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1 Smooth Surfaces in R3

In this section we will review some properties of smooth surfaces M C R3. We will assume that M is
parameterized by a single chart r(u,v) : M — R3, where M C R2. (Surfaces of practical interest, including
basic examples like the round sphere or torus of revolution, cannot be parameterized in this way, and instead
are usually described using an atlas of multiple such charts “glued together” in a compatible way at their
regions of overlap. See any introductory text on differential geometry for more details; we will ignore this
issue in what follows.)

As for curves, we will assume that M is well-behaved: that r is C°° and an immersion, i.e. that the
partial derivatives r, and r, do not vanish and are linearly independent at every point & = (u,v) € M. (As
a helpful notational convention, throughout this section we will label quantities on the plane with tildes, and
quantities in space without.)

As was the case with plane curves, we are interested in the geometric quantities we can measure on M.
Some first examples include

e Tangent planes at points on M. At every point z = r(Z) of M, the tangent plane T, M is spanned
by r.(Z) and r,(Z). Tangent vectors w at  on M can be mapped to tangent vectors @ at Z in the
plane, and vice versa, in a canonical way, using the directional derivative of curves. Consider the curve
4(t) = Z + tw in R. The parameterization r maps this curve to a curve y(t) = r o (¢) on M. The
tangent vector w of 4 at t = 0 then maps to the tangent vector 4/(0), which by the chain rule is equal
to drz(w) = [drz) w, where drz is the 3 x 2 Jacobian [r,(Z) r,(Z)] of r.

e Lengths and angles of tangent vectors, as measured using the ordinary Euclidean dot product wy - wo
for any pair of tangent vectors wi,ws at € M. Since these tangent vectors can be represented using
vectors w1, W at & € R2, it follows that it must be possible to measure wy - wo using w;, and ws. . . but
not in the most naive way! Generally w; - wy # w; - wo. Instead, length and angles on M can be
measured on M by using the fact that tangent vectors on M and M are related by the Jacobian of 7

wy - we = dr(wy) - dr(ia) = dr(wy)Tdr(@s) = 17 [ry 1o)” [re ro] 6s = 61 guis,

where
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is the metric of the surface (or, more formally, the metric on M that you get by pulling back the
Euclidean metric on space using r.) The metric ¢ is sometimes also called the first fundamental form
of M, as it encodes all intrinsic information about M — that is, if you know M and g, but nothing else
about 7, you know everything that depends only on lengths, distances, and angles on M. For instance,
you can calculate the arc length of any curve y(t) = r o ¥(¢) : [0,1] — M:
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e Normal vectors N(zx) at points z € M:
Na) = T2 Xl
[ru (@) > ry (2

Notice that N maps neighborhoods of M to neighborhoods of the unit sphere — this map N(z) is often
called the Gauss map.

e Areas. Infinitesimal area dudv gets mapped to an infinitesimal parallelogram with sides dur, and dvr,;
therefore

dA = ||ry X 7y dA = \/Hru||2||7",,,||2 — (Ty - T0)? dA = \/detgdfl,

which allows us to integrate functions over the surface M by integrating over the appropriate region
of the plane instead.

Functions f(z) = f(r(Z)) : M — R have a natural notion of directional derivative on M in the tangent
direction w:

t—0

Dy f = %f(r(i"+tw)) = %f(i + 1)

t—0

where V f is the ordinary gradient in R?. The inner product

(f.9) = /M fgdA

on functions on M induces an intrinsic gradient V f: the tangent vector field on M with the property that
for every tangent vector field § on M,

(V£,5) :/MVf~6dA:D5f.

1.1 Curvatures

We know how to measure the curvature of curves, and can use this to understand curvature of surfaces. Pick
a point € M and tangent direction w at x, and cut the surface with the plane spanned by w and N(z).
The curvature of the resulting curve, at x, is the normal curvature k().

Let (t) be the curve formed by the cut. From the last lecture, we know that

k(s) = =T'(s) - N(s) = =T"(s)TJT(s) = T'(s)L JTT(s) = N'(s)TT(s),
and if the curve is not parameterized by arc length, the equivalent formula is, by the chain rule,

N'(t)-T(t) _ N'(t)-~'(1)
I @l I (@)1

K(t) =

Normal curvature is then
DyN-7'(0) _ DyN-w
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Since N is a unit vector, its derivative, in any tangent direction, must be orthogonal to it and so a tangent
vector of N. Therefore there exists a map S : T,M — T, M, w +— D, N from tangent vectors at = to tangent
vectors at x, and since the directional derivative is linear in the direction w, S is also a linear operator, which
can be represented as a 3 X 3 matrix. A linear map on w is also a linear map on w, so there exists a 2 x 2
matrix S with dr(gw) = Sw, so that the normal curvature, either in space or in coordinates, is given by

K (x) =

() w-Sw W gSw
Ky(z) = = .
“ [w]*> — @Tgw




The map S is called the shape operator, or sometimes the Weingarten map, and it can be calculated that

& 1 - Tuu(T) - N(Z)  7Tuo(T) - N(T)
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where the matrix b is called the second fundamental form of the surface M. Whereas the first fundamental
form, g, encodes all intrinsic information about M, b encodes the rest: if you know it, you know how the
surface curves in every direction, and so can completely reconstruct the surface (up to rigid motions).

A few remarks are in order. First, k,, is scale invariant — both numerator and denominator of the above
formulas scale quadratically with the scale of w — so we can take w to be a unit vector |jw|| = 1 and thereby
ignore the denominator. Second, from the above formula for b it follows that the second fundamental form,
or equivalently the shape operator, is symmetric (a fact not obvious from its definition as the derivative of
the normal vector). The matrix in coordinates, S, is the product of two symmetric matrices and is therefore
not generally symmetric itself — it is, however, self-adjoint under the g metric: w” gSw, = 1wy STgwg for
any pair of vectors w; and ws. Therefore by the spectral theorem, S has a pair of eigenvectors dl, dy with
corresponding real eigenvalues A1, Ao, satisfying:

T - -
e d; gd; =1, or equivalently, the three-dimensional tangent vectors d; = dr(d;) are unit-length;

~T ~

e dy gdy =0, or equivalently, d; and dy are orthogonal;

o )\ < Ay (without loss of generality); and

e )\ < Ky < Ag for any direction w. This follows from decomposing w in the eigenbasis.

The eigenvalues \; are called the principal curvatures at x and the eigenvectors the principal curvature
directions. The above properties of principal curvature have strong geometric meaning: the two principal
curvature directions are the directions of most and least (signed) curvature, and these directions are always
orthogonal. Moreover, the normal curvature in any other direction is completely determined by the principal
curvatures, and is somewhere between these two extreme curvatures.

The principal curvatures and directions give the normal curvature of the surface in every direction, but
there are also two important measures of curvature at a point that do not depend on choosing a direction.
The first of these is the “average” normal curvature
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that you get by computing k., (z) along every possible tangent direction w. It can be shown that the above
average is equal to H = %trS’ = %, the mean curvature at x. (Danger: some authors define the mean
curvature as tr S = 2H. This simplifies several formulas, but does not sensibly reflect the name, and easily
causes confusion.)

The other basis-invariant measure of S is the determinant; K = det S = A1Ag is called the Gaussian
curvature at z. Its sign qualitatively describes the shape of the surface near z: bowl-like (two equal directions
of curvature) when K > 0, saddle-like (two opposite directions of curvature) when K < 0, and developable
(one flat direction) when K = 0.

As an example, here are the curvatures of several basic surfaces:

e A plane has zero mean and Gaussian curvature.
e A sphere of radius r has )\1—/\2—7 soH—f K= %

e A cylinder of radius r has minimum curvature A\; = 0, along the axis of the cylinder, and maximum
curvature Ay = ; in the circumferential direction. Therefore H = and K =0.



e A torus has different curvature at different points. Suppose the outer radius of the torus is r; and the

1.2

inner radius r2. At a point along the “outer equator,” A\; = Ao = i, and Gaussian curvature

ri+re’
is positive. At a point on the “top,” Ay = 0, Ay = %, and Gaussian curvature is zero. On the “inner

Ap = %, and Gaussian curvature is negative.

” _ —
equator,” \; = o

Properties of Curvature

Mean and Gaussian curvature satisfy many of the properties that help for curvature of plane curves. Defi-
nition of curvature is different, of course: H = 1 tr(g~'b), K = det(g~'b). As for the other properties:

1.

10.

H and K are both invariant under transformation of M by rigid motions in space. More than that,
though, it turns out that K is invariant under arbitrary isometric deformations of the surface! In other
words, even though the definition of K depends on b, it could be rewritten to only depend on the
metric g. This is Gauss’s celebrated “egregious” (or “noteworthy”) theorem.

Reflections in R? flip the sign of H, but leave K unchanged. This property, as well as the two that
follow, are obvious consequences of the relationship between H and K and the principal curvatures.

Reversing the orientation of M flips the sign of H but leaves K unchanged.

1. 1
H scales as Tongth K scales as Tongin? -

For a family of smooth surfaces converging to a surface with a “kink” (i.e., if k,,(z) diverges at some
point = and direction w), then one of mean or Gaussian curvature also diverges (not necessarily both).
H = K = 0 for planes.

For spheres of radius r (oriented outwardly), H = 1 and K = %.

Mean and Gaussian curvature are local: their values at a point r(Z) depend only on 7 in a neighborhood
of .

I’'m not aware of any particularly enlightening generalization of the osculating circle property to cur-
vatures of surfaces. Osculating quadratic surface, perhaps?

For a closed surface M, [ o K dA = 47n for some n € Z. Furthermore, n has a geometric intepretation:
n =1 — g, where g is the genus of the surface (number of holes). This is the Gauss-Bonnet theorem.

The Gauss-Bonnet theorem follows from a more local result. First, we can define a distance function
on M as the length of the shortest curve between two points:

d —  inf L
(@1,22) ot (7)s
O—x1,l—xo

where L is the arc length functional. We can then define a geodesic disk B, (x) around any x € M as
the set of points a distance less than r away from z on M:

B.(x) ={y € M|d(z,y) <r}.

(For instance, for the special case that M is a plane, B,.(x) is just an ordinary open disk of radius r.)
B, (x) has some preimage B,.(x) in the plane. It is also possible to look at the set of normal vectors at
all points inside B,.(z); call this set BY () = N(B,(z)). Then



where the surface area functional A measures the oriented surface area of BY and B, on the unit sphere
or on M, respectively. For example, for a plane, BY (z) contains just a single point on the unit sphere,
which has zero area. For a cylinder, BY is a line which still has zero surface area. For a sharply-curved
bowl-shaped surface, BY covers a large part of the unit sphere even for small 7; for a saddle-shaped
surface, BY also covers a patch of the unit sphere, but does so with negative orientation.

Another way of expressing the above identity is as

dAN (z)
K(z) = — \"7/
where dA is infinitesimal surface area on M, and dA" is infitesimal surface area of the unit sphere
covered by the normals in an infinitesimal neighborhood of z. Then

/Kda:/ dAN
M M

measures, intuitively, the number of times the normals of M “paint” the unit sphere. Since the normal
vector changes continuously over M, this must be an integer: the normals of a sphere-like object paint
the unit sphere exactly once, for instance, whereas the normals of a torus paint the sphere a total of
zero times (positive one times around the outside of the torus, and negative one times over the inside
of the torus.)

11. Mean curvature times the normal vector is the gradient of surface area:
(VA)(z) = 2H(x)N(x).

As for curves in the plane, this is the gradient in the sense of the calculus of variations: for closed
surfaces, the vector field 2H N over M is the unique vector field with the property that for every vector
field § over M,
(2HN, ) :/ 2HN - §dA = DA,
M
where A is the surface area functional and the scalar DsA is the directional derivative

d
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12. Lastly, we have an analogue to the “inflation theorem” for space curves. Let M be a closed, injective
surface (one without self-intersections), and V(M) the volume functional that measures the volume
enclosed by M. For sufficiently small €, we can “inflate” M by € along its normals to get a new surface
M, = im(r + eN), and look at the volume V(M,) enclosed by the inflated surface. Obviously, to
zeroth order, this volume is just the original volume V(M), and the first-order term is the surface
area of M. As might be expected from the earlier theorem we examined on inflating plane curves, the
higher-order terms depend on the integrated curvature of M; dimensional analysis might suggest the
following remarkably beautiful formula, the Steiner polynomial:

3
V(Me):V(M)+eA(M)+e2/ HdAJrE—/ KdA.
M 3 M

For example, the sphere of radius r has inflated volume
4 4 1 3 1
gw(r +e)d = gmﬂ‘o’ + ednr? + 62(47T7’2); + %(4777‘2)71—27

as predicted by the Steiner polynomial.

As they did in the case for curves, the above properties will guide our formulation of a discrete notion of
curvature for discrete surfaces. In this whirlwind review, we have looked at those properties and formulas
that will be most useful in that endeavor; a more complete exposition of surface geometry, including formal
proofs of the above properties, can be found in textbooks on Riemannian geometry.



