HOW MUSIC ALTERS DECISION MAKING - IMPACT OF MUSIC
STIMULI ON EMOTIONAL CLASSIFICATION

Elad Liebman
Computer Science Department

eladlieb@cs.utexas.edu

ABSTRACT

Numerous studies have demonstrated that mood can af-
fect emotional processing. The goal of this study was to
explore which components of the decision process are af-
fected when exposed to music; we do so within the context
of a stochastic sequential model of simple decisions, the
drift-diffusion model (DDM). In our experiment, partici-
pants decided whether words were emotionally positive or
negative while listening to music that was chosen to in-
duce positive or negative mood. The behavioral results
show that the music manipulation was effective, as par-
ticipants were biased to label words positive in the positive
music condition. The DDM shows that this bias was driven
by a change in the starting point of evidence accumula-
tion, which indicates an a priori response bias. In contrast,
there was no evidence that music affected how participants
evaluated the emotional content of the stimuli. To better
understand the correspondence between auditory features
and decision-making, we proceeded to study how individ-
ual aspects of music affect response patterns. Our results
have implications for future studies of the connection be-
tween music and mood.

1. INTRODUCTION

There is robust evidence that one’s mood can affect how
one processes emotional information. This phenomenon
is often referred to as mood-congruent processing or bias,
reflecting the finding that positive mood induces a relative
preference for positive emotional content (and vice versa).
The goal of the present study was to use a popular model
of simple decisions, the drift-diffusion model (DDM; [9]),
to explore how music-induced mood affects the different
components of the decision process that could drive mood-
congruent bias. The model, described below, can differen-
tiate two types of bias: a) Bias due to an a priori preference
for one response over the other; and b) Bias due to a shift
in how the stimuli are evaluated for decision making. This
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class of models has been successfully employed to differ-
entiate these biases in perceptual and memory tasks, but to
our knowledge has never been used to investigate effects of
music on emotional classification. We consider the follow-
ing to be our key contributions: a) We provide meaningful
evidence that decision making is indeed affected by music
stimuli, and analyze the observed effects; b) we study evi-
dence of how specific auditory features are correlated with
aspects of decision making.

Studies that induce mood, either through listening to
happy/sad music or having participants write passages or
see pictures based on a particular emotion, have shown
mood-congruent bias across a range of tasks. Behen et
al. [4] showed participants happy and sad faces while
they listened to positively- or negatively valenced music
and underwent fMRI. Participants rated the happy faces
as more happy while listening to positive music, and the
fMRI results showed that activation of the superior tempo-
ral gyrus was greater when the face and music were con-
gruent with each other. In a study of mood and recall,
De I’Etoile [3] found that participants could recall signifi-
cantly more words when mood was induced (through mu-
sic) at both encoding and retrieval. Similarly, Kuhbandner
and Pekrun [6] had participants study emotional words that
were printed in either black, red, green, or blue, with the
hypothesis that congruent words (e.g., negative words in
red, positive words in green) would show enhanced mem-
ory at test. Their findings supported the hypothesis, as
memory was better for negative words shown in red and
positive words shown in green.

Previous work at the intersection of musicology and
cognitive science has also studied the connection between
music and emotion. As Krumhansel points out [5], emo-
tion is a fundamental part of music understanding and ex-
perience, underlying the process of building tension and
expectations. There is neurophysical evidence of music
being strongly linked to brain regions linked with emotion
and reward [1], and different musical patterns have been
shown to have meaningful associations to emotional affec-
tations [8]. Similarly, studies have indicated that mood also
affects the perception of music [12]. Not only is emotion
a core part of music cognitive processing, it can also have
a resounding impact on people’s mental state, and aid in
recovery, as shown for instance by Zumbansen et al. [15]
in the case of people suffering from Brocas aphasia. Peo-
ple regularly use music to alter their moods, and evidence



has been presented that music can alter the strength of
emotional negativity bias [2]. All this evidence indicates
a deep and profound two-way connection between music
and emotional perception.

The structure of the paper is as follows. In Section 2
we outline the characteristics of the drift-diffusion model,
which we use in this study. In Section 3 we discuss our
experimental design and how data was collected from par-
ticipants. In Section 4 we present and analyze the results of
our behavioral study. In Section 5 we further analyze how
individual auditory components correlate with the behav-
ioral patterns observed in our human study. In Section 6
we recap our results and discuss them in a broader context.

2. THE DRIFT-DIFFUSION MODEL

This study employs the DDM of simple decisions to re-
late observed decision behavior to the underlying decision
components. The DDM, shown in Figure 1, belongs to a
broader class of evidence accumulation models that posit
simple decisions involve the gradual sequential accumu-
lation of noisy evidence until a criterial level is reached.
In the model, the decision process starts between the two
boundaries that correspond to the response alternatives.
Evidence is accumulated over time to drive the process to-
ward one of the boundaries. Once a boundary is reached,
it signals a commitment to that response. The time taken
to reach the boundary denotes the decision time, and the
overall response time is given by the decision time plus the
time required for processes outside the decision process
like encoding and motor execution. The model includes a
parameter for this nondecision time (Ter), to account for
the duration of these processes.

The primary components of the decision process in the
DDM are the boundary separation, the starting point, and
the drift rate. Boundary separation provides an index of
responses caution or speed/accuracy settings; wide bound-
aries indicate a cautious response style where more evi-
dence needs to be accumulated before the choice is made.
The need for more evidence makes the decision process
slower, but also more accurate as it is less likely to hit the
wrong boundary by mistake. The starting point of the dif-
fusion process (z), indicates whether there is a response
bias. If z is closer to the top boundary, it means less evi-
dence is required to reach that boundary, so “positive” re-
sponses will be faster and more probable than “negative”
responses. Finally, the drift rate (v) provides an index of
the evidence from the stimulus that drives the accumu-
lation process. Positive values indicate evidence for the
top boundary, and negative values for the bottom bound-
ary. Further, the absolute value of the drift rate indexes
the strength of the stimulus evidence, with larger values
indicating strong evidence and leading to fast and accurate
responses.

In the framework of the DDM, there are two mecha-
nisms that can drive behavioral bias. Changes in the start-
ing point (z) reflect a response expectancy bias, whereby
there is a preference for one response even before the stim-
ulus is shown [7,14]. Experimentally, response expectancy
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Figure 1. An Illustration of the Drift-Diffusion Model.

bias is observed when participants have an expectation that
one response is more likely to be correct and/or rewarded
than the other. In contrast, changes in the drift rate (v) re-
flect a stimulus evaluation bias, whereby there is a shift
in how the stimulus is evaluated to extract the decision
evidence. Experimentally, stimulus evaluation bias is ob-
served when there is a shift in the stimulus strength and/or
the criterion value used to classify the stimuli. Thus re-
sponses expectancy bias, reflected by the starting point in
the DDM, indicates a shift in how much evidence is re-
quired for one response relative to the other, whereas stim-
ulus evaluation bias, reflected by a shift in the drift rates in
the DDM, indicates a shift in what evidence is extracted by
the stimulus under consideration. Importantly, both mech-
anisms can produce behavioral bias (faster and more prob-
able responses for one choice), but they differentially af-
fect the distribution of response times. In brief, response
expectancy bias only affects fast responses, whereas stim-
ulus evaluation bias affects both fast and slow responses
(see [14]). It is this differential effect on the RT distribu-
tions that allow the DDM to be fitted to behavioral data
to estimate which of the two components, starting point
or drift rates, is driving the bias observed in the RTs and
choice probabilities. The DDM has been shown to suc-
cessfully differentiate these two bias mechanisms from be-
havioral data in both perceptual and recognition memory
tasks [14].

This study used the DDM approach described above to
investigate how music-induced mood affects the different
decision components when classifying emotional informa-
tion. Participants listened to happy or sad music while de-
ciding if words were emotionally positive or negative. The
DDM was then fitted to each participant’s behavioral data
to determine whether the mood induction affected response
expectancy bias, stimulus evaluation bias, or both.

3. METHODS

Participants were shown words on the computer screen and
asked to classify them as emotionally positive or negative
while listening to music. The words were emotionally pos-
itive, negative, or neutral. After a fixation cue was shown
for 500 ms, each word was presented in the center of the



screen and remained on screen until a response was given.
If no response was given after 3 seconds, the trial ended
as a “no response” trial. Responses were indicated with
the “z” and “/” keys, and mapping between the key and re-
sponse was counterbalanced across participants. The task
consisted of 4 blocks of 60 trials with 20 stimuli from each
word condition (positive, negative, neutral). A different
song was played during each block, alternating from posi-
tive to negative music across blocks. The order of the songs
was counterbalanced across subjects. The entire experi-
ment lasted less than 30 minutes. To ensure that the results
were not specific to the particular choice of songs, the en-
tire experiment was replicated with a new set of music.

The stimuli consisted of emotionally positive (e.g., suc-
cess, happy), negative (e.g., worried, sad), and neutral
words (e.g., planet, sipped) taken from a previous study
[13]. There were 96 words for each stimulus condition,
which were matched for word frequency and letter length.
From each wordpool, 80 items were randomly chosen for
each participant to use in the task. Words were randomly
assigned to appear in the positive or negative music blocks
with the constraint that 20 of each word type appeared in
every block of trials.

Publicly available music was surveyed to isolate two
clear types - music that is characterized by slow tempo,
minor keys and somber tones, typical to traditionally “sad”
music, and music that has upbeat tempo, major scales and
colorful tones, which are traditionally considered to be typ-
ical to “happy” music. Our principal concern in selecting
the musical stimuli, rather than their semantic categoriza-
tion as either happy or sad, was to curate two separate
“pools” of music sequences that were broadly character-
ized by a similar temperament (described above), and show
they produced consistent response patterns.

To ensure that the selected music was effective for in-
ducing the appropriate mood, a separate set of participants
rated each piece of music on a 7-point Likert scale, with 1
indicating negative mood and 7 indicating positive mood.
There were 21 participants that rated the songs for Exper-
iment 1, and 19 participants for Experiment 2. This mood
assessment was done outside of the main experiment to
eliminate the possibility that the rating procedure would
influence the participants’ classification behavior in the
primary task. The ratings showed that the music choices
were appropriate. The positive songs in Experiment 1 led
to more positive ratings than the negative songs. Simi-
lar results were found for the songs in Experiment two,
with higher ratings for the positive songs than the negative
songs. The differences between the positive and negative
song ratings were highly significant for both experiments
(p-values < .001 using a paired t-test, with ¢(20) > 7.3).
The means and standard deviations of the scores for the
songs in the two experiments are presented in table 1.

The DDM was fitted to each participant’s data, sepa-
rately for positive and negative music blocks, to estimate
the values of the decision components. The data entered
into the fitting routine were the choice probabilities and
response time (RT) distributions (summarized by the .1,

—Experiment 1— —Experiment 2—
song average SD  average SD
happy 1 5.14 1.24 5.15 1.29
happy 2 5.00 122 542 1.17
sad 1 2.24 1.00 2.26 1.24
sad 2 2.33 097 2.11 0.99

Table 1. Aggregated Likert scale results for the 8 songs
used in the two experiments.

.3, .5, .7, and .9 quantiles) for each response option and
stimulus condition. The parameters of the DDM were ad-
justed in the fitting routine to minimize the x? value, which
is based on the misfit between the model predictions and
the observed data (see [10]). For each participant’s data
set, the model estimated a value of boundary separation,
nondecision time, starting point, and a separate drift rate
for each stimulus condition. Because of the relatively low
number of observations used in the fitting routine, the vari-
ability parameters of the full DDM were not estimated
(see [9]). This resulted in two sets of DDM parameters
for each participant, one for the positive music blocks and
one for the negative music blocks.

4. RESULTS

The RTs and choice probabilities in Figure 2 show that
the mood-induction successfully affected emotional bias.
The left column shows the response probabilities, and the
right column shows an RT-based measure of bias, which
is taken as the median RT for negative responses minus
the median RT for positive responses for each condition.
Thus RT values above 0 indicate faster positive than neg-
ative responses for that condition, and vice-versa. In Ex-
periment 1 (top row), happy music led to more “positive”
responses overall. This difference was significant for neu-
tral words and positive words, but not for negative words.
For RTs, positive responses were generally faster than neg-
ative responses in the happy compared to sad music condi-
tions, though the difference was only significant for posi-
tive words . The results from Experiment 2 largely mirror
those from Experiment 1. Participants were more likely to
respond “positive” in the happy music condition. This dif-
ference was significant for the negative and neutral words,
but not the positive words (though there is a trend in that
direction). Likewise, positive responses were relatively
faster than negative responses in the happy compared to
sad music conditions, though the difference was only sig-
nificant for neutral and positive words.

Overall, the behavioral data show that the mood induc-
tion was effective in influencing participants’ emotional
classification: positive responses were more likely and
faster in the happy compared to sad music condition. These
behavioral data are next decomposed with the DDM.

Figure 3 shows the DDM parameters for each exper-
iment. Although the two bias-related measures (starting
point and drift rates) are of primary interest, all of the
DDM parameters were compared across music conditions.
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It is possible that the different music conditions could af-
fect response caution and nondecision time. For example,
the slower tempo of the sad songs could lead participants
to become more cautious and have slower motor execution
time. Thus all parameters were investigated. As the left
columns of Figure 3 shows, the music conditions did not
differentially affect response caution or encoding/motor
time, as neither boundary separation nor nondecision time
differed between happy and sad music blocks. Of primary
interest were the starting point and drift rate parameters,
which provide indices of response expectancy and stimu-
lus evaluation bias, respectively. For starting point, there
was a significant shift in response bias for both experi-
ments, with participants favoring the “positive” response
more heavily in the happy compared to sad music. This
indicates that the music induced an a priori bias for one
response over the other. In contrast, the music conditions
had no reliable effect on the drift rates for positive, neg-
ative, or neutral words. Thus music did not influence the
stimulus evaluation of the items. The DDM results show
that the music-based manipulation of mood had a targeted
effect on the starting point measure, which reflects an a
priori response expectancy bias. There were no effects of
music on response caution, nondecision time, or drift rates
(stimulus evaluation bias). Thus the results show that the
mood-congruent bias was driven by a change in partici-
pants’ expectancy about the appropriate response, rather
than a change in how the emotional content of the words
was evaluated.

S. CORRELATING RESPONSES AND MUSICAL
FEATURES

The partition between “positive” and “negative” mood-
inducing songs is intuitively understandable, and is indeed
sufficient in order to observe the effects discussed in the
previous section. This partition, however, is still some-
what arbitrary. It is of interest then to identify, on a more
fundamental auditory level, how specific aspects of mu-
sic affect response patterns. To this end, we considered
the 8 musical segments used in this experiment, extracted
key auditory features which we assume are relevant to the
mood partitioning, and examined how they correlate with
the participant responses we observed.

5.1 Extracting Raw Auditory Features

We focused on three major auditory features: a) overall
tempo; b) overall “major” vs. “minor” harmonic character;
c¢) average amplitude. Features (a) and (c) were computed
using the Librosa library [11]. To compute feature (b), we
implemented the following procedure. For each snippet of
20 beats an overall spectrum was computed and individual
pitches were extracted. Then, for that snippet, according
to the amplitude intensity of each extracted pitch, we iden-
tify whether the dominant harmonic was major or minor.
The major/minor score was defined to be the proportion of
major snippets out of the overall song sequence. We can
easily confirm that these three features were indeed asso-

ciated with our identification as “positive” vs. “negative”.
Having labeled “positive” and “negative” as 1 and O re-
spectively, we observed a Pearson correlation of 0.7 — 0.8
with p-values < 0.05 between these features and the la-
bel. Significance was further confirmed when we applied
an unpaired t-test for each feature for positive vs. negative
songs (p-values < .05, |£(3)] > 3).

5.2 Processing Participant Responses

For each observed song we first aggregated all relevant
subject responses. We focused on three measurements -
time delay for classifying positive words as positive, time
delay for classifying negative words as negative, and likeli-
hood of classifying neutral words as positive. Time delays
were normalized to a z-score per user. This alternative per-
spective helps verify the robustness of the effects observed
in the previous section. Following this analysis step, we
proceeded to fit the DDM parameter decomposition as we
did in sections 3 and 4, but rather than for each song con-
dition (“sad”/“happy”), to each song separately.

5.3 Observed Correlations

In this section we consider the effects observed when
analyzing response patterns with respect to each of the
three auditory features discussed in the previous subsec-
tions. Only statistically significant correlations are re-
ported, though it’s worth noting that with a relatively small
sample size in terms of songs, potentially meaningful ef-
fects might be missed due to outliers.

5.3.1 Correlation with Response Times and Bias

When we consider how the three auditory features corre-
spond with the normalized delays when classifying posi-
tive or negative words as such, we see an interesting pat-
tern. For all three features, there was a statistically sig-
nificant negative correlation (p-value < 0.05) between the
average normalized response time and the feature values.
Intuitively speaking, the faster the song was, the louder it
was, or the more it was major in mode overall, the faster
people classified positive words as positive (see Figures 4a-
4c). However, no such clear correlation was observed for
negative songs. This observation supports our key find-
ing when using the drift-diffusion model, that participants
were biased to label words positive in the positive music
condition. When we analyzed the likelihood of associating
neutral words as positive with respect to each auditory fea-
ture, the only effect that is borderline significant (p-value
< 0.1) is the correspondence between major mode domi-
nance and the likelihood of associating a neutral word as
positive (the more major-mode oriented the song is, the
more likely people are to associate neutral words as posi-
tive) - see Figure 4d.

5.3.2 Correlation with DDM Decomposition

We analyzed the correlation between the extracted audi-
tory features and the DDM parameters fitted for each song
separately: nondecision time, response caution, response
bias, and stimulus evidence (drift rate) for each word type.
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Figure 4. Scatter plots reflecting the correlation between
musical features and response patterns: (a) average tempo
(as BPM) in a song vs the normalized average delay in clas-
sifying positive words as positive; (b) average amplitude in
a song vs. the normalized average delay in classifying pos-
itive words as positive; (c) the percentage of major-mode
harmonies (major dominance) in a song and the normal-
ized average delay in classifying positive words as positive.
(d) the percentage of major-mode harmonies (major dom-
inance) in a song vs. the likelihood of associating neutral
words as positive.

We found a statistically significant correlation (r = 0.7 —
0.8,p < 0.05) between the major dominance feature and
the bias and positive drift rate parameters (see Figures Sa,
5b). A borderline correlation (r = 0.62,p < 0.1) was ob-
served between major dominance and the neutral drift rate.
These findings support the previous observations in the pa-
per. Interestingly, we’ve also observed a borderline signif-
icant negative correlation (r = —0.67;p < 0.1) between
mean amplitude and response caution, implying people are
less cautious the louder the music gets (see Figure 5c¢).
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Figure 5. (a) Scatter plot of the correlation between the
percentage of major-mode harmonies (major dominance)
in a song and the bias component of the DDM. (b) Scatter
plot of the correlation between the percentage of major-
mode harmonies (major dominance) in a song and the stim-
ulus evidence component (drift rate) for positive words in
the DDM. (c) Scatter plot of the correlation between the
average amplitude of a song and the response caution com-
ponent of the DDM.

6. DISCUSSION

There is great interest in understanding how music affects
emotional processing. This study advances our under-
standing of this relationship through the use of the drift-
diffusion model, which was used to decompose the behav-
ioral data into meaningful psychological constructs. Par-
ticipants classified words as emotionally positive or nega-
tive while listening to music that induced a happy or sad
mood. The behavioral data showed small, but reliable ef-
fects of mood congruent emotional bias based on the mu-
sic conditions. The DDM analysis of those data showed
that music-induced mood had a targeted effect on the de-
cision components, affecting response expectancy bias but
not stimulus evaluation bias, response caution, or encod-
ing/motor time. Further analysis of how specific musical
traits correspond with response patterns confirmed these
findings and led to interesting additional observations.
These results suggest that music-induced mood does not
significantly affect how participants evaluate the emotional



content of the stimuli, but rather it affects how they favor
one response option independent of the actual stimulus un-
der consideration. In other words, a negative word is just
as negative while listening to sad compared to happy mu-
sic, even though the classification behavior differs. Thus
the mood-congruent bias appears to be driven more by the
selection of the response, rather than the emotional pro-
cessing of the stimulus. The distinction between these two
processes is only identifiable through the DDM analysis,
as it can capitalize on the RT distributions to dissociate the
two decision components.
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