} \|G\| \leq \epsilon (\lambda_1 - \lambda_2)$ in $O((\lambda_1 - \lambda_2) - \lambda_2 \log(d/\epsilon))$ iterations.
Handling noise, \(k = 1 \)

- Consider the iteration

\[
y_{t+1} = Ax_t + G
\]

\[
x_{t+1} = y_{t+1} / \|y_{t+1}\|
\]
Handling noise, $k = 1$

- Consider the iteration

\[y_{t+1} = Ax_t + G \]
\[x_{t+1} = y_{t+1} / \| y_{t+1} \| \]

- What conditions on G will cause this to converge to within ϵ?

\[\text{Theorem:} \quad \text{Converges to } v_1 \pm O(\epsilon) \text{ if all the } G \text{ satisfy} \]
\[|G_1| \leq (\lambda_1 - \lambda_2) \frac{1}{\sqrt{d}} \|G\| \leq \epsilon (\lambda_1 - \lambda_2) \]
\[\text{in } O\left((\lambda_1 - \lambda_2 - \lambda_1 \log\left(d/\epsilon \right)) \right) \text{ iterations.} \]
Handling noise, $k = 1$

- Consider the iteration

$$y_{t+1} = Ax_t + G$$
$$x_{t+1} = y_{t+1} / \| y_{t+1} \|$$

- What conditions on G will cause this to converge to within ϵ?
 - G must make progress at the beginning

$$|G_1| \leq (\lambda_1 - \lambda_2) \frac{1}{\sqrt{d}}$$
Handling noise, $k = 1$

- Consider the iteration

$$y_{t+1} = Ax_t + G$$
$$x_{t+1} = y_{t+1} / \|y_{t+1}\|$$

- What conditions on G will cause this to converge to within ϵ?
 - G must make progress at the beginning
 - G must not perturb by ϵ at the end.

$$|G_1| \leq (\lambda_1 - \lambda_2) \frac{1}{\sqrt{d}}$$
$$\|G\| \leq \epsilon(\lambda_1 - \lambda_2)$$
Handling noise, $k = 1$

- Consider the iteration

$$y_{t+1} = Ax_t + G$$
$$x_{t+1} = y_{t+1} / \|y_{t+1}\|$$

- What conditions on G will cause this to converge to within ϵ?
 - G must make progress at the beginning
 - G must not perturb by ϵ at the end.
 - Looser requirements in the middle.

$$|G_1| \leq (\lambda_1 - \lambda_2) \frac{1}{\sqrt{d}}$$
$$\|G\| \leq \epsilon(\lambda_1 - \lambda_2)$$
Handling noise, $k = 1$

- Consider the iteration

$$y_{t+1} = Ax_t + G$$
$$x_{t+1} = \frac{y_{t+1}}{\|y_{t+1}\|}$$

- What conditions on G will cause this to converge to within ϵ?
 - G must make progress at the beginning
 - G must not perturb by ϵ at the end.
 - Looser requirements in the middle.

Theorem: Converges to $v_1 \pm O(\epsilon)$ if all the G satisfy

$$|G_1| \leq (\lambda_1 - \lambda_2) \frac{1}{\sqrt{d}}$$
$$\|G\| \leq \epsilon(\lambda_1 - \lambda_2)$$

in $O(\frac{\lambda_1}{\lambda_2 - \lambda_1} \log(d/\epsilon))$ iterations.
Noisy convergence proof ($k = 1$)

- Use a potential-based argument to show progress at each step. Potential:

\[
\tan \theta = \frac{\sqrt{\sum_{j>1} \alpha_j^2}}{\alpha_1}
\]
Noisy convergence proof \((k = 1)\)

- Use a potential-based argument to show progress at each step. Potential:

\[
\tan \theta = \frac{\sqrt{\sum_{j > 1} \alpha_j^2}}{\alpha_1}
\]

- With no noise:

\[
\tan \theta_{t+1} = \frac{\sqrt{\sum_{j > 1} \lambda_j^2 \alpha_j^2}}{\lambda_1 \alpha_1} \leq \frac{\lambda_2}{\lambda_1} \tan \theta_t
\]
Noisy convergence proof \((k = 1)\)

- Use a potential-based argument to show progress at each step. Potential:

\[
\tan \theta = \frac{\sqrt{\sum_{j > 1} \alpha_j^2}}{\alpha_1}
\]

- With no noise:

\[
\tan \theta_{t+1} = \frac{\sqrt{\sum_{j > 1} \lambda_j^2 \alpha_j^2}}{\lambda_1 \alpha_1} \leq \frac{\lambda_2}{\lambda_1} \tan \theta_t
\]

- With noise \(G\) satisfying the conditions \((|G_1|, \|G\|\) small enough),

\[
\tan \theta_{t+1} \leq \frac{\lambda_2 \sqrt{\sum_{j > 1} \alpha_j^2} + \|G\|}{\lambda_1 \alpha_1 - |G_1|}
\]
Noisy convergence proof \((k = 1)\)

- Use a potential-based argument to show progress at each step. Potential:

\[
\tan \theta = \frac{\sqrt{\sum_{j>1} \alpha_j^2}}{\alpha_1}
\]

- With no noise:

\[
\tan \theta_{t+1} = \frac{\sqrt{\sum_{j>1} \lambda_j^2 \alpha_j^2}}{\lambda_1 \alpha_1} \leq \frac{\lambda_2}{\lambda_1} \tan \theta_t
\]

- With noise \(G\) satisfying the conditions (\(|G_1|\), \(\|G\|\) small enough),

\[
\tan \theta_{t+1} \leq \frac{\lambda_2 \sqrt{\sum_{j>1} \alpha_j^2} + \|G\|}{\lambda_1 \alpha_1 - |G_1|} \leq \epsilon + \left(\frac{\lambda_2}{\lambda_1}\right)^{1/4} \tan \theta_t
\]
Noisy convergence proof (general k)

- Use “principal angle” θ from X to U
- Let $U \in \mathbb{R}^{d \times k}$ have top k eigenvectors, $V = U^\perp$.

\[
\tan \theta := \frac{\| V^T X \|}{\| U^T X \|} = \sqrt{\frac{\sum_{j > k} \alpha_j^2}{\sum_{j \leq k} \alpha_j^2}}
\]
Noisy convergence proof (general \(k\))

- Use “principal angle” \(\theta\) from \(X\) to \(U\)
- let \(U \in \mathbb{R}^{d \times k}\) have top \(k\) eigenvectors, \(V = U^\perp\).

\[
\tan \theta := \frac{\|V^T X\|}{\|U^T X\|} = \sqrt{\frac{\sum_{j>k} \alpha_j^2}{\sum_{j\leq k} \alpha_j^2}}
\]

- With no noise:

\[
\tan \theta_{t+1} = \sqrt{\frac{\sum_{j>k} \lambda_j^2 \alpha_j^2}{\sum_{j\leq k} \lambda_j^2 \alpha_j^2}}
\]
Noisy convergence proof (general k)

- Use “principal angle” θ from X to U
 - let $U \in \mathbb{R}^{d \times k}$ have top k eigenvectors, $V = U^\perp$.

\[
\tan \theta := \frac{\|V^T X\|}{\|U^T X\|} = \sqrt{\frac{\sum_{j > k} \alpha_j^2}{\sum_{j \leq k} \alpha_j^2}}
\]

- With no noise:

\[
\tan \theta_{t+1} = \sqrt{\frac{\sum_{j > k} \lambda_j^2 \alpha_j^2}{\sum_{j \leq k} \lambda_j^2 \alpha_j^2}} \leq \frac{\lambda_{k+1}}{\lambda_k} \tan \theta_t
\]
Noisy convergence proof (general k)

- Use “principal angle” θ from X to U
 - Let $U \in \mathbb{R}^{d \times k}$ have top k eigenvectors, $V = U_\perp$.

$$\tan \theta := \frac{\| V^T X \|}{\| U^T X \|} = \sqrt{\frac{\sum_{j>k} \alpha_j^2}{\sum_{j\leq k} \alpha_j^2}}$$

- With no noise:

$$\tan \theta_{t+1} = \sqrt{\frac{\sum_{j>k} \lambda_j^2 \alpha_j^2}{\sum_{j\leq k} \lambda_j^2 \alpha_j^2}} \leq \frac{\lambda_{k+1}}{\lambda_k} \tan \theta_t$$

- With noise G “small enough” we will have

$$\tan \theta_{t+1} \leq \frac{\lambda_{k+1} \| V^T X \| + \| G \|}{\lambda_k \| U^T X \| - \| U^T G \|}$$
Noisy convergence proof (general k)

- Use “principal angle” θ from X to U
 - let $U \in \mathbb{R}^{d \times k}$ have top k eigenvectors, $V = U^\perp$.

$$
tan \theta := \frac{\|V^T X\|}{\|U^T X\|} = \sqrt{\frac{\sum_{j > k} \alpha_j^2}{\sum_{j \leq k} \alpha_j^2}}
$$

- With no noise:

$$
tan \theta_{t+1} = \sqrt{\frac{\sum_{j > k} \lambda_j^2 \alpha_j^2}{\sum_{j \leq k} \lambda_j^2 \alpha_j^2}} \leq \frac{\lambda_{k+1}}{\lambda_k} tan \theta_t
$$

- With noise G “small enough” we will have

$$
tan \theta_{t+1} \leq \frac{\lambda_{k+1} \|V^T X\| + \|G\|}{\lambda_k \|U^T X\| - \|U^T G\|} \leq \epsilon + \left(\frac{\lambda_{k+1}}{\lambda_k}\right)^{1/4} tan \theta_t
$$
Theorem

Consider running the noisy power method on a random starting space $X_0 \in \mathbb{R}^{d \times k}$. Let $U \in \mathbb{R}^{d \times k}$ have top k eigenvectors of A. If

$$5\|G\| \leq \epsilon(\lambda_k - \lambda_{k+1}) \quad 5\|U^T G\| \leq (\lambda_k - \lambda_{k+1}) \frac{1}{\sqrt{kd}}$$

then after $L = O\left(\frac{\lambda_k}{\lambda_k - \lambda_{k+1}} \log(d/\epsilon)\right)$ iterations,

$$\tan \Theta(X_L, U) \lesssim \epsilon \iff \|(I - X_L X_L^T) U\| \lesssim \epsilon$$
Consider running the noisy power method on a random starting space $X_0 \in \mathbb{R}^{d \times k}$. Let $U \in \mathbb{R}^{d \times k}$ have top k eigenvectors of A. If

$$5\|G\| \leq \epsilon(\lambda_k - \lambda_{k+1}) \quad 5\|U^T G\| \leq (\lambda_k - \lambda_{k+1}) \frac{1}{\sqrt{kd}}$$

then after $L = O\left(\frac{\lambda_k}{\lambda_k - \lambda_{k+1}} \log(d/\epsilon)\right)$ iterations,

$$\tan \Theta(X_L, U) \lesssim \epsilon \iff \|(I - X_L X_L^T)U\| \lesssim \epsilon$$

- Can also iterate on a $p > k$ dimensional subspace.
Noisy power method lemma

Theorem

Consider running the noisy power method on a random starting space $X_0 \in \mathbb{R}^{d \times p}$. Let $U \in \mathbb{R}^{d \times k}$ have top k eigenvectors of A. If

$$5\|G\| \leq \epsilon(\lambda_k - \lambda_{k+1}) \quad 5\|U^T G\| \leq (\lambda_k - \lambda_{k+1})\frac{\sqrt{p} - \sqrt{k-1}}{\sqrt{d}}$$

then after $L = O\left(\frac{\lambda_k}{\lambda_k - \lambda_{k+1}} \log(d/\epsilon)\right)$ iterations,

$$\tan \Theta(X_L, U) \lesssim \epsilon \iff \| (I - X_L X_L^T) U \| \lesssim \epsilon$$

- Can also iterate on a $p > k$ dimensional subspace.
 - kth singular value of X is typically $\frac{\sqrt{p} - \sqrt{k-1}}{\sqrt{d}}$.

Moritz Hardt, Eric Price (IBM)
Consider running the noisy power method on a random starting space $X_0 \in \mathbb{R}^{d \times 2k}$. Let $U \in \mathbb{R}^{d \times k}$ have top k eigenvectors of A. If

\[
5\|G\| \leq \epsilon(\lambda_k - \lambda_{k+1}) \quad \quad 5\|U^T G\| \leq (\lambda_k - \lambda_{k+1})\sqrt{\frac{k}{d}}
\]

then after $L = O\left(\frac{\lambda_k}{\lambda_k - \lambda_{k+1}} \log(d/\epsilon)\right)$ iterations,

\[
\tan \Theta(X_L, U) \lesssim \epsilon \iff \|(I - X_L X_L^T)U\| \lesssim \epsilon
\]

- Can also iterate on a $p > k$ dimensional subspace.
 - kth singular value of X is typically $\sqrt{\frac{p-k-1}{d}}$.

\[
\begin{align*}
\text{Moritz Hardt, Eric Price (IBM)} \\
\text{The Noisy Power Method} \\
2014-10-31 8 / 18
\end{align*}
\]
Noisy power method lemma

Theorem

Consider running the noisy power method on a random starting space \(X_0 \in \mathbb{R}^{d \times 2k}\). Let \(U \in \mathbb{R}^{d \times k}\) have top \(k\) eigenvectors of \(A\). If

\[
5 \|G\| \leq \epsilon (\lambda_k - \lambda_{k+1}) \quad \quad \text{and} \quad \quad 5 \|U^T G\| \leq (\lambda_k - \lambda_{k+1}) \sqrt{\frac{k}{d}}
\]

then after \(L = O\left(\frac{\lambda_k}{\lambda_k - \lambda_{k+1}} \log(d/\epsilon)\right)\) iterations,

\[
\tan \Theta(X_L, U) \lesssim \epsilon \iff \|(I - X_L X_L^T) U\| \lesssim \epsilon
\]

- Can also iterate on a \(p > k\) dimensional subspace.
 - \(k\)th singular value of \(X\) is typically \(\sqrt{\frac{p-k}{d}}\).
- If \(G\) is fairly uniform, expect \(\|U^T G\| \approx \|G\| \sqrt{\frac{k}{d}}\).
Noisy power method lemma

Theorem

Consider running the noisy power method on a random starting space $X_0 \in \mathbb{R}^{d \times 2k}$. Let $U \in \mathbb{R}^{d \times k}$ have top k eigenvectors of A. If

$$5 \| G \| \leq \epsilon (\lambda_k - \lambda_{k+1}) \quad 5 \| U^T G \| \leq (\lambda_k - \lambda_{k+1}) \sqrt{\frac{k}{d}}$$

then after $L = O\left(\frac{\lambda_k}{\lambda_k - \lambda_{k+1}} \log(d/\epsilon)\right)$ iterations,

$$\tan \Theta(X_L, U) \lesssim \epsilon \iff \|(I - X_L X_L^T)U\| \lesssim \epsilon$$

- Can also iterate on a $p > k$ dimensional subspace.
 - kth singular value of X is typically $\sqrt{\frac{p - \sqrt{k-1}}{\sqrt{d}}}$.
- If G is fairly uniform, expect $\| U^T G \| \approx \| G \| \sqrt{\frac{k}{d}}$
 - First condition is the main one, iteration will converge to $\frac{\| G \|}{\lambda_k - \lambda_{k+1}}$.

Moritz Hardt, Eric Price (IBM)
Conjectures to remove eigengap

Theorem

Consider running the noisy power method on a random starting space $X_0 \in \mathbb{R}^{d \times 2k}$. Let $U \in \mathbb{R}^{d \times k}$ have top k eigenvectors of A. If

$$5\|G\| \leq \epsilon(\lambda_k - \lambda_{k+1}) \quad 5\|U^T G\| \leq (\lambda_k - \lambda_{k+1})\sqrt{\frac{k}{d}}$$

at each iteration then after $L = O(\frac{\lambda_k}{\lambda_k - \lambda_{k+1}} \log(d/\epsilon))$ iterations,

$$\tan \Theta(X_L, U) \lesssim \epsilon \iff \|(I - X_LX_L^T)U\| \lesssim \epsilon$$

- If $\lambda_k = \lambda_{k+1}$, our theorem is useless.
Conjectures to remove eigengap

Conjecture (Can depend on $\lambda_k - \lambda_{2k+1}$ eigengap)

Consider running the noisy power method on a random starting space $X_0 \in \mathbb{R}^{d \times 2k}$. Let $U \in \mathbb{R}^{d \times k}$ have top k eigenvectors of A. If

$$5\|G\| \leq \epsilon (\lambda_k - \lambda_{2k+1}) \quad 5\|UTG\| \leq (\lambda_k - \lambda_{2k+1}) \sqrt{\frac{k}{d}}$$

at each iteration then after $L = O\left(\frac{\lambda_k}{\lambda_k - \lambda_{2k+1}} \log(d/\epsilon)\right)$ iterations,

$$\tan \Theta(X_L, U) \lesssim \epsilon \iff \|(I - X_LX_L^T)U\| \lesssim \epsilon$$

- If $\lambda_k = \lambda_{k+1}$, our theorem is useless.
- If X is $n \times p$, maybe the relevant eigengap is $\lambda_k - \lambda_{p+1}$?
Conjectures to remove eigengap

Consider running the noisy power method on a random starting space $X_0 \in \mathbb{R}^{d \times 2k}$. Let $U \in \mathbb{R}^{d \times k}$ have top k eigenvectors of A. If

$$5\|G\| \leq \epsilon (\lambda_k - \lambda_{2k+1}) \quad \text{and} \quad 5\|U^T G\| \leq (\lambda_k - \lambda_{2k+1}) \sqrt{\frac{k}{d}}$$

at each iteration then after $L = O\left(\frac{\lambda_k}{\lambda_k - \lambda_{2k+1}} \log(d/\epsilon)\right)$ iterations,

$$\tan \Theta(X_L, U) \lesssim \epsilon \iff \|(I - X_L X_L^T)U\| \lesssim \epsilon$$

- If $\lambda_k = \lambda_{k+1}$, our theorem is useless.
- If X is $n \times p$, maybe the relevant eigengap is $\lambda_k - \lambda_{p+1}$?
- But do we need any eigengap at all?
Conjectures to remove eigengap

- Do we need any eigengap at all?

\[\| (I - XX^T) U \| \leq \epsilon. \]

Not clear for \(X \) to approximate \(A \):

\[\| (I - XX^T) A \| \leq \lambda_k + 1 + \epsilon. \]

This is weaker: doesn't imply Frobenius approximation.

Conjecture

Consider running the noisy power method on a random starting space \(X_0 \in \mathbb{R}^{d \times 2k} \). Let \(U \in \mathbb{R}^{d \times k} \) have top k eigenvectors of \(A \). If

\[\| G \| \leq \epsilon \| U^T G \| \leq \epsilon \sqrt{kd}, \]

at each iteration then after \(L = O(\lambda_k + 1) \) iterations,

\[\| (I - XLX^T) A \| \leq \lambda_k + 1 + O(\epsilon). \]
Conjectures to remove eigengap

- Do we need any eigengap at all?
- Yes for X to approximate U: $\| (I - XX^T) U \| \leq \epsilon$.

▶ This is weaker: doesn't imply Frobenius approximation.
Conjectures to remove eigengap

- Do we need any eigengap at all?
- Yes for X to approximate U: $\| (I - XX^T)U \| \leq \epsilon$.
- Not clear for X to approximate A: $\| (I - XX^T)A \| \leq \lambda_{k+1} + \epsilon$.
Conjectures to remove eigengap

- Do we need any eigengap at all?
- Yes for X to approximate U: $\| (I - XX^T) U \| \leq \epsilon$.
- Not clear for X to approximate A: $\| (I - XX^T) A \| \leq \lambda_{k+1} + \epsilon$.
 - This is weaker: doesn’t imply Frobenius approximation.
Conjectures to remove eigengap

- Do we need any eigengap at all?
- Yes for X to approximate U: $\|(I - XX^T)U\| \leq \epsilon$.
- Not clear for X to approximate A: $\|(I - XX^T)A\| \leq \lambda_{k+1} + \epsilon$.
 ▶ This is weaker: doesn’t imply Frobenius approximation.

Conjecture

Consider running the noisy power method on a random starting space $X_0 \in \mathbb{R}^{d \times 2k}$. Let $U \in \mathbb{R}^{d \times k}$ have top k eigenvectors of A. If

$$\|G\| \leq \epsilon \hspace{1cm} \|U^T G\| \leq \epsilon \sqrt{\frac{k}{d}}$$

at each iteration then after $L = O\left(\frac{\lambda_{k+1}}{\epsilon} \log(d/\epsilon)\right)$ iterations,

$$\|(I - XX^T)A\| \leq \lambda_{k+1} + O(\epsilon)$$
Consider running the noisy power method on a random starting space $X_0 \in \mathbb{R}^{d \times 2k}$. Let $U \in \mathbb{R}^{d \times k}$ have the top k eigenvectors of A. If

$$5\|G\| \leq \epsilon(\lambda_k - \lambda_{k+1}) \quad 5\|U^T G\| \leq (\lambda_k - \lambda_{k+1})\sqrt{\frac{k}{d}}$$

at each iteration then after $L = O\left(\frac{k}{\lambda_k - \lambda_{k+1}} \log(d/\epsilon) \right)$ iterations,

$$\tan \Theta(X_L, U) \lesssim \epsilon \iff \|(I - X_L X_L^T)U\| \lesssim \epsilon$$

- Gaussian G: if $G_{i,j} \sim N(0, \sigma^2)$ then $\|G\| \lesssim \sqrt{d}\sigma$, $\|U^T G\| \lesssim \sqrt{k}\sigma$ with high probability. Hence $\sigma = \epsilon(\lambda_k - \lambda_{k+1})/\sqrt{d}$ is tolerable.
Outline

1 Applications
Applications of the Noisy Power Method

Will discuss two applications of our theorem:
- Privacy-preserving spectral analysis [Hardt-Roth ’13]
- Streaming PCA [Mitliagkas-Caramanis-Jain ’13]

Both cases, get improved bound.
Privacy-preserving spectral analysis

- Can we find *differentially private* approximations to the top eigenvectors?

- Think of A as related to adjacency matrix for graph (web links, social network, etc.)

- Top eigenvectors are useful to study and reveal (e.g. PageRank, Cheever cuts)

- Don't want to reveal whether x and y are friends.

- Randomized algorithm f is (ϵ, δ) differentially private if:

 $\text{Pr}[f(A) \in S] \leq e^{\epsilon} \text{Pr}[f(A') \in S] + \delta$

 - Typical dependence is $\text{poly}(1/\epsilon \log(1/\delta))$.

Moritz Hardt, Eric Price (IBM)
Privacy-preserving spectral analysis

- Can we find *differentially private* approximations to the top eigenvectors?
- Think of A as related to adjacency matrix for graph (web links, social network, etc.)
Privacy-preserving spectral analysis

- Can we find *differentially private* approximations to the top eigenvectors?
- Think of A as related to adjacency matrix for graph (web links, social network, etc.)
 - Top eigenvectors are useful to study and reveal (e.g. PageRank, Cheever cuts)

Randomized algorithm f is (ϵ, δ)-differentially private if:

$$\Pr[f(A) \in S] \leq e^{\epsilon} \Pr[f(A') \in S] + \delta$$

Typical dependence is $\text{poly}(1/\epsilon \log(1/\delta))$.

Moritz Hardt, Eric Price (IBM)
Privacy-preserving spectral analysis

- Can we find *differentially private* approximations to the top eigenvectors?
- Think of A as related to adjacency matrix for graph (web links, social network, etc.)
 - Top eigenvectors are useful to study and reveal (e.g. PageRank, Cheever cuts)
 - Don’t want to reveal whether x and y are friends.
Privacy-preserving spectral analysis

- Can we find \textit{differentially private} approximations to the top eigenvectors?

- Think of A as related to adjacency matrix for graph (web links, social network, etc.)
 - Top eigenvectors are useful to study and reveal (e.g. PageRank, Cheever cuts)
 - Don’t want to reveal whether x and y are friends.

- Randomized algorithm f is (ϵ, δ) differentially private if: for any A, A' with $\|A - A'\| \leq 1$, and for any subset S of the range,

$$\Pr[f(A) \in S] \leq e^\epsilon \Pr[f(A') \in S] + \delta$$
Privacy-preserving spectral analysis

- Can we find *differentially private* approximations to the top eigenvectors?
- Think of A as related to adjacency matrix for graph (web links, social network, etc.)
 - Top eigenvectors are useful to study and reveal (e.g. PageRank, Cheever cuts)
 - Don’t want to reveal whether x and y are friends.
- Randomized algorithm f is (ϵ, δ) differentially private if: for any A, A' with $\|A - A'\| \leq 1$, and for any subset S of the range,
 \[
 \Pr[f(A) \in S] \leq e^\epsilon \Pr[f(A') \in S] + \delta
 \]
- Typical dependence is $\text{poly}(\frac{1}{\epsilon} \log(1/\delta))$.
Privacy-preserving spectral analysis

- Hardt-Roth ’12: Noisy power method $X \rightarrow AX + G$ preserves privacy if $G_{i,j} \sim N(0, \sigma^2)$ for large enough σ at each stage.
Privacy-preserving spectral analysis

- Hardt-Roth ’12: Noisy power method $X \rightarrow AX + G$ preserves privacy if $G_{i,j} \sim N(0, \sigma^2)$ for large enough σ at each stage.
- Apply our theorem to see how well the result approximates U.

Suppose A represents random graph with a planted sparse cut. Then the (ϵ, δ)-differentially private result is very close to U.

[Hardt-Roth: $k=1$ case.]

[Added bonus: algorithm uses sparsity of A.]
Privacy-preserving spectral analysis

- Hardt-Roth ’12: Noisy power method $X \rightarrow AX + G$ preserves privacy if $G_{i,j} \sim N(0, \sigma^2)$ for large enough σ at each stage.
- Apply our theorem to see how well the result approximates U.
- Complicated expression, but for example:

 - Suppose A represents random graph with a planted sparse cut.
 - Then the (ϵ, δ)-differentially private result is very close to U.
 - [Hardt-Roth: $k = 1$ case.]

Added bonus: algorithm uses sparsity of A.
Privacy-preserving spectral analysis

- Hardt-Roth ’12: Noisy power method $X \rightarrow AX + G$ preserves privacy if $G_{i,j} \sim N(0, \sigma^2)$ for large enough σ at each stage.
- Apply our theorem to see how well the result approximates U.
- Complicated expression, but for example:
 - Suppose A represents random graph with a planted sparse cut.

\[\text{Moritz Hardt, Eric Price (IBM)} \]
Hardt-Roth ’12: Noisy power method $X \rightarrow AX + G$ preserves privacy if $G_{i,j} \sim N(0, \sigma^2)$ for large enough σ at each stage.

Apply our theorem to see how well the result approximates U.

Complicated expression, but for example:
- Suppose A represents random graph with a planted sparse cut.
- Then the (ϵ, δ)-differentially private result is very close to U.

[Hardt-Roth: $k=1$ case.]

Added bonus: algorithm uses sparsity of A.

Privacy-preserving spectral analysis

- Hardt-Roth ’12: Noisy power method $X \rightarrow AX + G$ preserves privacy if $G_{i,j} \sim N(0, \sigma^2)$ for large enough σ at each stage.
- Apply our theorem to see how well the result approximates U.
- Complicated expression, but for example:
 - Suppose A represents random graph with a planted sparse cut.
 - Then the (ϵ, δ)-differentially private result is very close to U.
 - [Hardt-Roth: $k = 1$ case.]
Hardt-Roth ’12: Noisy power method $X \rightarrow AX + G$ preserves privacy if $G_{i,j} \sim N(0, \sigma^2)$ for large enough σ at each stage.

Apply our theorem to see how well the result approximates U.

Complicated expression, but for example:

- Suppose A represents random graph with a planted sparse cut.
- Then the (ϵ, δ)-differentially private result is very close to U.
- [Hardt-Roth: $k = 1$ case.]

Added bonus: algorithm uses sparsity of A.
Streaming PCA

- Can take samples $x_1, x_2, \ldots \sim \mathcal{D}$ in \mathbb{R}^d.

\[\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^T. \]

Can use $O(nk)$ space if Σ is nearly low rank.

[Mitliagkas-Caramanis-Jain '13] Yes, using more samples. Can do one iteration of the power method in small space:

\[X_{t+1} = \hat{\Sigma} X_t = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^T X_t. \]
Streaming PCA

- Can take samples $x_1, x_2, \ldots \sim \mathcal{D}$ in \mathbb{R}^d.
- Want to estimate covariance matrix $\Sigma = \mathbb{E}[xx^T]$.

[Mitliagkas-Caramanis-Jain '13] Yes, using more samples. Can do one iteration of the power method in small space:

$$X_{t+1} = \hat{\Sigma}X_t = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^T X_t$$
Streaming PCA

- Can take samples $x_1, x_2, \ldots \sim D$ in \mathbb{R}^d.
- Want to estimate covariance matrix $\Sigma = \mathbb{E}[xx^T]$.
- Easy answer is the empirical covariance:

$$\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^T.$$
Streaming PCA

- Can take samples $x_1, x_2, \ldots \sim \mathcal{D}$ in \mathbb{R}^d.
- Want to estimate covariance matrix $\Sigma = \mathbb{E}[xx^T]$.
- Easy answer is the empirical covariance:

$$\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^T.$$

- But uses n^2 space. Can we use $O(nk)$ space if Σ is nearly low rank?
Streaming PCA

- Can take samples $x_1, x_2, \ldots \sim \mathcal{D}$ in \mathbb{R}^d.
- Want to estimate covariance matrix $\Sigma = \mathbb{E}[xx^T]$.
- Easy answer is the empirical covariance:

$$\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^T.$$

- But uses n^2 space. Can we use $O(nk)$ space if Σ is nearly low rank?

- [Mitliagkas-Caramanis-Jain ’13] Yes, using more samples. Can do one iteration of the power method in small space:

$$X_{t+1} = \hat{\Sigma} X = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^T X$$
Streaming PCA

- Algorithm is: in every iteration, take a bunch of samples to move in correct direction.
Streaming PCA

- Algorithm is: in every iteration, take a bunch of samples to move in correct direction.
- How many iterations, and how many samples per iteration?
Streaming PCA

- Algorithm is: in every iteration, take a bunch of samples to move in correct direction.
- How many iterations, and how many samples per iteration?
- This is then a noisy power method problem:

\[X_{t+1} = \Sigma x + (\hat{\Sigma} - \Sigma)X \]

Nice case: spiked covariance model

▶ Gaussian, where \(\Sigma \) has \(k \) eigenvalues \(\lambda_1, \ldots, \lambda_k = \Theta(1) \) perturbed by Gaussian noise \(N(0, \sigma^2) \) in each coordinate.

▶ \(\tilde{O}(1 + \sigma^6 \epsilon^2 dk) \) samples suffice.

▶ Factor \(k \) improvement on [Mitliagkas-Caramanis-Jain ’13]

But also applies to less nice cases:

▶ Strong whenever \(D \) has exponential concentration.

▶ Nontrivial result for general distributions.
Streaming PCA

- Algorithm is: in every iteration, take a bunch of samples to move in correct direction.
- How many iterations, and how many samples per iteration?
- This is then a noisy power method problem:

\[X_{t+1} = \Sigma x + (\hat{\Sigma} - \Sigma)X \]

- Just need to bound norm of \((\hat{\Sigma} - \Sigma)X \) in each iteration.
Streaming PCA

- Algorithm is: in every iteration, take a bunch of samples to move in correct direction.
- How many iterations, and how many samples per iteration?
- This is then a noisy power method problem:

\[X_{t+1} = \Sigma x + (\hat{\Sigma} - \Sigma)x \]

- Just need to bound norm of \((\hat{\Sigma} - \Sigma)x\) in each iteration.
- Nice case: spiked covariance model
Streaming PCA

- Algorithm is: in every iteration, take a bunch of samples to move in correct direction.
- How many iterations, and how many samples per iteration?
- This is then a noisy power method problem:

\[X_{t+1} = \Sigma x + (\hat{\Sigma} - \Sigma)X \]

- Just need to bound norm of \((\hat{\Sigma} - \Sigma)X\) in each iteration.
- Nice case: spiked covariance model
 - Gaussian, where \(\Sigma\) has \(k\) eigenvalues \(\lambda_1, \ldots, \lambda_k = \Theta(1)\) perturbed by Gaussian noise \(N(0, \sigma^2)\) in each coordinate.

\[\tilde{O}(1 + \sigma^{6} \epsilon^{2} dk) \] samples suffice.

Factor \(k\) improvement on [Mitliagkas-Caramanis-Jain '13]

But also applies to less nice cases:

- Strong whenever \(D\) has exponential concentration.
- Nontrivial result for general distributions.
Streaming PCA

- Algorithm is: in every iteration, take a bunch of samples to move in correct direction.
- How many iterations, and how many samples per iteration?
- This is then a noisy power method problem:

\[X_{t+1} = \Sigma x + (\hat{\Sigma} - \Sigma)X \]

- Just need to bound norm of \((\hat{\Sigma} - \Sigma)X\) in each iteration.
- Nice case: spiked covariance model
 - Gaussian, where \(\Sigma\) has \(k\) eigenvalues \(\lambda_1, \ldots, \lambda_k = \Theta(1)\) perturbed by Gaussian noise \(N(0, \sigma^2)\) in each coordinate.
 - \(\tilde{O}(\frac{1+\sigma^6}{\epsilon^2} dk)\) samples suffice.

But also applies to less nice cases:
- Strong whenever \(D\) has exponential concentration.
- Nontrivial result for general distributions.
Streaming PCA

- Algorithm is: in every iteration, take a bunch of samples to move in correct direction.
- How many iterations, and how many samples per iteration?
- This is then a noisy power method problem:

\[X_{t+1} = \Sigma x + (\hat{\Sigma} - \Sigma)X \]

- Just need to bound norm of \((\hat{\Sigma} - \Sigma)X\) in each iteration.
- Nice case: spiked covariance model
 - Gaussian, where \(\Sigma\) has \(k\) eigenvalues \(\lambda_1, \ldots, \lambda_k = \Theta(1)\) perturbed by Gaussian noise \(N(0, \sigma^2)\) in each coordinate.
 - \(\tilde{O}(1 + \frac{\sigma^6}{\epsilon^2} dk)\) samples suffice.
 - Factor \(k\) improvement on [Mitliagkas-Caramanis-Jain ’13]

But also applies to less nice cases:

- Strong whenever \(D\) has exponential concentration.
- Nontrivial result for general distributions.
Streaming PCA

- Algorithm is: in every iteration, take a bunch of samples to move in correct direction.
- How many iterations, and how many samples per iteration?
- This is then a noisy power method problem:

\[X_{t+1} = \Sigma x + (\hat{\Sigma} - \Sigma)X \]

- Just need to bound norm of \((\hat{\Sigma} - \Sigma)X\) in each iteration.
- Nice case: spiked covariance model
 - Gaussian, where \(\Sigma\) has \(k\) eigenvalues \(\lambda_1, \ldots, \lambda_k = \Theta(1)\) perturbed by Gaussian noise \(N(0, \sigma^2)\) in each coordinate.
 - \(\tilde{O}(\frac{1+\sigma^6}{\epsilon^2} dk)\) samples suffice.
 - Factor \(k\) improvement on [Mitliagkas-Caramanis-Jain ’13]
- But also applies to less nice cases:

 ▶ Strong whenever \(D\) has exponential concentration.
 ▶ Nontrivial result for general distributions.
Streaming PCA

- Algorithm is: in every iteration, take a bunch of samples to move in correct direction.
- How many iterations, and how many samples per iteration?
- This is then a noisy power method problem:

\[X_{t+1} = \Sigma x + (\hat{\Sigma} - \Sigma) X \]

- Just need to bound norm of \((\hat{\Sigma} - \Sigma) X\) in each iteration.
- Nice case: spiked covariance model
 - Gaussian, where \(\Sigma\) has \(k\) eigenvalues \(\lambda_1, \ldots, \lambda_k = \Theta(1)\) perturbed by Gaussian noise \(N(0, \sigma^2)\) in each coordinate.
 - \(\tilde{O}(\frac{1+\sigma^6}{\epsilon^2} dk)\) samples suffice.
 - Factor \(k\) improvement on [Mitliagkas-Caramanis-Jain ’13]
- But also applies to less nice cases:
 - Strong whenever \(\mathcal{D}\) has exponential concentration.
Streaming PCA

- Algorithm is: in every iteration, take a bunch of samples to move in correct direction.
- How many iterations, and how many samples per iteration?
- This is then a noisy power method problem:

\[X_{t+1} = \Sigma x + (\hat{\Sigma} - \Sigma) X \]

- Just need to bound norm of \((\hat{\Sigma} - \Sigma) X\) in each iteration.
- Nice case: spiked covariance model
 - Gaussian, where \(\Sigma\) has \(k\) eigenvalues \(\lambda_1, \ldots, \lambda_k = \Theta(1)\) perturbed by Gaussian noise \(N(0, \sigma^2)\) in each coordinate.
 - \(\tilde{O}(\frac{1 + \sigma^6}{\epsilon^2} dk)\) samples suffice.
 - Factor \(k\) improvement on [Mitliagkas-Caramanis-Jain ’13]
- But also applies to less nice cases:
 - Strong whenever \(D\) has exponential concentration.
 - Nontrivial result for general distributions.
Recap and open questions

- Noisy power method is a useful tool.
Recap and open questions

- Noisy power method is a useful tool.
- Can show \(\tan \Theta(X_L, U) \leq \epsilon \) if

\[
5\|G\| \leq \epsilon(\lambda_k - \lambda_{k+1}) \quad 5\|U^T G\| \leq (\lambda_k - \lambda_{k+1})\sqrt{\frac{k}{d}}
\]
Recap and open questions

- Noisy power method is a useful tool.
- Can show $\tan \Theta(X_L, U) \leq \epsilon$ if

\[5\|G\| \leq \epsilon(\lambda_k - \lambda_{k+1}) \quad 5\|U^T G\| \leq (\lambda_k - \lambda_{k+1})\sqrt{\frac{k}{d}} \]

- Can we apply it to more problems?
Recap and open questions

- Noisy power method is a useful tool.
- Can show $\tan(\Theta(X_L, U)) \leq \epsilon$ if

$$5\|G\| \leq \epsilon(\lambda_k - \lambda_{k+1}) \quad 5\|U^T G\| \leq (\lambda_k - \lambda_{k+1})\sqrt{\frac{k}{d}}$$

- Can we apply it to more problems?
- Can we prove a theorem without the eigengap?