
Representing Linear Algebra Algorithms in Code:
The FLAME Application Program Interfaces

Paolo Bientinesi

The University of Texas at Austin

and

Enrique S. Quintana-Ort́ı

Universidad Jaume I

and

Robert A. van de Geijn

The University of Texas at Austin

In this paper, we present a number of Application Program Interfaces (APIs) for coding linear
algebra algorithms. On the surface, these APIs for the MATLAB M-script and C programming
languages appear to be simple, almost trivial, extensions of those languages. Yet with them,
the task of programming and maintaining families of algorithms for a broad spectrum of linear
algebra operations is greatly simplified. In combination with our Formal Linear Algebra Methods
Environment (FLAME) approach to deriving such families of algorithms, dozens of algorithms for
a single linear algebra operation can be derived, verified to be correct, implemented, and tested,
often in a matter of minutes per algorithm. Since the algorithms are expressed in code much
like they are explained in a classroom setting, these APIs become not just a tool for implement-
ing libraries, but also a valuable tool for teaching the algorithms that are incorporated in the
libraries. In combination with an extension of the Parallel Linear Algebra Package (PLAPACK)
API, the approach presents a migratory path from algorithm to MATLAB implementation to
high-performance sequential implementation to parallel implementation. Finally, the APIs are
being used to create a repository of algorithms and implementations for linear algebra opera-
tions, the FLAME Interface REpository (FIRE), which already features hundreds of algorithms
for dozens of commonly encountered linear algebra operations.

Categories and Subject Descriptors: G.4 [Mathematical Software]: —Algorithm Design and
Analysis; Efficiency; User interfaces; D.2.11 [Software Engineering]: Software Architectures—
Domain specific architectures; D.2.2 [Software Engineering]: Design Tools and Techniques—
Software libraries

General Terms: Algorithms;Design;Theory;Performance

Additional Key Words and Phrases: Application program interfaces, formal derivation, linear
algebra, high-performance libraries

Authors’ addresses: Paolo Bientinesi, Robert A. van de Geijn, Department of Computer Sciences,
The University of Texas at Austin, Austin, TX 78712, {pauldj,rvdg}@cs.utexas.edu. Enrique
S. Quintana-Ort́ı, Departamento de Ingenieŕıa y Ciencia de Computadores, Universidad Jaume I,
12.071–Castellón, Spain, quintana@icc.uji.es.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0098-3500/20YY/1200-0001 $5.00

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY, Pages 1–32.

2 · Bientinesi et al.

1. INTRODUCTION

The Formal Linear Algebra Methods Environment (FLAME) encompasses a method-
ology for deriving provably correct algorithms for dense linear algebra operations
as well as an approach to representing (coding) the resulting algorithms [Gunnels
et al. 2001; Quintana-Ort́ı and van de Geijn 2003; Bientinesi et al. 2005]. Cen-
tral to the philosophy underlying FLAME are the observations that it is at a high
level of abstraction that one best reasons about the correctness of algorithms, that
therefore algorithms should themselves be expressed at a high level of abstraction,
and that codes that implement such algorithms should themselves use an API that
captures this high level of abstraction. A key observation is that in reasoning about
algorithms intricate indexing is typically avoided and it is with the introduction of
complex indexing that programming errors are often introduced and confidence in
code is diminished. Thus a carefully designed API should avoid explicit indexing
whenever possible. In this paper we give such APIs for the MATLAB M-script and
C programming languages [Moler et al. 1987; Kernighan and Ritchie 1978]. We
also show the resulting MATLAB and C implementations to be part of a natural
migratory path towards high-performance parallel implementation.

Our FLAME@lab, FLAME/C and FLAME/PLAPACK interfaces strive to allow
algorithms to be presented in code so that the knowledge expressed in the algo-
rithms is also expressed in the code. In particular, this knowledge is not obscured
by intricate indexing. In a typical development, an initial FLAME@lab implemen-
tation gives the user the flexibility of MATLAB to test the algorithms designed
using FLAME before going to a high-performance sequential implementation using
the FLAME/C API, and the subsequent parallel implementation using the Parallel
Linear Algebra Package (PLAPACK) [van de Geijn 1997; Baker et al. 1998; Alpa-
tov et al. 1997]. In our experience, an inexperienced user can use these different
interfaces to develop and test MATLAB and high-performance C implementations
of an algorithm in less than an hour. An experienced user can perform this task in
a matter of minutes, and can in addition implement a scalable parallel implemen-
tation in less than a day. This represents a significant reduction in effort relative
to more traditional approaches to such library development [Anderson et al. 1992;
Choi et al. 1992].

The FLAME approach to deriving algorithms often yields a large number of al-
gorithms for a given linear algebra operation. Since the APIs given in this paper
allow these algorithms to be easily captured in code, they enable the systematic cre-
ation of a repository of algorithms and their implementations. As part of our work,
we have started to assemble such a repository, the FLAME Interface Repository
(FIREsite).

This paper is organized as follows: In Section 2, we present an example of how
we represent a broad class of linear algebra algorithms in our previous papers. The
most important components of the FLAME@lab API are presented in Section 3.
The FLAME/C API is given in Section 4. A discussion of how the developed
algorithms, coded using the FLAME/C API, can be migrated to parallel code
written in C is discussed in Section 5. Performance issues are discussed in Section 6.
We discuss productivity issues and FIREsite in Section 7. A few concluding remarks
are given in Section 8. In the electronic appendix, a listing of the most commonly
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Representing Linear Algebra Algorithms in Code · 3

Partition B →
(

BT

BB

)
and L→

(
LTL 0

LBL LBR

)

where BT has 0 rows and LTL is 0× 0
while m(LTL) < m(L) do

Repartition

(
BT

BB

)
→

(
B0

bT
1

B2

)
and

(
LTL 0

LBL LBR

)
→

(
L00 0 0

lT10 λ11 0

L20 l21 L22

)

where bT
1 is a row and λ11 is a scalar

bT
1 := bT

1 − lT10B0

bT
1 := λ−1

11 bT
1

Continue with

(
BT

BB

)
←

(
B0

bT
1

B2

)
and

(
LTL 0

LBL LBR

)
←

(
L00 0 0

lT10 λ11 0

L20 l21 L22

)

enddo

Fig. 1. Unblocked algorithm for triangular system solves (trsm algorithm).

used FLAME/C routines is given, as is a discussion regarding how to interface more
traditional code with FLAME/C.

There are some repeated comments in Sections 3 and 4. Thus a reader can choose
to skip the discussion of the FLAME@lab API in Section 3 or the FLAME/C API in
Section 4 while fully benefiting from the insights in those sections. We assume the
reader to have some experience with the MATLAB M-script and the C programming
languages.

2. A TYPICAL DENSE LINEAR ALGEBRA ALGORITHM

In [Bientinesi et al. 2005] we introduced a methodology for the systematic derivation
of provably correct algorithms for dense linear algebra algorithms. It is highly
recommended that the reader become familiar with that paper before proceeding
with the remainder of this paper. This section gives the minimal background in an
attempt to make the present paper self-contained.

The algorithms that result from the derivation process present themselves in a
very rigid format. We illustrate this format in Fig. 1, which gives an (unblocked)
algorithm for the computation of B := L−1B, where B is an m × n matrix and
L is an m × m lower triangular matrix. This operation is often referred to as a
triangular solve with multiple right-hand sides (trsm). The presented algorithm
was derived in [Bientinesi et al. 2005].

At the top of the loop body, it is assumed that different regions of the operands
L and B have been used and/or updated in a consistent fashion. These regions are
initialized by

Partition B →
(

BT

BB

)
and L→

(
LTL 0
LBL LBR

)

where BT has 0 rows and LTL is 0× 0
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

4 · Bientinesi et al.

Here T , B, L, and R stand for Top, Bottom, Left, and Right, respectively.

Note 1. Of particular importance in the algorithm are the single and double
lines used to partition and repartition the matrices. Double lines are used to demark
regions in the matrices that have been used and/or updated in a consistent fashion.
Another way of interpreting double lines is that they keep track of how far into the
matrices the computation has progressed.

Let B̂ equal the original contents of B and assume that B̂ is partitioned as B.
At the top of the loop it is assumed that BB contains the original contents B̂B

while BT has been updated with the contents L−1
TLB̂T . As part of the loop, the

boundaries between these regions are moved one row and/or column at a time so
that progress towards completion is made. This is accomplished by

Repartition

(
BT

BB

)
→




B0

bT
1

B2


 and

(
LTL 0
LBL LBR

)
→




L00 0 0
lT10 λ11 0
L20 l21 L22




where bT
1 is a row and λ11 is a scalar

...
Continue with

(
BT

BB

)
←




B0

bT
1

B2


 and

(
LTL 0
LBL LBR

)
←




L00 0 0
lT10 λ11 0
L20 l21 L22




Note 2. Single lines are introduced in addition to the double lines to demark
regions that are involved in the update or used in the current step of the algorithm.
Upon completion of the update, the regions defined by the double lines are updated
to reflect that the computation has moved forward.

Note 3. We adopt the often-used convention where matrices, vectors, and scalars
are denoted by upper-case, lower-case, and Greek letters, respectively [Stewart 1973].

Note 4. A row vector is indicated by adding a transpose to a vector, e.g., bT
1

and lT10.

The repartitioning exposes submatrices that must be updated before the bound-
aries can be moved. That update is given by

bT
1 := bT

1 − lT10B0

bT
1 := λ−1

11 bT
1

Finally, the desired result has been computed when LTL encompasses all of L so
that the loop continues until m(LTL) < m(L) becomes false. Here m(X) returns
the row dimension of matrix X.

Note 5. We would like to claim that the algorithm in Fig. 1 captures how one
might naturally explain a particular algorithmic variant for computing the solution
of a triangular linear system with multiple right-hand sides.
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Representing Linear Algebra Algorithms in Code · 5

Partition L→
(

LTL 0

LBL LBR

)
and B →

(
BT

BB

)

where BT has 0 rows and LTL is 0× 0
while m(LTL) < m(L) do

Determine block size b
Repartition

(
LTL 0

LBL LBR

)
→

(
L00 0 0

L10 L11 0

L20 L21 L22

)
and

(
BT

BB

)
→

(
B0

B1

B2

)

where m(B1) = b and m(L11) = n(L11) = b

B1 := B1 − L10B0

B1 := L−1
11 B1

Continue with

(
LTL 0

LBL LBR

)
←

(
L00 0 0

L10 L11 0

L20 L21 L22

)
and

(
BT

BB

)
←

(
B0

B1

B2

)

enddo

Fig. 2. Blocked algorithm for triangular system solves (trsm algorithm).

[m, n] = size(B);

for i=1:mb:m

b = min(mb, m-i+1);

B(i:i+b-1, :) = B(i:i+b-1, :) - ...

L(i:i+b-1, 1:i-1) * B(1:i-1, :);

B(i:i+b-1, :) = L(i:i+b-1, i:i+b-1) \ B(i:i+b-1, :);

end

Fig. 3. MATLAB implementation for blocked triangular system solves (trsm algorithm in Fig. 2).
Here, mb is a parameter that determines the theoretical value for the block size and b is the actual
block size.

Note 6. The presented algorithm only requires one to use indices from the sets
{T, B}, {L, R}, and {0, 1, 2}.

For performance reasons, it is often necessary to formulate the algorithm as a
blocked algorithm as illustrated in Fig. 2. The performance benefit comes from the
fact that the algorithm is rich in matrix multiplication, which allows processors with
multi-level memories to achieve high performance [Dongarra et al. 1991; Anderson
et al. 1992; Gunnels et al. 2001; Dongarra et al. 1990].

Note 7. The algorithm in Fig. 2 is implemented by the more traditional MAT-
LAB code given in Fig. 3. We claim that the introduction of indices to explicitly
indicate the regions involved in the update complicates readability and reduces confi-
dence in the correctness of the MATLAB implementation. Indeed, an explanation of
the code inherently requires the drawing of a picture that captures the repartitioned
matrices in Fig. 2. In other words, someone experienced with MATLAB can easily
translate the algorithm in Fig. 2 into the implementation in Fig. 3. The converse

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

6 · Bientinesi et al.

is considerably more difficult.

3. THE FLAME@LAB INTERFACE FOR MATLAB

In this section we introduce a set of MATLAB M-script functions that allow us to
capture in code the linear algebra algorithms presented in the format illustrated in
the previous section. The idea is that by making the appearance of the code similar
to the algorithms in Figs. 1 and 2 the opportunity for the introduction of coding
errors is reduced while simultaneously making the code more readable.

3.1 Bidimensional partitionings

As illustrated in Figs. 1 and 2, in stating a linear algebra algorithm one may wish
to partition a matrix as

Partition A→
(

ATL ATR

ABL ABR

)

where ATL is k × k

In the FLAME@lab API, we hide complicated indexing by using MATLAB matri-
ces. Given a MATLAB matrix A, the following call creates one matrix for each of
the four quadrants:

[ATL, ATR,...
ABL, ABR] = FLA_Part_2x2(A,...

mb, nb, quadrant)

Purpose: Partition matrix A into four quadrants where the quadrant indicated
by quadrant is mb× nb.

Here quadrant is a MATLAB string that can take on the values ’FLA TL’, ’FLA TR’,
’FLA BL’, and ’FLA BR’ to indicate that mb and nb are the dimensions of the Top-
Left, Top-Right, Bottom-Left, or Bottom-Right quadrant, respectively.

Note 8. Invocation of the operation

[ATL, ATR,...
ABL, ABR] = FLA_Part_2x2(A,...

mb, nb, ’FLA_TL’)

in MATLAB creates four new matrices, one for each quadrant. Subsequent mod-
ifications of the contents of a quadrant therefore do not affect the original con-
tents of the matrix. This is an important difference to consider with respect to the
FLAME/C API introduced in Section 4, where the quadrants are views (references)
into the original matrix, not copies of it!

As an example of the use of this routine, the translation of the algorithm fragment
on the left results in the code on the right

Partition A→
(

ATL ATR

ABL ABR

)

where ATL is mb × nb

[ATL, ATR,...

ABL, ABR] = FLA_Part_2x2(A,...

mb, nb, ...

’FLA_TL’)

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Representing Linear Algebra Algorithms in Code · 7

where the parameters mb and nb have values mb and nb, respectively. Examples of
the use of this routine can also be found in Figs. 4 and 5.

Note 9. The above example stresses the fact that the formatting of the code can
be used to help capture the algorithm in code. Clearly, some of the benefit of the
API would be lost if in the example the code appeared as

[ATL, ATR, ABL, ABR] = FLA_Part_2x2(A, mb, nb, ’FLA_TL’)

since then, the left-hand side does not carry an intuitive image that ATL,. . . ,ABR are
the corresponding blocks of a 2× 2 partitioning.

Also from Figs. 1 and 2, we notice that it is useful to be able to take a 2 × 2
partitioning of a given matrix A and repartition that into a 3 × 3 partitioning so
that the submatrices that need to be updated and/or used for computation can be
identified. To support this, we introduce the call

[A00, A01, A02,...
A10, A11, A12,...
A20, A21, A22] = FLA_Repart_2x2_to_3x3(ATL, ATR,...

ABL, ABR,...
mb, nb, quadrant)

Purpose: Repartition a 2 × 2 partitioning of matrix A into a 3 × 3 partition-
ing where the mb × nb submatrix A11 is split from the quadrant indicated by
quadrant.

Here quadrant can again take on the values ’FLA TL’, ’FLA TR’, ’FLA BL’, and
’FLA BR’ to indicate that the mb× nb submatrix A11 is split from submatrix ATL,
ATR, ABL, or ABR, respectively.

Thus,

Repartition

(
ATL ATR

ABL ABR

)
→




A00 A01 A02

A10 A11 A12

A20 A21 A22




where A11 is mb × nb

translates to the code

[A00, A01, A02,...
A10, A11, A12,...
A20, A21, A22] = FLA_Repart_2x2_to_3x3(ATL, ATR,...

ABL, ABR,...
mb, nb, ’FLA_BR’)

where the parameters mb and nb have values mb and nb, respectively. Other exam-
ples of the use of this routine can also be found in Figs. 4 and 5.

Note 10. Similarly to what is expressed in Note 8, the invocation of the opera-
tion

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

8 · Bientinesi et al.

[A00, A01, A02,...
%A10, A11, A12,...
%A20, A21, A22] = FLA_Repart_2x2_to_3x3(...)

creates nine new matrices A00, A01, A02,

Note 11. Choosing variable names can further relate the code to the algorithm,
as is illustrated by comparing




L00 0 0
lT10 λ11 0
L20 l21 L22


 and

L00, l01 L02
l10t, lambda11, l12t
L20, l21, L22,

in Figs. 1 and 4. Although in the algorithm certain regions are identified as con-
taining only zeroes, variables are needed to store those regions in the partitioning.

Once the contents of the so-identified submatrices have been updated, the con-
tents of ATL, ATR, ABL, and ABR must be updated to reflect that progress is being
made, in terms of the regions indicated by the double lines. This moving of the
double lines is accomplished by a call to

[ATL, ATR,...
ABL, ABR] = FLA_Cont_with_3x3_to_2x2(A00, A01, A02,...

A10, A11, A12,...
A20, A21, A22,...
quadrant)

Purpose: Update the 2×2 partitioning of matrix A by moving the boundaries
so that A11 is joined to the quadrant indicated by quadrant.

This time the value of quadrant (’FLA TL’, ’FLA TR’, ’FLA BL’, or ’FLA BR’)
indicates to which quadrant the submatrix A11 is to be joined.

For example,

Continue with
(

ATL ATR

ABL LBR

)
←




A00 A01 A02

A10 A11 A12

A20 A21 A22




translates to the code

[ATL, ATR,...
ABL, ABR] = FLA_Cont_with_3x3_to_2x2(A00, A01, A02,...

A10, A11, A12,...
A20, A21, A22,...
’FLA_TL’)

Further examples of the use of this routine can again be found in Figs. 4 and 5.

3.2 Horizontal partitionings

Similar to the partitioning into quadrants discussed above, and as illustrated in
Figs. 1 and 2, in stating a linear algebra algorithm one may wish to partition a
matrix as
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Representing Linear Algebra Algorithms in Code · 9

function [X] = Trsm_llnn_unb_var1(L, B)

[LTL, LTR,...

LBL, LBR] = FLA_Part_2x2(L,...

0, 0, ’FLA_TL’);

[BT,...

BB] = FLA_Part_2x1(B,...

0, ’FLA_TOP’);

while(size(LTL, 1) < size(L, 1))

[L00, l01, L02,...

l10t, lambda11, l12t,...

L20, l21, L22] = FLA_Repart_2x2_to_3x3(LTL, LTR,...

LBL, LBR,...

1, 1, ’FLA_BR’);

[B0,...

b1t,...

B2] = FLA_Repart_2x1_to_3x1(BT,...

BB,...

1, ’FLA_BOTTOM’);

%* -- */

b1t = b1t - l10t * B0;

b1t = inv(lambda11) * b1t;

%* -- */

[LTL, LTR,...

LBL, LBR] = FLA_Cont_with_3x3_to_2x2(L00, l01, L02,...

l10t, lambda11, l12t,...

L20, l21, L22,...

’FLA_TL’);

[BT,...

BB] = FLA_Cont_with_3x1_to_2x1(B0,...

b1t,...

B2,...

’FLA_TOP’);

end

X = BT;

return;

Fig. 4. FLAME implementation for unblocked triangular system solves (trsm algorithm in Fig. 1)
using the FLAME@lab interface.

Partition A→
(

AT

AB

)

where AT has k rows

For this, we introduce the call

[AT,...
AB] = FLA_Part_2x1(A,...

mb, side)

Purpose: Partition matrix A into a top and a bottom side where the side
indicated by side has mb rows.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

10 · Bientinesi et al.

function [X] = Trsm_llnn_blk_var1(L, B, mb)

[LTL, LTR,...

LBL, LBR] = FLA_Part_2x2(L,...

0, 0, ’FLA_TL’);

[BT,...

BB] = FLA_Part_2x1(B,...

0, ’FLA_TOP’);

while(size(LTL, 1) < size(L, 1))

b = min(mb, size(LBR, 1));

[L00, L01, L02,...

L10, L11, L12,...

L20, L21, L22] = FLA_Repart_2x2_to_3x3(LTL, LTR,...

LBL, LBR,...

b, b, ’FLA_BR’);

[B0,...

B1,...

B2] = FLA_Repart_2x1_to_3x1(BT,...

BB,...

b, ’FLA_BOTTOM’);

%* -- */

B1 = B1 - L10 * B0;

B1 = Trsm_llnn_unb_var1(L11, B1);

%* -- */

[LTL, LTR,...

LBL, LBR] = FLA_Cont_with_3x3_to_2x2(L00, L01, L02,...

L10, L11, L12,...

L20, L21, L22,...

’FLA_TL’);

[BT,...

BB] = FLA_Cont_with_3x1_to_2x1(B0,...

B1,...

B2,...

’FLA_TOP’);

end

X = BT;

return;

Fig. 5. FLAME implementation for blocked triangular system solves (trsm algorithm in Fig. 2)
using the FLAME@lab interface.

Here side can take on the values ’FLA TOP’ or ’FLA BOTTOM’ to indicate that mb
is the row dimension of AT or AB, respectively.

Given that matrix A is already partitioned horizontally it can be repartitioned
into three submatrices with the call
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Representing Linear Algebra Algorithms in Code · 11

[A0,...
A1,...
A2] = FLA_Repart_2x1_to_3x1(AT,...

AB,...
mb, side)

Purpose: Repartition a 2× 1 partitioning of matrix A into a 3× 1 partitioning
where submatrix A1 with mb rows is split from the bottom of AT or the top of
AB, as indicated by side.

Here side can take on the values ’FLA TOP’ or ’FLA BOTTOM’ to indicate that
submatrix A1, with mb rows, is partitioned from AT or AB, respectively.

Given a 3 × 1 partitioning of a given matrix A, the middle submatrix can be
appended to either the first or last submatrix with the call

[AT,...
AB] = FLA_Cont_with_3x1_to_2x1(A0,...

A1,...
A2,...
side)

Purpose: Update the 2×1 partitioning of matrix A by moving the boundaries
so that A1 is joined to the side indicated by side.

Examples of the use of the routines that deals with the horizontal partitioning
of matrices can be found in Figs. 4 and 5.

3.3 Vertical partitionings

Finally, in stating a linear algebra algorithm one may wish to partition a matrix
as

Partition A→ (
AL AR

)
where AL has k columns

For this we introduce the call

[AL, AR] = FLA_Part_1x2(A,...
int nb, int side)

Purpose: Partition matrix A into a left and a right side where the side indicated
by side has nb columns.

and

[A0, A1, A2] = FLA_Repart_1x2_to_1x3(AL, AR,...
nb, side)

Purpose: Repartition a 1× 2 partitioning of matrix A into a 1× 3 partitioning
where submatrix A1 with nb columns is split from the right of AL or the left of
AR, as indicated by side.

Here side can take on the values ’FLA LEFT’ or ’FLA RIGHT’. Adding the middle
submatrix to the first or last submatrix is now accomplished by a call to

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

12 · Bientinesi et al.

[AL, AR] = FLA_Cont_with_1x3_to_1x2(A0, A1, A2,...
side)

Purpose: Update the 1× 2 partitioning of matrix A by moving the boundaries
so that A1 is joined to the side indicated by side.

3.4 Additional routines

Note 12. Interestingly enough, the routines described in this section for the
MATLAB M-script language suffice to implement a broad range of algorithms en-
countered in dense linear algebra. So far, we have yet to encounter algorithms that
cannot be elegantly described by partitioning into regions than can be indexed by the
sets {T, B}, {L,R}, {0, 1, 2}, {T,B} × {L,R}, and {0, 1, 2} × {0, 1, 2}. However,
there might be a potential use for a 4 × 4 partitioning in the future. Also, MAT-
LAB provides a rich set of operations on matrices and vectors, which are needed to
implement the updates to the exposed submatrices.

4. THE FLAME/C INTERFACE FOR THE C PROGRAMMING LANGUAGE

It is easily recognized that the FLAME@lab codes given in the previous section
will likely fall short of attaining peak performance. In particular, the copying that
inherently occurs when submatrices are created and manipulated represents pure
overhead. But then, generally people do not use MATLAB if they insist on attaining
high performance. For that, they tend to code in C and link to high-performance
libraries such as the Basic Linear Algebra Subprograms (BLAS) and the Linear
Algebra Package (LAPACK) [Anderson et al. 1992; Lawson et al. 1979; Dongarra
et al. 1988; Dongarra et al. 1990]. In this section we introduce a set of library
routines that allow us to capture in C code linear algebra algorithms presented in
the format given in Section 2.

Again, the idea is that by making C code look similar to the algorithms in
Figs. 1 and 2 the opportunity for the introduction of coding errors is reduced.
Readers familiar with MPI [Gropp et al. 1994; Snir et al. 1996], PETSc [Balay
et al. 1996], and/or our own PLAPACK will recognize the programming style,
object-based programming, as being very similar to that used by those (and other)
interfaces. It is this style of programming that allows us to hide the indexing details
much as MATLAB does. However, as we will see, a more substantial infrastructure
must be provided in addition to the routines that partition and repartition matrix
objects.

4.1 Initializing and finalizing FLAME/C

Before using the FLAME/C environment one must initialize with a call to

void FLA_Init()

Purpose: Initialize FLAME/C.

If no more FLAME/C calls are to be made, the environment is exited by calling

void FLA_Finalize()

Purpose: Finalize FLAME/C.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Representing Linear Algebra Algorithms in Code · 13

4.2 Linear algebra objects

The following attributes describe a matrix as it is stored in the memory of a com-
puter:

—the datatype of the entries in the matrix, e.g., double or float,
—m and n, the row and column dimensions of the matrix,
—the address where the data is stored, and
—the mapping that describes how the two-dimensional array is mapped to one-

dimensional memory.

The following call creates an object (descriptor or handle) of type FLA Obj for a
matrix and creates space to store the entries in the matrix:

void FLA_Obj_create(int datatype, int m, int n, FLA_Obj *matrix)

Purpose: Create an object that describes an m × n matrix and create the
associated storage array.

Valid datatype values include

FLA INT, FLA DOUBLE, FLA FLOAT, FLA DOUBLE COMPLEX, and FLA COMPLEX

for the obvious datatypes that are commonly encountered. The leading dimension
of the array that is used to store the matrix is itself determined inside of this call.

Note 13. For simplicity, we chose to limit the storage of matrices to use column-
major storage. The leading dimension of a matrix can be thought of as the dimen-
sion of the array in which the matrix is embedded (which is often larger than the
row-dimension of the matrix) or as the increment (in elements) required to address
consecutive elements in a row of the matrix. Column-major storage is chosen to be
consistent with Fortran, which is often still the choice of language for linear algebra
applications. A C programmer should take this into account in case he needs to
interface with the FLAME/C API.

FLAME/C treats vectors as special cases of matrices: an n× 1 matrix or a 1×n
matrix. Thus, to create an object for a vector x of n double-precision real numbers
either of the following calls suffices:

FLA Obj create(FLA DOUBLE, n, 1, &x);
FLA Obj create(FLA DOUBLE, 1, n, &x);

Here n is an integer variable with value n and x is an object of type FLA Obj.
Similarly, FLAME/C treats scalars as a 1× 1 matrix. Thus, to create an object

for a scalar α the following call is made:

FLA Obj create(FLA DOUBLE, 1, 1, &alpha);

where alpha is an object of type FLA Obj. A number of scalars occur frequently
and are therefore predefined by FLAME/C:

MINUS ONE, ZERO, and ONE.

If an object is created with FLA Obj create (or FLA Obj create conf to, given
in the electronic appendix), a call to FLA Obj free is required to ensure that all
space associated with the object is properly released:

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

14 · Bientinesi et al.

void FLA_Obj_free(FLA_Obj *matrix)

Purpose: Free all space allocated to store data associated with matrix.

4.3 Inquiry routines

In order to be able to work with the raw data, a number of inquiry routines can be
used to access information about a matrix (or vector or scalar). The datatype and
row and column dimensions of the matrix can be extracted by calling

int FLA_Obj_datatype(FLA_Obj matrix)
int FLA_Obj_length (FLA_Obj matrix)
int FLA_Obj_width (FLA_Obj matrix)

Purpose: Extract datatype, row, or column dimension of matrix, respectively.

The address of the array that stores the matrix and its leading dimension can be
retrieved by calling

void *FLA_Obj_buffer(FLA_Obj matrix)
int FLA_Obj_ldim (FLA_Obj matrix)

Purpose: Extract address and leading dimension of matrix, respectively.

4.4 A most useful utility routine

Our approach to the implementation of algorithms for linear algebra operations
starts with the careful derivation of provably correct algorithms. The stated phi-
losophy is that if the algorithms are correct, and the API allows the algorithms to
be coded so that the code reflects the algorithms, then the code will be correct as
well.

Nonetheless, we single out one of the more useful routines in the FLAME/C
library, which is particularly helpful for testing:

void FLA_Obj_show(char *string1, FLA_Obj A, char *format,
char *string2)

Purpose: Print the contents of A.

In particular, the result of

FLA_Obj_show("A =[", A, "%lf", "];");

is similar to

A = [
< entries_of_A >
];

which can then be fed to MATLAB. This becomes useful when checking results
against a MATLAB implementation of an operation.

4.5 An example: matrix-vector multiplication

We now give an example of how to use the calls introduced so far to write a simple
driver routine that calls a routine that performs the matrix-vector multiplication
y = Ax.
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Representing Linear Algebra Algorithms in Code · 15

1 #include "FLAME.h"

2
3 main()

4 {

5 FLA_Obj

6 A, x, y;

7 int

8 m, n;

9
10 FLA_Init();

11
12 printf("enter matrix dimensions m and n:");

13 scanf("%d%d", &m, &n);

14
15 FLA_Obj_create(FLA_DOUBLE, m, n, &A);

16 FLA_Obj_create(FLA_DOUBLE, m, 1, &y);

17 FLA_Obj_create(FLA_DOUBLE, n, 1, &x);

18
19 fill_matrix(A);

20 fill_matrix(x);

21
22 mv_mult(A, x, y);

23
24 FLA_Obj_show("A = [", A, "%lf", "]");

25 FLA_Obj_show("x = [", x, "%lf", "]");

26 FLA_Obj_show("y = [", y, "%lf", "]");

27
28 FLA_Obj_free(&A);

29 FLA_Obj_free(&y);

30 FLA_Obj_free(&x);

31
32 FLA_Finalize();

33 }

Fig. 6. A simple C driver for matrix-vector multiplication.

In Fig. 6 we give the driver routine.

—line 1: FLAME/C program files start by including the FLAME.h header file.
—line 5–6: FLAME/C objects A, x, and y, which hold matrix A and vectors x

and y, are declared to be of type FLA Obj.
—line 10: Before any calls to FLAME/C routines can be made, the environment

must be initialized by a call to FLA Init.
—line 12–13: In our example, the user inputs the row and column dimension of

matrix A.
—line 15–17: Descriptors are created for A, x, and y.
—line 19–20: The routine in Fig. 7, described below, is used to fill A and x with

values.
—line 22: Compute y = Ax using the routine for performing that operation given

in Fig. 8.
—line 24–26: Print out the contents of A, x, and y.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

16 · Bientinesi et al.

1 #include "FLAME.h"

2
3 #define BUFFER(i, j) buff[(j)*lda + (i)]

4
5 void fill_matrix(FLA_Obj A)

6 {

7 int

8 datatype, m, n, lda;

9
10 datatype = FLA_Obj_datatype(A);

11 m = FLA_Obj_length(A);

12 n = FLA_Obj_width (A);

13 lda = FLA_Obj_ldim (A);

14
15 if (datatype == FLA_DOUBLE){

16 double *buff;

17 int i, j;

18
19 buff = (double *) FLA_Obj_buffer(A);

20
21 for (j=0; j<n; j++)

22 for (i=0; i<m; i++)

23 BUFFER(i, j) = i+j*0.01;

24 }

25 else FLA_Abort("Datatype not yet supported", __LINE__, __FILE__);

26 }

Fig. 7. A simple routine for filling a matrix.

—line 28–30: Free the created objects.

—line 32: Finalize FLAME/C.

A sample routine for filling A and x with data is given in Fig. 7. The macro
definition in line 3 is used to access the matrix A stored in array A using column-
major ordering.

The routine in Fig. 8 is itself a wrapper to the level 2 BLAS routine cblas dgemv,
a commonly available kernel for computing a matrix-vector multiplication which is
part of the C interface to the legacy BLAS [BLAST Forum 2001]. In order to call
this routine, which requires parameters describing the matrix, vectors, and scalars
to be explicitly passed, all of the inquiry routines are required.

4.6 Views

Figs. 1 and 2 illustrate the need for partitionings as

Partition A→
(

ATL ATR

ABL ABR

)

where ATL is k × k

In C we avoid complicated indexing by introducing the notion of a view, which is
a reference into an existing matrix or vector. Given a descriptor A of a matrix A,
the following call creates descriptors of the four quadrants:
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Representing Linear Algebra Algorithms in Code · 17

#include "FLAME.h"

#include "cblas.h"

void mv_mult(FLA_Obj A, FLA_Obj x, FLA_Obj y)

{

int

datatype_A, m_A, n_A, ldim_A, m_x, n_y, inc_x, m_y, n_y, inc_y;

datatype_A = FLA_Obj_datatype(A);

m_A = FLA_Obj_length(A);

n_A = FLA_Obj_width (A);

ldim_A = FLA_Obj_ldim (A);

m_x = FLA_Obj_length(x); m_y = FLA_Obj_length(y);

n_x = FLA_Obj_width (x); n_y = FLA_Obj_width (y);

if (m_x == 1) {

m_x = n_x;

inc_x = FLA_Obj_ldim(x);

}

else inc_x = 1;

if (m_y == 1) {

m_y = n_y;

inc_y = FLA_Obj_ldim(y);

}

else inc_y = 1;

if (datatype_A == FLA_DOUBLE){

double *buff_A, *buff_x, *buff_y;

buff_A = (double *) FLA_Obj_buffer(A);

buff_x = (double *) FLA_Obj_buffer(x);

buff_y = (double *) FLA_Obj_buffer(y);

cblas_dgemv(CblasColMaj, CblasNoTrans,

1.0, buff_A, ldim_A, buff_x, inc_x,

1.0, buff_y, inc_y);

}

else FLA_Abort("Datatype not yet supported", __LINE__, __FILE__);

}

Fig. 8. A simple matrix-vector multiplication routine. This routine is implemented as a wrapper
to the BLAS routine cblas dgemv for matrix-vector multiplication.

void FLA_Part_2x2(FLA_Obj A, FLA_Obj *ATL, FLA_Obj *ATR,
FLA_Obj *ABL, FLA_Obj *ABR,

int mb, int nb, int quadrant)

Purpose: Partition matrix A into four quadrants where the quadrant indicated
by quadrant is mb× nb.

Here quadrant can take on the values FLA TL, FLA TR, FLA BL, and FLA BR (defined
in FLAME.h) to indicate that mb and nb specify the dimensions of the Top-Left, Top-

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

18 · Bientinesi et al.

Right, Bottom-Left, or Bottom-Right quadrant, respectively. Thus, the algorithm
fragment on the left is translated into the code on the right

Partition A→
(

ATL ATR

ABL ABR

)

where ATL is mb × nb

FLA_Part_2x2(A, &ATL, /**/ &ATR,

/* ************** */

&ABL, /**/&ABR,

mb, nb, FLA_TL);

where parameters mb and nb have values mb and nb, respectively. Examples of the
use of this routine can also be found in Figs. 9 and 10.

Note 14. Invocation of the operation

FLA_Part_2x2(A, &ATL, /**/ &ATR,
/* ************** */

&ABL, /**/ &ABR,
mb, nb, FLA_TL);

in C creates four views, one for each quadrant. Subsequent modifications of the
contents of a view affect therefore the original contents of the matrix. This is an
important difference to consider with respect to the FLAME@lab API introduced in
Section 3, where the quadrants are copies of the original matrix!

Note 15. The above example remarks that formatting the code as well as the
careful introduction of comments helps in capturing the algorithm in code. Clearly,
much of the benefit of the API would be lost if in the example the code appeared as

FLA_Part_2x2(A, &ATL, &ATR, &ABL, &ABR, mb, nb, FLA_TL);

From Figs. 1 and 2, we also realize the need for an operation that takes a 2× 2
partitioning of a given matrix A and repartitions this into a 3 × 3 partitioning so
that submatrices that need to be updated and/or used for computation can be
identified. To support this, we introduce the call

void FLA_Repart_from_2x2_to_3x3

(FLA_Obj ATL, FLA_Obj ATR, FLA_Obj *A00, FLA_Obj *A01, FLA_Obj *A02,

FLA_Obj *A10, FLA_Obj *A11, FLA_Obj *A12,

FLA_Obj ABL, FLA_Obj ABR, FLA_Obj *A20, FLA_Obj *A21, FLA_Obj *A22,

int mb, int nb, int quadrant)

Purpose: Repartition a 2× 2 partitioning of matrix A into a 3× 3 partitioning
where mb×nb submatrix A11 is split from the quadrant indicated by quadrant.

Here quadrant can again take on the values FLA TL, FLA TR, FLA BL, and FLA BR
to indicate that mb × nb submatrix A11 is split from submatrix ATL, ATR, ABL, or
ABR, respectively.

Thus,

Repartition

(
ATL ATR

ABL LBR

)
→




A00 A01 A02

A10 A11 A12

A20 A21 A22




where A11 is mb × nb

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Representing Linear Algebra Algorithms in Code · 19

is captured in the code

FLA_Repart_from_2x2_to_3x3(ATL, ATR, &A00, /**/ &A01, &A02,

/* ******************** */

&A10, /**/ &A11, &A12,

ABL, ABR, &A20, /**/ &A21, &A22,

mb, nb, FLA_BR);

where parameters mb and nb have values mb and nb, respectively. Others examples
of the use of this routine can also be found in Figs. 9 and 10.

Note 16. The calling sequence of FLA Repart from 2x2 to 3x3 and related calls
is a testimony to throwing out the convention that input parameters should be listed
before output parameters or vice versa, as well as to careful formating. It is specifi-
cally by mixing input and output parameters that the repartitioning in the algorithm
can be elegantly captured in code.

Note 17. Chosing variable names can further relate the code to the algorithm,
as is illustrated by comparing




L00 0 0
lT10 λ11 0
L20 l21 L22


 and

L00, /**/ l01, L02,
/* ************************ */

l10t, /**/ lambda11, l12t,
L20, /**/ l21, L22, ...

in Figs. 1 and 9.

Once the contents of the corresponding views have been updated, the descriptions
of ATL, ATR, ABL, and ABR must be updated to reflect that progress is being made,
in terms of the regions identified by the double lines. Moving the double lines is
achieved by a call to

void FLA_Cont_with_3x3_to_2x2

(FLA_Obj *ATL, FLA_Obj *ATR, FLA_Obj A00, FLA_Obj A01, FLA_Obj A02,

FLA_Obj A10, FLA_Obj A11, FLA_Obj A12,

FLA_Obj *ABL, FLA_Obj *ABR, FLA_Obj A20, FLA_Obj A21, FLA_Obj A22,

int quadrant)

Purpose: Update the 2×2 partitioning of matrix A by moving the boundaries
so that A11 is joined to the quadrant indicated by quadrant.

Here the value of quadrant (FLA TL, FLA TR, FLA BL, or FLA BR) specifies the quad-
rant submatrix A11 is to be joined.

For example,

Continue with
(

ATL ATR

ABL LBR

)
←




A00 A01 A02

A10 A11 A12

A20 A21 A22




translates to the code

FLA_Cont_with_3x3_to_2x2(&ATL, &ATR, A00, A01, /**/ A02,

A10, A11, /**/ A12,

/* ****************** */

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

20 · Bientinesi et al.

&ABL, &ABR, A20, A21, /**/ A22,

FLA_TL);

Further examples of the use of this routine can again be found in Figs. 9 and 10.
Similarly, a matrix can be partitioned horizontally into two submatrices with the

call

void FLA_Part_2x1(FLA_Obj A, FLA_Obj *AT,
FLA_Obj *AB,

int mb, int side)

Purpose: Partition matrix A into a top and bottom side where the side indi-
cated by side has mb rows.

Here side can take on the values FLA TOP or FLA BOTTOM to indicate that mb indi-
cates the row dimension of AT or AB, respectively.

Given that matrix A is already partitioned horizontally it can be repartitioned
into three submatrices with the call

void FLA_Repart_from_2x1_to_3x1(FLA_Obj AT, FLA_Obj *A0,
FLA_Obj *A1,

FLA_Obj AB, FLA_Obj *A2,
int mb, int side)

Purpose: Repartition a 2× 1 partitioning of matrix A into a 3× 1 partitioning
where submatrix A1 with mb rows is split from the side indicated by side.

Here side can take on the values FLA TOP or FLA BOTTOM to indicate that mb sub-
matrix A1 is partitioned from AT or AB, respectively.

Given a 3 × 1 partitioning of a given matrix A, the middle submatrix can be
appended to either the first or last submatrix with the call

void FLA_Cont_with_3x1_to_2x1(FLA_Obj *AT, FLA_Obj A0,
FLA_Obj A1,

FLA_Obj *AB, FLA_Obj A2,
int side)

Purpose: Update the 2×1 partitioning of matrix A by moving the boundaries
so that A1 is joined to the side indicated by side.

Examples of the use of the routine that deals with the horizontal partitioning of
matrices can be found in Figs. 9 and 10.

Finally, a matrix can be partitioned and repartitioned vertically with the calls

void FLA_Part_1x2(FLA_Obj A, FLA_Obj *AL, FLA_Obj *AR,
int nb, int side)

Purpose: Partition matrix A into a left and right side where the side indicated
by side has nb columns.

and
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Representing Linear Algebra Algorithms in Code · 21

void FLA_Repart_from_1x2_to_1x3
(FLA_Obj AL, FLA_Obj AR,

FLA_Obj *A0, FLA_Obj *A1, FLA_Obj *A2,
int nb, int side)

Purpose: Repartition a 1× 2 partitioning of matrix A into a 1× 3 partitioning
where submatrix A1 with nb columns is split from the side indicated by side.

Here side can take on the values FLA LEFT or FLA RIGHT. Adding the middle sub-
matrix to the first or last is now accomplished by a call to

void FLA_Cont_with_1x3_to_1x2
(FLA_Obj *AL, FLA_Obj *AR,

FLA_Obj A0, FLA_Obj A1, FLA_Obj A2,
int side)

Purpose: Update the 1× 2 partitioning of matrix A by moving the boundaries
so that A1 is joined to the side indicated by side.

4.7 Computational kernels

All operations described in the last subsection hide the details of indexing in the
linear algebra objects. To compute with and/or update data associated with a
linear algebra object, one calls subroutines that perform the desired operations.

Such subroutines typically take one of three forms:

—subroutines coded using the FLAME/C interface (including, possibly, a recursive
call),

—subroutines coded using a more traditional coding style, or
—wrappers to highly optimized kernels.

Naturally these are actually three points on a spectrum of possibilities, since one
can mix these techniques.

A subset of currently supported operations is given in the electronic appendix
to this paper. Here, we discuss how to create subroutines that compute these
operations. For additional information on supported functionality, please visit the
webpage given at the end of this paper or [Gunnels and van de Geijn 2001a].

4.7.1 Subroutines coded using the FLAME/C interface. The subroutine itself
could be coded using the FLAME approach to deriving algorithms [Bientinesi et al.
2005] and the FLAME/C interface described in this section.

For example, the implementation in Fig. 10 of the blocked algorithm given in
Fig. 2 requires the update B1 := L−1

11 B1, which can be implemented by a call to
the unblocked algorithm in Fig. 9.

4.7.2 Subroutine coded using a more traditional coding style. There is an over-
head for the abstractions that we introduce to hide indexing. For implementations
of blocked algorithms, this overhead is amortized over a sufficient amount of com-
putation that it is typically not of much consequence. (In the case of the algorithm
in Fig. 2 when B is m×n the indexing overhead is O(m/b) while the useful compu-
tation is O(m2n).) However, for unblocked algorithms or algorithms that operate

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

22 · Bientinesi et al.

#include "FLAME.h"

void Trsm_llnn_unb_var1(FLA_Obj L, FLA_Obj B)

{

FLA_Obj LTL, LTR, L00, l01, L02, BT, B0,

LBL, LBR, l10t, lambda11, l12t, BB, b1t,

L20, l21, L22, B2;

FLA_Part_2x2(L, <L, /**/ <R,

/* ************** */

&LBL, /**/ &LBR, 0, 0, /* submatrix */ FLA_TL);

FLA_Part_2x1(B, &BT,

/***/

&BB, 0, /* length submatrix */ FLA_TOP);

while (FLA_Obj_length(LTL) < FLA_Obj_length(L)){

FLA_Repart_2x2_to_3x3(LTL, /**/ LTR, &L00, /**/ &l01, &L02,

/* ************* */ /* *************************** */

/**/ &l10t, /**/ &lambda11, &l12t,

LBL, /**/ LBR, &L20, /**/ &l21, &L22,

1, 1, /* lambda11 from */ FLA_BR);

FLA_Repart_2x1_to_3x1(BT, &B0,

/**/ /**/

&b1t,

BB, &B2,

1, /* length b1t from */ FLA_BOTTOM);

/* --- */

FLA_Gemv(FLA_TRANSPOSE, MINUS_ONE, B0, l10t, ONE, b1t);

FLA_Inv_scal(lambda11, b1t);

/* --- */

FLA_Cont_with_3x3_to_2x2(<L, /**/ <R, L00, l01, /**/ L02,

/**/ l10t, lambda11, /**/ l12t,

/* ************** */ /* ************************* */

&LBL, /**/ &LBR, L20, l21, /**/ L22,

/* lambda11 added to */ FLA_TL);

FLA_Cont_with_3x1_to_2x1(&BT, B0,

b1t,

/***/ /**/

&BB, B2,

/* b1t added to */ FLA_TOP);

}

}

Fig. 9. FLAME/C implementation for unblocked triangular system solves (trsm algorithm in
Fig. 1).

on vectors, the relative cost is more substantial. In this case, it may become ben-
eficial to code the subroutine using a more traditional style that exposes indices.
For example, the operation

FLA_Inv_scal(lambda11, b1t);

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Representing Linear Algebra Algorithms in Code · 23

#include "FLAME.h"

void Trsm_llnn_var1_blk(FLA_Obj L, FLA_Obj B, int nb_alg)

{

FLA_Obj LTL, LTR, L00, L01, L02, BT, B0,

LBL, LBR, L10, L11, L12, BB, B1,

L20, L21, L22, B2;

int b;

FLA_Part_2x2(L, <L, /**/ <R,

/* ************** */

&LBL, /**/ &LBR, 0, 0, /* submatrix */ FLA_TL);

FLA_Part_2x1(B, &BT,

/***/

&BB, 0, /* length submatrix */ FLA_TOP);

while (FLA_Obj_length(LTL) < FLA_Obj_length(L)){

b = min(FLA_Obj_length(LBR), nb_alg);

FLA_Repart_2x2_to_3x3(LTL, /**/ LTR, &L00, /**/ &L01, &L02,

/* ************* */ /* ********************* */

/**/ &L10, /**/ &L11, &L12,

LBL, /**/ LBR, &L20, /**/ &L21, &L22,

b, b, /* L11 from */ FLA_BR);

FLA_Repart_2x1_to_3x1(BT, &B0,

/**/ /**/

&B1,

BB, &B2,

b, /* length B1 from */ FLA_BOTTOM);

/* --- */

FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, L10, B0, ONE, B1);

Trsm_llnn_var1_unb(L11, B1);

/* --- */

FLA_Cont_with_3x3_to_2x2(<L, /**/ <R, L00, L01, /**/ L02,

/**/ L10, L11, /**/ L12,

/* ************** */ /* ****************** */

&LBL, /**/ &LBR, L20, L21, /**/ L22,

/* L11 added to */ FLA_TL);

FLA_Cont_with_3x1_to_2x1(&BT, B0,

B1,

/***/ /**/

&BB, B2,

/* B1 added to */ FLA_TOP);

}

}

Fig. 10. FLAME/C implementation for blocked triangular system solves (trsm algorithm in
Fig. 2).

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

24 · Bientinesi et al.

#include "FLAME.h"

void FLA_Inv_scal(FLA_Obj alpha, FLA_Obj x)

{

int datatype_alpha, datatype_x, n_x, inc_x, i;

double *buffer_alpha, *buffer_x, recip_alpha;

datatype_alpha = FLA_Obj_datatype(alpha);

datatype_x = FLA_Obj_datatype(x);

if ((datatype_alpha == FLA_DOUBLE) &&

(datatype_x == FLA_DOUBLE)) {

n_x = FLA_Obj_length(x);

if (n_x == 1){

n_x = FLA_Obj_width(x);

inc_x = FLA_Obj_ldim(x);

}

else inc_x = 1;

buffer_alpha = (double *) FLA_Obj_buffer(alpha);

buffer_x = (double *) FLA_Obj_buffer(x);

recip_alpha = 1.0 / *buffer_alpha;

for (i=0; i<n_x; i++)

*buffer_x++ *= recip_alpha;

/* For BLAS based implementation, comment out above loop

and uncomment the call to cblas_dscal below */

/* cblas_dscal(n_x, recip_alpha, buffer_x, inc_x); */

}

else FLA_Abort("datatype not yet supported", __LINE__, __FILE__);

}

Fig. 11. Sample implementation of the scaling routine FLA Inv scal.

can be implemented by the subroutine in Fig. 11. (It is probably more efficient to
instead implement it by calling cblas dscal or the equivalent BLAS routine for
the appropriate datatype.)

Note 18. Even when a routine is ultimately implemented using more traditional
code, it is beneficial to incorporate the FLAME/C code as comments for clarifica-
tion.

4.7.3 Wrappers to highly optimized kernels. A number of matrix and/or vector
operations have been identified to be frequently used by the linear algebra commu-
nity. Many of these are part of the BLAS. Since highly optimized implementations
of these operations are supported by widely available library implementations, it
makes sense to provide a set of subroutines that are simply wrappers to the BLAS.
An example of this is given in Fig. 8.
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Representing Linear Algebra Algorithms in Code · 25

5. FROM FLAME@LAB TO FLAME/C TO PLAPACK

As mentioned, we view the FLAME@lab and FLAME/C interfaces as tools on a
migratory path that starts with the specification of the operation to be performed,
after which the FLAME derivation process can be used to systematically derive a
family of algorithms for computing the operation, followed by an initial implementa-
tion with FLAME@lab, a high-performance implementation with FLAME/C, and
finally a parallel implementation with a FLAME/C-like extension of the PLAPACK
interface.

5.1 Cases where FLAME@lab is particularly useful

Since algorithms can clearly be directly translated to FLAME/C, the question of
the necessity for the FLAME@lab API arises. As is well known, MATLAB-like
environments are extremely powerful interactive tools for manipulating matrices
and investigating algorithms; interactivity is probably the key feature, allowing the
user to speed up dramatically the design of procedures such as input generation
and output analysis.

The authors have had the chance to exploit the FLAME@lab API in a number
of research topics:

—In [Quintana-Ort́ı and van de Geijn 2003], the interface was used to investigate
the numerical stability properties of algorithms derived for the solution of the
triangular Sylvester equation.

—In an ongoing study, we are similarly using it for the analysis of the stability of
different algorithms for inverting a triangular matrix. Several algorithms exist
for this operation. We derived them by using the FLAME methodology and
implemented them with FLAME@lab. For each variant measurements of different
forms of residuals and forward errors had to be made [Higham 2002]. As part
of the study, the input matrices needed to be chosen with extreme care and
often they are the result from some other operation, such as the lu function in
MATLAB (which produces an LU factorization of a given matrix).

For these kinds of investigative studies high performance is not required. It is the
interactive nature of tools as MATLAB that is especially useful.

5.2 Moving on to FLAME/C

Once derived algorithms have been implemented and tested with FLAME@lab, the
transition to a high-performance implementation using the FLAME/C API is di-
rect, requiring (consultation of the appropriate documentation and) the translation
for the operations in the loop body to calls to subroutines with the functionality of
the BLAS.

The most significant difference between the FLAME/C and FLAME@lab APIs
is that for the FLAME/C interface, the partitioning routines return views (i.e.,
references) into the matrix. Thus, any subsequent modification of the view results
in a modification of the original contents of the matrix. The use of views in the
FLAME/C API avoids much of the unnecessary data copying that occurs in the
FLAME@lab API, possible leading to a higher-performance implementation. It is
possible to call C routines from MATLAB, and we have implemented such an inter-

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

26 · Bientinesi et al.

face. This could allow one to benefit from the interactive environment MATLAB
provides, while retaining most of the performance benefits of coding subroutines in
C.

5.3 And finally the parallel implementation

While the PLAPACK API already hides details of indexing by using objects, and to
a large degree inspired the FLAME/C API, the notion of tracking all submatrices
of the matrices involved in the computation as FLAME/C does is new. Specifically,
the routines FLA Repart ... and FLA Cont with ... were not part of the original
PLAPACK API. As part of our project, we have now added similar routines to the
PLAPACK API. An implementation using PLAPACK for trsm is given in Fig. 12.
In essence, a parallel implementation can be created by replacing FLAME.h with
PLA.h and all prefixes FLA with PLA . In PLAPACK, objects are defined as pointers
to structures that are dynamically allocated. As a result, the declarations are
somewhat different when compared to the FLAME/C code in Fig. 10. Furthermore,
these so allocated objects must be freed at the end of the routine. Finally, the
constants MINUS ONE, ZERO, and ONE must be created in each new routine. These
idiosyncrasies suggest that it is time to update the PLAPACK API to become closer
to the FLAME API.

In addition to attaining performance by casting computation as much as possible
in terms of matrix-matrix operations (blocked algorithms), a parallel implementa-
tion requires careful assignment of data and work to individual processors. Clearly,
the FLAME/C interface does not capture this, nor does the most trivial translation
of FLAME/C to FLAME/PLAPACK. It is here where the full PLAPACK API al-
lows the user to carefully manipulate the data and the operations, while still coding
at a high level of abstraction. This manipulation is relatively systematic. Indeed,
the Broadway compiler can to some degree automate this process [Guyer and Lin
1999; 2000b; 2000a; Guyer et al. 2001]. Also, an automated system for directly
translating algorithms such as those given in Section 2 to optimized PLAPACK
code has been prototyped [Gunnels 2001].

Further details regarding parallel implementations go beyond the scope of this
paper.

5.4 MATLAB to parallel implementations

In some sense, our work answers the question of how to generate parallel implemen-
tations from algorithms coded in MATLAB M-script [Moler et al. 1987]: For the
class of problems to which the presented approach applies, the answer is to start
with the algorithm, and to create APIs that can target MATLAB, C, or parallel
architectures.

6. PERFORMANCE

In a number of papers that were already mentioned in the introduction we have
shown that the FLAME/C API can be used to attain high performance for imple-
mentations of a broad range of linear algebra operations. Thus, we do not include
a traditional performance section. Instead, we discuss some of the issues.

Conventional wisdom used to dictate that raising the level of abstraction at
which one codes adversely impacts the performance of the implementation. We,
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Representing Linear Algebra Algorithms in Code · 27

#include "PLA.h"

void PLA_Trsm_llnn_var1_blk(PLA_Obj L, PLA_Obj B, int nb_alg)

{

PLA_Obj

LTL=NULL, LTR=NULL, L00=NULL, L01=NULL, L02=NULL, BT=NULL, B0=NULL,

LBL=NULL, LBR=NULL, L10=NULL, L11=NULL, L12=NULL, BB=NULL, B1=NULL,

L20=NULL, L21=NULL, L22=NULL, B2=NULL,

MINUS_ONE=NULL, ZERO=NULL, ONE=NULL;

int b;

PLA_Create_constants_conf_to(L, &MINUS_ONE, &ZERO, &ONE);

PLA_Part_2x2(L, <L, /**/ <R,

/* ************** */

&LBL, /**. &LBR, 0, 0, /* submatrix */ PLA_TL);

PLA_Part_2x1(B, &BT,

/***/

&BB, 0, /* length submatrix */ PLA_TOP);

while (PLA_Obj_length(LTL) < PLA_Obj_length(L)){

b = min(PLA_Obj_length(LBR), nb_alg);

PLA_Repart_2x2_to_3x3(LTL, /**/ LTR, &L00, /**/ &L01, &L02,

/* ************* */ /* ********************* */

/**/ &L10, /**/ &L11, &L12,

LBL, /**/ LBR, &L20, /**/ &L21, &L22,

b, b, /* L11 from */ PLA_BR);

PLA_Repart_2x1_to_3x1(BT, &B0,

/**/ /**/

&B1,

BB, &B2,

b, /* length B1 from */ PLA_BOTTOM);

/* --- */

PLA_Gemm(PLA_NO_TRANSPOSE, PLA_NO_TRANSPOSE, MINUS_ONE, L10, B0, ONE, B1);

PLA_Trsm_llnn_var1_unb(L11, B1);

/* --- */

PLA_Cont_with_3x3_to_2x2(<L, /**/ <R, L00, L01, /**/ L02,

/**/ L10, L11, /**/ L12,

/* ************** */ /* ****************** */

&LBL, /**/ &LBR, L20, L21, /**/ L22,

/* L11 added to */ PLA_TL);

PLA_Cont_with_3x1_to_2x1(&BT, B0,

B1,

/***/ /**/

&BB, B2,

/* B1 added to */ PLA_TOP);

}

PLA_Obj_free(<L);

[:]

PLA_Obj_free(&ONE);

}

Fig. 12. FLAME/PLAPACK implementation for blocked triangular system solves (trsm algo-
rithm in Fig. 10).

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

28 · Bientinesi et al.

like others, disagree for a number of reasons:

—By raising the level of abstraction, more ambitious algorithms can be imple-
mented, which can achieve higher performance [Gunnels et al. 2001; Quintana-
Ort́ı and van de Geijn 2003; Gunnels and van de Geijn 2001b; Bientinesi et al.
2002; Alpatov et al. 1997; van de Geijn 1997].
One can, of course, argue that these same algorithms can also be implemented
at a lower level of abstraction. While this is true for individual operations,
implementing entire libraries at a low level of abstraction greatly increases the
effort required to implement, maintain, and verify correctness.

—Once implementations are implemented with an API at a high level of abstrac-
tion, components can be selectively optimized at a low level of abstraction. We
learn from this that the API must be designed to easily accommodate this kind
of optimization, as is also discussed in Section 4.7.

—Recent compiler technology (e.g., [Guyer and Lin 1999; 2000b; 2000a; Guyer
et al. 2001]) allows library developers to specify dependencies between routines
at a high level of abstraction, which allows compilers to optimize between layers of
libraries, automatically achieving the kinds of optimizations that would otherwise
be performed by hand.

—Other situations in which abstraction offers the opportunity for higher perfor-
mance include several mathematical libraries and C++ optimization techniques
as well. For example, PMLP [Birov et al. 1998] uses C++ templates to support
many different storage formats, thereby decoupling storage format from algorith-
mic correctness in classes of sparse linear algebra, thus allowing this degree of free-
dom to be explored for optimizing performance. Also, PMLP features operation
sequences and non-blocking operations in order to allow scheduling of mathemat-
ical operations asynchronously from user threads. Template meta-programming
and expression templates support concepts including compile-time optimizations
involving loop fusion, expression simplification, and removal of unnecessary tem-
poraries; these allow C++ to utilize fast kernels while removing abstraction bar-
riers between kernels, and further abstraction barriers between sequences of user
operations (systems include Blitz++ [Veldhuizen 2001]). These techniques, in
conjunction with an appropriate FLAME-like API for C++, should allow our
algorithms to be expressed at a high level of abstraction without compromising
performance.

Note 19. The lesson to be learned is that by raising the level of abstraction, a
high degree of confidence in the correctness of the implementation can be achieved
while more aggressive optimizations, by hand or by a compiler, can simultaneously
be facilitated.

7. PRODUCTIVITY AND THE FLAME INTERFACE REPOSITORY (FIRE)

In the abstract and introduction of this paper, we make claims regarding the im-
pact of the presented approach on productivity. In this section, we narrate a few
experiences.
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Representing Linear Algebra Algorithms in Code · 29

7.1 Sequential implementation of algorithms for the triangular Sylvester equation

A clear demonstration that the FLAME derivation process, in conjunction with the
FLAME APIs, can be used to quickly generate new algorithms and implementa-
tions for non-trivial operations came in the form of a family of algorithms for the
triangular Sylvester equations. Numerous previously unknown high-performance al-
gorithms were derived in a matter of hours, and implemented using the FLAME/C
API in less than a day. In response to the submitted related paper, referees re-
quested that the numerical properties of the resulting implementations be investi-
gated. In an effort to oblige, the FLAME@lab interface was created, and numerical
experiments were performed with the aid of the MATLAB environment. The re-
sulting paper has now appeared [Quintana-Ort́ı and van de Geijn 2003].

7.2 Parallel implementation of the reduction to tridiagonal form

As part of an effort to parallelize the Algorithm of Multiple Relatively Robust
Representations (MRRR) for dense symmetric eigenproblems, a parallel implemen-
tation of the reduction to tridiagonal form via Householder transformations was de-
veloped using PLAPACK [Bientinesi et al. 2005]. First, a careful description of the
algorithms was created, in the format presented in Section 2. Next, a FLAME@lab
implementation was created, followed by a FLAME/C implementation. Finally, the
sequential code was ported to PLAPACK. The entire development of this imple-
mentation from start to finish took about a day of the time of two of the authors.

7.3 Undergraduate and graduate education

Before the advent of FLAME@lab and FLAME/C, projects related to the high-
performance implementation of linear algebra algorithms required students to code
directly in terms of BLAS calls with explicit indexing into arrays. Much more
ambitious projects can now be undertaken by less experienced students since the
most difficult component of the code, the indexing, has been greatly simplified.

7.4 Assembling the FLAME Interface REpository (FIRE)

As part of undergraduate and graduate courses at UT-Austin, students have been
generating algorithms and implementations for a broad spectrum of linear algebra
operations. An undergraduate in one of these classes, Minhaz Khan, took it upon
himself to systematically assemble many of these implementations in the FLAME
Interface REpository (FIRE). To date, hundreds of implementations of dozens of
algorithms have been cataloged, almost half single-handedly by this student. After
some experience was gained, he reported being able to derive, prove correct, im-
plement, and test algorithms at a rate of about seven minutes per algorithm for
BLAS-like operations involving several triangular matrices1.

8. CONCLUSION

In this paper, we have presented simple APIs for implementing linear algebra algo-
rithms using the MATLAB M-script and C programming languages. In isolation,

1These operations are similar to those supported by the LAPACK auxiliary routines DLAUUM
andDLAUU2.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

30 · Bientinesi et al.

these interfaces illustrate how raising the level of abstraction at which one codes
allows one to avoid intricate indexing in the code, which reduces the opportunity
for the introduction of errors and raises the confidence in the correctness of the
code. In combination with our formal derivation methodology, the APIs can be
used to implement algorithms derived using that methodology so that the proven
correctness of those algorithms translates to a high degree of confidence in the
implementation.

We want to emphasize that the presented APIs are merely meant to illustrate
the issues. Similar interfaces for the Fortran, C++, and other languages are easily
defined, allowing special features of those languages to be used to raise even further
the level of abstraction at which one codes.

Finally, an increasing number of linear algebra operations have been captured
with our formal derivation methodology. This set of operations includes, to name
but a few, the complete levels 1, 2, and 3 BLAS factorization operations such as the
LU and QR (with and without pivoting), reduction to condensed forms, and linear
matrix equations arising in control. An ever-growing collection of linear algebra
operations written using the FLAME@lab and FLAME/C interfaces can be found
at the URI given below.

Further Information

For further information on the FLAME project and to download the FLAME@lab
or FLAME/C interface, visit

http://www.cs.utexas.edu/users/flame/.

The FIREsite repository is being maintained at

http://www.cs.utexas.edu/users/flame/FIREsite.

Electronic Appendix

The electronic appendix for this article can be accessed in the ACM Digital Library.

Acknowledgments

Support for this research was provided by NSF grant ACI-0203685 and ACI-0305163.
Additional support for this work came from the Visiting Researcher program of the
Institute for Computational Engineering and Sciences (ICES).

An ever-growing number of people have contributed to date to the methodology
that underlies the Formal Linear Algebra Methods Environment. These include

—UT-Austin: Brian Gunter, Mark Hinga, Thierry Joffrain, Minhaz Khan, Tze
Meng Low, Dr. Margaret Myers, Vinod Valsalam, Serita Van Groningen, and
Field Van Zee.

—IBM’s T.J. Watson Research Center: Dr. John Gunnels and Dr. Fred Gustavson.

—Intel: Dr. Greg Henry.

—University of Alabama at Birmingham: Prof. Anthony Skjellum and Wenhao
Wu.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Representing Linear Algebra Algorithms in Code · 31

In addition, numerous students in undergraduate and graduate courses on high-
performance computing at UT-Austin have provided valuable feedback.

Finally, we would like to thank the referees for their valuable comments that
helped to improve the contents of this paper.

REFERENCES

Alpatov, P., Baker, G., Edwards, C., Gunnels, J., Morrow, G., Overfelt, J., van de Geijn,
R., and Wu, Y.-J. J. 1997. PLAPACK: Parallel linear algebra package – design overview. In
Proceedings of SC97. IEEE Computer Society Press.

Anderson, E., Bai, Z., Demmel, J., Dongarra, J. E., DuCroz, J., Greenbaum, A., Ham-
marling, S., McKenney, A. E., Ostrouchov, S., and Sorensen, D. 1992. LAPACK Users’
Guide. SIAM, Philadelphia.

Baker, G., Gunnels, J., Morrow, G., Riviere, B., and van de Geijn, R. 1998. PLAPACK:
High performance through high level abstraction. In Proceedings of ICPP98. IEEE Computer
Society Press.

Balay, S., Gropp, W., McInnes, L. C., and Smith, B. 1996. PETSc 2.0 users manual. Tech.
Rep. ANL-95/11, Argonne National Laboratory. Oct.

Bientinesi, P., Dhillon, I., and van de Geijn, R. 2005. A parallel eigensolver for dense sym-
metric matrices based on multiple relatively robust representations. SIAM J. Sci. Comput..
To appear.

Bientinesi, P., Gunnels, J. A., Gustavson, F. G., Henry, G. M., Myers, M. E., Quintana-
Orti, E. S., and van de Geijn, R. A. 2002. The science of programming high-performance
linear algebra libraries. In Proceedings of Performance Optimization for High-Level Languages
and Libraries (POHLL-02) , a workshop in conjunction with the 16th Annual ACM Interna-
tional Conference on Supercomputing (ICS’02).

Bientinesi, P., Gunnels, J. A., Myers, M. E., Quintana-Ort́ı, E. S., and van de Geijn, R. A.
2005. The science of deriving dense linear algebra algorithms. ACM Trans. Math. Soft.. To
appear.

Birov, L., Purkayastha, A., Skjellum, A., Dandass, Y., and Bangalore, P. V. 1998. PMLP
home page. http://www.erc.msstate.edu/labs/hpcl/pmlp.

BLAST Forum. 2001. Basic Linear Algebra Suprograms Technical (BLAST) Forum Standard –
Annex B.

Choi, J., Dongarra, J. J., Pozo, R., and Walker, D. W. 1992. ScaLAPACK: A scalable linear
algebra library for distributed memory concurrent computers. In Proceedings of the Fourth
Symposium on the Frontiers of Massively Parallel Computation. IEEE Comput. Soc. Press,
120–127.

Dongarra, J. J., Du Croz, J., Hammarling, S., and Duff, I. 1990. A set of level 3 basic linear
algebra subprograms. ACM Trans. Math. Soft. 16, 1 (March), 1–17.

Dongarra, J. J., Du Croz, J., Hammarling, S., and Hanson, R. J. 1988. An extended set of
FORTRAN basic linear algebra subprograms. ACM Trans. Math. Soft. 14, 1 (March), 1–17.

Dongarra, J. J., Duff, I. S., Sorensen, D. C., and van der Vorst, H. A. 1991. Solving Linear
Systems on Vector and Shared Memory Computers. SIAM, Philadelphia, PA.

Gropp, W., Lusk, E., and Skjellum, A. 1994. Using MPI. The MIT Press.

Gunnels, J. A. 2001. A systematic approach to the design and analysis of parallel dense linear
algebra algorithms. Ph.D. thesis, Department of Computer Sciences, The University of Texas.

Gunnels, J. A., Gustavson, F. G., Henry, G. M., and van de Geijn, R. A. 2001. FLAME:
Formal linear algebra methods environment. ACM Trans. Math. Soft. 27, 4 (December), 422–
455.

Gunnels, J. A. and van de Geijn, R. A. 2001a. Developing linear algebra algorithms: A collection
of class projects. Tech. Rep. CS-TR-01-19, Department of Computer Sciences, The University
of Texas at Austin. May. http://www.cs.utexas.edu/users/flame/.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

32 · Bientinesi et al.

Gunnels, J. A. and van de Geijn, R. A. 2001b. Formal methods for high-performance linear
algebra libraries. In The Architecture of Scientific Software, R. F. Boisvert and P. T. P. Tang,
Eds. Kluwer Academic Press, 193–210.

Guyer, S. Z., Berger, E., and Lin, C. 2001. Customizing software libraries for performance
portability. In 10th SIAM Conference on Parallel Processing for Scientific Computing. SIAM.

Guyer, S. Z. and Lin, C. 1999. An annotation language for optimizing software libraries. In
Second Conference on Domain Specific Languages. ACM Press, 39–52.

Guyer, S. Z. and Lin, C. 2000a. Broadway: A Software Architecture for Scientific Computing.
Kluwer Academic Press, 175–192.

Guyer, S. Z. and Lin, C. 2000b. Optimizing the use of high performance software libraries. In
Lecture Notes in Computer Sciences. Vol. 2017. Springer-Verlag, Berlin, 227–243.

Higham, N. J. 2002. Accuracy and Stability of Numerical Algorithms, Second ed. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA.

Kernighan, B. and Ritchie, D. 1978. The C programming language. Prentice-Hall, Englewood
Cliffs, NJ.

Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T. 1979. Basic linear algebra
subprograms for Fortran usage. ACM Trans. Math. Soft. 5, 3 (Sept.), 308–323.

Moler, C., Little, J., and Bangert, S. 1987. Pro-Matlab, User’s Guide. The Mathworks, Inc.

Quintana-Ort́ı, E. S. and van de Geijn, R. A. 2003. Formal derivation of algorithms for the
triangular Sylvester equation. ACM Trans. Math. Soft. 29, 2, 218–243.

Snir, M., Otto, S. W., Huss-Lederman, S., Walker, D. W., and Dongarra, J. 1996. MPI:
The Complete Reference. The MIT Press.

Stewart, G. W. 1973. Introduction to Matrix Computations. Academic Press, Orlando, Florida.

van de Geijn, R. A. 1997. Using PLAPACK: Parallel Linear Algebra Package. The MIT Press.

Veldhuizen, T. 2001. Blitz++ user’s guide. URL:http://oonumerics.org/blitz/.

Received Month Year; revised Month Year; accepted Month Year

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

