
hearn-50265; ISBN: 0-13-015390-7 book August 8, 2003 14:44

C H A P T E R 2

Overview of Graphics Systems

A wide, curved-screen, computer-graphics presentation system and its control desk.
(Courtesy of Silicon Graphics, Inc. and Trimension Systems. c© 2003 SGI. All rights reserved.)

34

hearn-50265; ISBN: 0-13-015390-7 book July 29, 2003 14:54

2-1 Video Display Devices
2-2 Raster-Scan Systems
2-3 Graphics Workstations and Viewing

Systems
2-4 Input Devices
2-5 Hard-Copy Devices

2-6 Graphics Networks
2-7 Graphics on the Internet
2-8 Graphics Software
2-9 Introduction to OpenGL

2-10 Summary

T
he power and utility of computer graphics is widely recognized, and
a broad range of graphics hardware and software systems are now
available for applications in virtually all fields. Graphics capabilities
for both two-dimensional and three-dimensional applications are
now common, even on general-purpose computers and handheld

calculators. With personal computers, we can use a variety of interactive input
devices and graphics software packages. For higher-quality applications, we can
choose from a number of sophisticated special-purpose graphics hardware sys-
tems and technologies. In this chapter, we explore the basic features of graphics
hardware components and graphics software packages.

2-1 VIDEO DISPLAY DEVICES

Typically, the primary output device in a graphics system is a video monitor
(Fig. 2-1). The operation of most video monitors is based on the standard
cathode-ray tube (CRT) design, but several other technologies exist and solid-
state monitors may eventually predominate.

FIGURE 2-1 A computer-graphics workstation.
(Courtesy of Silicon Graphics, Inc., Why Not Films, and
525 Post Production. c© 2003 SGI. All rights reserved.)

35

hearn-50265; ISBN: 0-13-015390-7 book July 29, 2003 14:54

36 CHAPTER 2 Overview of Graphics Systems

Refresh Cathode-Ray Tubes
Figure 2-2 illustrates the basic operation of a CRT. A beam of electrons (cathode
rays), emitted by an electron gun, passes through focusing and deflection systems
that direct the beam toward specified positions on the phosphor-coated screen.
The phosphor then emits a small spot of light at each position contacted by the
electron beam. Because the light emitted by the phosphor fades very rapidly,
some method is needed for maintaining the screen picture. One way to do this
is to store the picture information as a charge distribution within the CRT. This
charge distribution can then be used to keep the phosphors activated. However,
the most common method now employed for maintaining phosphor glow is to
redraw the picture repeatedly by quickly directing the electron beam back over the
same screen points. This type of display is called a refresh CRT, and the frequency
at which a picture is redrawn on the screen is referred to as the refresh rate.

The primary components of an electron gun in a CRT are the heated metal
cathode and a control grid (Fig. 2-3). Heat is supplied to the cathode by directing
a current through a coil of wire, called the filament, inside the cylindrical cathode
structure. This causes electrons to be “boiled off” the hot cathode surface. In
the vacuum inside the CRT envelope, the free, negatively charged electrons are
then accelerated toward the phosphor coating by a high positive voltage. The
accelerating voltage can be generated with a positively charged metal coating
on the inside of the CRT envelope near the phosphor screen, or an accelerating
anode, as in Fig. 2-3, can be used to provide the positive voltage. Sometimes the
electron gun is designed so that the accelerating anode and focusing system are
within the same unit.

FIGURE 2-2 Basic design
of a magnetic-deflection CRT.

Base

Focusing
System

Magnetic
Deflection Coils

Connector
Pins

Electron
Gun

Phosphor-
Coated
Screen

Electron
Beam

FIGURE 2-3 Operation of
an electron gun with an
accelerating anode.

Focusing
Anode

Accelerating
Anode

Electron
Beam
PathCathode

Control
Grid

Heating
Filament

hearn-50265; ISBN: 0-13-015390-7 book July 29, 2003 14:54

2-1 Video Display Devices 37

Intensity of the electron beam is controlled by the voltage at the control grid,
which is a metal cylinder that fits over the cathode. A high negative voltage ap-
plied to the control grid will shut off the beam by repelling electrons and stopping
them from passing through the small hole at the end of the control-grid structure.
A smaller negative voltage on the control grid simply decreases the number of
electrons passing through. Since the amount of light emitted by the phosphor
coating depends on the number of electrons striking the screen, the brightness
of a display point is controlled by varying the voltage on the control grid. This
brightness, or intensity level, is specified for individual screen positions with
graphics software commands, as discussed in Chapter 3.

The focusing system in a CRT forces the electron beam to converge to a small
cross section as it strikes the phosphor. Otherwise, the electrons would repel each
other, and the beam would spread out as it approaches the screen. Focusing is
accomplished with either electric or magnetic fields. With electrostatic focusing,
the electron beam is passed through a positively charged metal cylinder so that
electrons along the centerline of the cylinder are in an equilibrium position. This
arrangement forms an electrostatic lens, as shown in Fig. 2-3, and the electron
beam is focused at the center of the screen in the same way that an optical lens
focuses a beam of light at a particular focal distance. Similar lens focusing effects
can be accomplished with a magnetic field set up by a coil mounted around the
outside of the CRT envelope, and magnetic lens focusing usually produces the
smallest spot size on the screen.

Additional focusing hardware is used in high-precision systems to keep the
beam in focus at all screen positions. The distance that the electron beam must
travel to different points on the screen varies because the radius of curvature for
most CRTs is greater than the distance from the focusing system to the screen
center. Therefore, the electron beam will be focused properly only at the center
of the screen. As the beam moves to the outer edges of the screen, displayed
images become blurred. To compensate for this, the system can adjust the focusing
according to the screen position of the beam.

As with focusing, deflection of the electron beam can be controlled with either
electric or magnetic fields. Cathode-ray tubes are now commonly constructed
with magnetic-deflection coils mounted on the outside of the CRT envelope, as
illustrated in Fig. 2-2. Two pairs of coils are used for this purpose. One pair is
mounted on the top and bottom of the CRT neck, and the other pair is mounted
on opposite sides of the neck. The magnetic field produced by each pair of coils
results in a transverse deflection force that is perpendicular to both the direction
of the magnetic field and the direction of travel of the electron beam. Horizontal
deflection is accomplished with one pair of coils, and vertical deflection with the
other pair. The proper deflection amounts are attained by adjusting the current
through the coils. When electrostatic deflection is used, two pairs of parallel plates
are mounted inside the CRT envelope. One pair of plates is mounted horizontally
to control vertical deflection, and the other pair is mounted vertically to control
horizontal deflection (Fig. 2-4).

Spots of light are produced on the screen by the transfer of the CRT beam en-
ergy to the phosphor. When the electrons in the beam collide with the phosphor
coating, they are stopped and their kinetic energy is absorbed by the phosphor.
Part of the beam energy is converted by friction into heat energy, and the remain-
der causes electrons in the phosphor atoms to move up to higher quantum-energy
levels. After a short time, the “excited” phosphor electrons begin dropping back
to their stable ground state, giving up their extra energy as small quantums of
light energy called photons. What we see on the screen is the combined effect of all

hearn-50265; ISBN: 0-13-015390-7 book July 29, 2003 14:54

38 CHAPTER 2 Overview of Graphics Systems

FIGURE 2-4 Electrostatic
deflection of the electron
beam in a CRT.

Base

Focusing
System

Connector
Pins

Electron
Gun

Horizontal
Deflection

Plates

Vertical
Deflection

Plates

Phosphor-
Coated
Screen

Electron
Beam

the electron light emissions: a glowing spot that quickly fades after all the excited
phosphor electrons have returned to their ground energy level. The frequency (or
color) of the light emitted by the phosphor is proportional to the energy difference
between the excited quantum state and the ground state.

Different kinds of phosphors are available for use in CRTs. Besides color,
a major difference between phosphors is their persistence: how long they con-
tinue to emit light (that is, how long before all excited electrons have returned
to the ground state) after the CRT beam is removed. Persistence is defined as
the time that it takes the emitted light from the screen to decay to one-tenth of
its original intensity. Lower-persistence phosphors require higher refresh rates to
maintain a picture on the screen without flicker. A phosphor with low persistence
can be useful for animation, while high-persistence phosphors are better suited
for displaying highly complex, static pictures. Although some phosphors have
persistence values greater than 1 second, general-purpose graphics monitors are
usually constructed with persistence in the range from 10 to 60 microseconds.

Figure 2-5 shows the intensity distribution of a spot on the screen. The in-
tensity is greatest at the center of the spot, and it decreases with a Gaussian
distribution out to the edges of the spot. This distribution corresponds to the
cross-sectional electron density distribution of the CRT beam.

FIGURE 2-5 Intensity
distribution of an illuminated
phosphor spot on a CRT
screen.

FIGURE 2-6 Two
illuminated phosphor spots
are distinguishable when
their separation is greater
than the diameter at which
a spot intensity has fallen to
60 percent of maximum.

The maximum number of points that can be displayed without overlap on a
CRT is referred to as the resolution. A more precise definition of resolution is the
number of points per centimeter that can be plotted horizontally and vertically,
although it is often simply stated as the total number of points in each direction.
Spot intensity has a Gaussian distribution (Fig. 2-5), so two adjacent spots will
appear distinct as long as their separation is greater than the diameter at which
each spot has an intensity of about 60 percent of that at the center of the spot. This
overlap position is illustrated in Fig. 2-6. Spot size also depends on intensity. As
more electrons are accelerated toward the phosphor per second, the diameters
of the CRT beam and the illuminated spot increase. In addition, the increased
excitation energy tends to spread to neighboring phosphor atoms not directly in
the path of the beam, which further increases the spot diameter. Thus, resolution
of a CRT is dependent on the type of phosphor, the intensity to be displayed, and
the focusing and deflection systems. Typical resolution on high-quality systems is
1280 by 1024, with higher resolutions available on many systems. High-resolution
systems are often referred to as high-definition systems. The physical size of a graph-
ics monitor, on the other hand, is given as the length of the screen diagonal, with
sizes varying from about 12 inches to 27 inches or more. A CRT monitor can be
attached to a variety of computer systems, so the number of screen points that
can actually be plotted also depends on the capabilities of the system to which it
is attached.

hearn-50265; ISBN: 0-13-015390-7 book July 29, 2003 14:54

2-1 Video Display Devices 39

Raster-Scan Displays
The most common type of graphics monitor employing a CRT is the raster-scan
display, based on television technology. In a raster-scan system, the electron beam
is swept across the screen, one row at a time, from top to bottom. Each row is
referred to as a scan line. As the electron beam moves across a scan line, the
beam intensity is turned on and off (or set to some intermediate value) to create a
pattern of illuminated spots. Picture definition is stored in a memory area called
the refresh buffer or frame buffer, where the term frame refers to the total screen
area. This memory area holds the set of color values for the screen points. These
stored color values are then retrieved from the refresh buffer and used to control
the intensity of the electron beam as it moves from spot to spot across the screen.
In this way, the picture is “painted” on the screen one scan line at a time, as
demonstrated in Fig. 2-7. Each screen spot that can be illuminated by the electron
beam is referred to as a pixel or pel (shortened forms of picture element). Since the
refresh buffer is used to store the set of screen color values, it is also sometimes
called a color buffer. Also, other kinds of pixel information, besides color, are
stored in buffer locations, so all the different buffer areas are sometimes referred
to collectively as the “frame buffer”. The capability of a raster-scan system to
store color information for each screen point makes it well suited for the realistic
display of scenes containing subtle shading and color patterns. Home television
sets and printers are examples of other systems using raster-scan methods.

Raster systems are commonly characterized by their resolution, which is the
number of pixel positions that can be plotted. Another property of video monitors
is aspect ratio, which is now often defined as the number of pixel columns divided
by the number of scan lines that can be displayed by the system. (Sometimes the
term aspect ratio is used to refer to the number of scan lines divided by the number
of pixel columns.) Aspect ratio can also be described as the number of horizontal

(a) (b)

(c) (d)

FIGURE 2-7 A raster-scan
system displays an object as a
set of discrete points across
each scan line.

hearn-50265; ISBN: 0-13-015390-7 book July 29, 2003 14:54

40 CHAPTER 2 Overview of Graphics Systems

points to vertical points (or vice versa) necessary to produce equal-length lines
in both directions on the screen. Thus, an aspect ratio of 4/3, for example, means
that a horizontal line plotted with four points has the same length as a vertical line
plotted with three points, where line length is measured in some physical units
such as centimeters. Similarly, the aspect ratio of any rectangle (including the total
screen area) can be defined to be the width of the rectangle divided by its height.

The range of colors or shades of gray that can be displayed on a raster system
depends on both the types of phosphor used in the CRT and the number of bits
per pixel available in the frame buffer. For a simple black-and-white system, each
screen point is either on or off, so only one bit per pixel is needed to control
the intensity of screen positions. A bit value of 1, for example, indicates that the
electron beam is to be turned on at that position, and a value of 0 turns the beam
off. Additional bits allow the intensity of the electron beam to be varied over
a range of values between “on” and “off”. Up to 24 bits per pixel are included
in high-quality systems, which can require several megabytes of storage for the
frame buffer, depending on the resolution of the system. For example, a system
with 24 bits per pixel and a screen resolution of 1024 by 1024 requires 3 megabytes
of storage for the refresh buffer. The number of bits per pixel in a frame buffer is
sometimes referred to as either the depth of the buffer area or the number of bit
planes. Also, a frame buffer with one bit per pixel is commonly called a bitmap,
and a frame buffer with multiple bits per pixel is a pixmap. But the terms bitmap
and pixmap are also used to describe other rectangular arrays, where a bitmap is
any pattern of binary values and a pixmap is a multicolor pattern.

As each screen refresh takes place, we tend to see each frame as a smooth
continuation of the patterns in the previous frame, as long as the refresh rate is
not too low. Below about 24 frames per second, we can usually perceive a gap
between successive screen images, and the picture appears to flicker. Old silent
films, for example, show this effect because they were photographed at a rate of
16 frames per second. When sound systems were developed in the 1920s, motion-
picture film rates increased to 24 frames per second, which removed flickering
and the accompanying jerky movements of the actors. Early raster-scan computer
systems were designed with a refresh rate of about 30 frames per second. This
produces reasonably good results, but picture quality is improved, up to a point,
with higher refresh rates on a video monitor because the display technology on the
monitor is basically different from that of film. A film projector can maintain the
continuous display of a film frame until the next frame is brought into view. But
on a video monitor, a phosphor spot begins to decay as soon as it is illuminated.
Therefore, current raster-scan displays perform refreshing at the rate of 60 to
80 frames per second, although some systems now have refresh rates of up to
120 frames per second. And some graphics systems have been designed with a
variable refresh rate. For example, a higher refresh rate could be selected for a
stereoscopic application so that two views of a scene (one from each eye position)
can be alternately displayed without flicker. But other methods, such as multiple
frame buffers, are typically used for such applications.

Sometimes, refresh rates are described in units of cycles per second, or Hertz
(Hz), where a cycle corresponds to one frame. Using these units, we would de-
scribe a refresh rate of 60 frames per second as simply 60 Hz. At the end of each
scan line, the electron beam returns to the left side of the screen to begin display-
ing the next scan line. The return to the left of the screen, after refreshing each
scan line, is called the horizontal retrace of the electron beam. And at the end of
each frame (displayed in 1

80 to 1
60 of a second), the electron beam returns to the

top left corner of the screen (vertical retrace) to begin the next frame.

hearn-50265; ISBN: 0-13-015390-7 book July 29, 2003 14:54

2-1 Video Display Devices 41

0
1
2
3 FIGURE 2-8 Interlacing scan lines on

a raster-scan display. First, all points on
the even-numbered (solid) scan lines are
displayed; then all points along the
odd-numbered (dashed) lines are
displayed.

On some raster-scan systems and TV sets, each frame is displayed in two
passes using an interlaced refresh procedure. In the first pass, the beam sweeps
across every other scan line from top to bottom. After the vertical retrace, the
beam then sweeps out the remaining scan lines (Fig. 2-8). Interlacing of the scan
lines in this way allows us to see the entire screen displayed in one-half the time
it would have taken to sweep across all the lines at once from top to bottom.
This technique is primarily used with slower refresh rates. On an older, 30 frame-
per-second, non-interlaced display, for instance, some flicker is noticeable. But
with interlacing, each of the two passes can be accomplished in 1

60 of a second,
which brings the refresh rate nearer to 60 frames per second. This is an effective
technique for avoiding flicker—provided that adjacent scan lines contain similar
display information.

Random-Scan Displays
When operated as a random-scan display unit, a CRT has the electron beam
directed only to those parts of the screen where a picture is to be displayed.
Pictures are generated as line drawings, with the electron beam tracing out the
component lines one after the other. For this reason, random-scan monitors are
also referred to as vector displays (or stroke-writing displays or calligraphic
displays). The component lines of a picture can be drawn and refreshed by a
random-scan system in any specified order (Fig. 2-9). A pen plotter operates in a
similar way and is an example of a random-scan, hard-copy device.

Refresh rate on a random-scan system depends on the number of lines to be
displayed on that system. Picture definition is now stored as a set of line-drawing
commands in an area of memory referred to as the display list, refresh display file,
vector file, or display program. To display a specified picture, the system cycles
through the set of commands in the display file, drawing each component line in
turn. After all line-drawing commands have been processed, the system cycles
back to the first line command in the list. Random-scan displays are designed to
draw all the component lines of a picture 30 to 60 times each second, with up to
100,000 “short” lines in the display list. When a small set of lines is to be displayed,
each refresh cycle is delayed to avoid very high refresh rates, which could burn
out the phosphor.

Random-scan systems were designed for line-drawing applications, such as
architectural and engineering layouts, and they cannot display realistic shaded
scenes. Since picture definition is stored as a set of line-drawing instructions rather
than as a set of intensity values for all screen points, vector displays generally have
higher resolutions than raster systems. Also, vector displays produce smooth line
drawings because the CRT beam directly follows the line path. A raster system, by

hearn-50265; ISBN: 0-13-015390-7 book July 29, 2003 14:54

42 CHAPTER 2 Overview of Graphics Systems

FIGURE 2-9 A
random-scan system draws
the component lines of an
object in any specified order.

(a) (b)

(c) (d)

contrast, produces jagged lines that are plotted as discrete point sets. However,
the greater flexibility and improved line-drawing capabilities of raster systems
have resulted in the abandonment of vector technology.

Color CRT Monitors
A CRT monitor displays color pictures by using a combination of phosphors
that emit different-colored light. The emitted light from the different phosphors
merges to form a single perceived color, which depends on the particular set of
phosphors that have been excited.

One way to display color pictures is to coat the screen with layers of different-
colored phosphors. The emitted color depends on how far the electron beam
penetrates into the phosphor layers. This approach, called the beam-penetration
method, typically used only two phosphor layers: red and green. A beam of slow
electrons excites only the outer red layer, but a beam of very fast electrons pen-
etrates through the red layer and excites the inner green layer. At intermediate
beam speeds, combinations of red and green light are emitted to show two addi-
tional colors, orange and yellow. The speed of the electrons, and hence the screen
color at any point, is controlled by the beam acceleration voltage. Beam penetra-
tion has been an inexpensive way to produce color, but only a limited number of
colors are possible, and picture quality is not as good as with other methods.

Shadow-mask methods are commonly used in raster-scan systems (includ-
ing color TV) since they produce a much wider range of colors than the beam-
penetration method. This approach is based on the way that we seem to perceive
colors as combinations of red, green, and blue components, called the RGB color
model. Thus, a shadow-mask CRT uses three phosphor color dots at each pixel
position. One phosphor dot emits a red light, another emits a green light, and the
third emits a blue light. This type of CRT has three electron guns, one for each

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:15

2-1 Video Display Devices 43

Electron
Guns

B

G

R

Section
of

Shadow Mask

Magnified
Phosphor-Dot
Triangle

Red

Blue

Screen

Green

FIGURE 2-10 Operation
of a delta-delta, shadow-mask
CRT. Three electron guns,
aligned with the triangular
color-dot patterns on the
screen, are directed to each
dot triangle by a shadow
mask.

color dot, and a shadow-mask grid just behind the phosphor-coated screen. The
light emitted from the three phosphors results in a small spot of color at each pixel
position, since our eyes tend to merge the light emitted from the three dots into
one composite color. Figure 2-10 illustrates the delta-delta shadow-mask method,
commonly used in color CRT systems. The three electron beams are deflected
and focused as a group onto the shadow mask, which contains a series of holes
aligned with the phosphor-dot patterns. When the three beams pass through a
hole in the shadow mask, they activate a dot triangle, which appears as a small
color spot on the screen. The phosphor dots in the triangles are arranged so that
each electron beam can activate only its corresponding color dot when it passes
through the shadow mask. Another configuration for the three electron guns is
an in-line arrangement in which the three electron guns, and the corresponding
red-green-blue color dots on the screen, are aligned along one scan line instead of
in a triangular pattern. This in-line arrangement of electron guns is easier to keep
in alignment and is commonly used in high-resolution color CRTs.

We obtain color variations in a shadow-mask CRT by varying the intensity
levels of the three electron beams. By turning off two of the three guns, we get
only the color coming from the single activated phosphor (red, green, or blue).
When all three dots are activated with equal beam intensities, we see a white
color. Yellow is produced with equal intensities from the green and red dots only,
magenta is produced with equal blue and red intensities, and cyan shows up
when blue and green are activated equally. In an inexpensive system, each of the
three electron beams might be restricted to either on or off, limiting displays to
eight colors. More sophisticated systems can allow intermediate intensity levels
to be set for the electron beams, so that several million colors are possible.

Color graphics systems can be used with several types of CRT display devices.
Some inexpensive home-computer systems and video games have been designed
for use with a color TV set and an RF (radio-frequency) modulator. The purpose of
the RF modulator is to simulate the signal from a broadcast TV station. This means
that the color and intensity information of the picture must be combined and
superimposed on the broadcast-frequency carrier signal that the TV requires as
input. Then the circuitry in the TV takes this signal from the RF modulator, extracts
the picture information, and paints it on the screen. As we might expect, this

hearn-50265; ISBN: 0-13-015390-7 book July 29, 2003 14:54

44 CHAPTER 2 Overview of Graphics Systems

extra handling of the picture information by the RF modulator and TV circuitry
decreases the quality of displayed images.

Composite monitors are adaptations of TV sets that allow bypass of the broad-
cast circuitry. These display devices still require that the picture information be
combined, but no carrier signal is needed. Since picture information is combined
into a composite signal and then separated by the monitor, the resulting picture
quality is still not the best attainable.

Color CRTs in graphics systems are designed as RGB monitors. These moni-
tors use shadow-mask methods and take the intensity level for each electron gun
(red, green, and blue) directly from the computer system without any interme-
diate processing. High-quality raster-graphics systems have 24 bits per pixel in
the frame buffer, allowing 256 voltage settings for each electron gun and nearly
17 million color choices for each pixel. An RGB color system with 24 bits of storage
per pixel is generally referred to as a full-color system or a true-color system.

Flat-Panel Displays
Although most graphics monitors are still constructed with CRTs, other tech-
nologies are emerging that may soon replace CRT monitors. The term flat-panel
display refers to a class of video devices that have reduced volume, weight, and
power requirements compared to a CRT. A significant feature of flat-panel dis-
plays is that they are thinner than CRTs, and we can hang them on walls or wear
them on our wrists. Since we can even write on some flat-panel displays, they
are also available as pocket notepads. Some additional uses for flat-panel dis-
plays are as small TV monitors, calculator screens, pocket video-game screens,
laptop computer screens, armrest movie-viewing stations on airlines, advertise-
ment boards in elevators, and graphics displays in applications requiring rugged,
portable monitors.

We can separate flat-panel displays into two categories: emissive displays
and nonemissive displays. The emissive displays (or emitters) are devices that
convert electrical energy into light. Plasma panels, thin-film electroluminescent
displays, and light-emitting diodes are examples of emissive displays. Flat CRTs
have also been devised, in which electron beams are accelerated parallel to the
screen and then deflected 90◦ onto the screen. But flat CRTs have not proved to be as
successful as other emissive devices. Nonemissive displays (or nonemitters) use
optical effects to convert sunlight or light from some other source into graphics
patterns. The most important example of a nonemissive flat-panel display is a
liquid-crystal device.

Plasma panels, also called gas-discharge displays, are constructed by filling
the region between two glass plates with a mixture of gases that usually includes
neon. A series of vertical conducting ribbons is placed on one glass panel, and a
set of horizontal conducting ribbons is built into the other glass panel (Fig. 2-11).
Firing voltages applied to an intersecting pair of horizontal and vertical conduc-
tors cause the gas at the intersection of the two conductors to break down into
a glowing plasma of electrons and ions. Picture definition is stored in a refresh
buffer, and the firing voltages are applied to refresh the pixel positions (at the in-
tersections of the conductors) 60 times per second. Alternating-current methods
are used to provide faster application of the firing voltages and, thus, brighter
displays. Separation between pixels is provided by the electric field of the con-
ductors. Figure 2-12 shows a high-definition plasma panel. One disadvantage
of plasma panels has been that they were strictly monochromatic devices, but
systems are now available with multicolor capabilities.

hearn-50265; ISBN: 0-13-015390-7 book July 29, 2003 14:54

2-1 Video Display Devices 45

Conductors

Glass Plate

Glass Plate

Gas

FIGURE 2-11 Basic design of a plasma-panel display
device.

FIGURE 2-12 A plasma-panel display
with a resolution of 2048 by 2048 and a screen
diagonal of 1.5 meters. (Courtesy of Photonics
Systems.)

Glass Plate

Phosphor

Glass Plate

Conductors

FIGURE 2-13 Basic
design of a thin-film
electroluminescent display
device.

Thin-film electroluminescent displays are similar in construction to plasma
panels. The difference is that the region between the glass plates is filled with a
phosphor, such as zinc sulfide doped with manganese, instead of a gas (Fig. 2-13).
When a sufficiently high voltage is applied to a pair of crossing electrodes, the
phosphor becomes a conductor in the area of the intersection of the two electrodes.
Electrical energy is absorbed by the manganese atoms, which then release the
energy as a spot of light similar to the glowing plasma effect in a plasma panel.

hearn-50265; ISBN: 0-13-015390-7 book July 29, 2003 14:54

46 CHAPTER 2 Overview of Graphics Systems

Electroluminescent displays require more power than plasma panels, and good
color displays are harder to achieve.

A third type of emissive device is the light-emitting diode (LED). A matrix of
diodes is arranged to form the pixel positions in the display, and picture definition
is stored in a refresh buffer. As in scan-line refreshing of a CRT, information is
read from the refresh buffer and converted to voltage levels that are applied to
the diodes to produce the light patterns in the display.

FIGURE 2-14 A
handheld calculator with an
LCD screen. (Courtesy of Texas
Instruments.)

Liquid-crystal displays (LCDs) are commonly used in small systems, such as
laptop computers and calculators (Fig. 2-14). These nonemissive devices produce
a picture by passing polarized light from the surroundings or from an internal
light source through a liquid-crystal material that can be aligned to either block
or transmit the light.

The term liquid crystal refers to the fact that these compounds have a crys-
talline arrangement of molecules, yet they flow like a liquid. Flat-panel displays
commonly use nematic (threadlike) liquid-crystal compounds that tend to keep
the long axes of the rod-shaped molecules aligned. A flat-panel display can then
be constructed with a nematic liquid crystal, as demonstrated in Fig. 2-15. Two
glass plates, each containing a light polarizer that is aligned at a right angle to the
other plate, sandwich the liquid-crystal material. Rows of horizontal, transparent
conductors are built into one glass plate, and columns of vertical conductors are
put into the other plate. The intersection of two conductors defines a pixel posi-
tion. Normally, the molecules are aligned as shown in the “on state” of Fig. 2-15.
Polarized light passing through the material is twisted so that it will pass through
the opposite polarizer. The light is then reflected back to the viewer. To turn off the

FIGURE 2-15 The
light-twisting, shutter effect
used in the design of most
liquid-crystal display devices.

Polarizer

On State

Transparent
Conductor

Nematic
Liquid Crystal

Polarizer

Transparent
Conductor

Polarizer

Off State

Transparent
Conductor

Nematic
Liquid Crystal

Polarizer

Transparent
Conductor

hearn-50265; ISBN: 0-13-015390-7 book July 29, 2003 14:54

2-1 Video Display Devices 47

pixel, we apply a voltage to the two intersecting conductors to align the molecules
so that the light is not twisted. This type of flat-panel device is referred to as a
passive-matrix LCD. Picture definitions are stored in a refresh buffer, and the
screen is refreshed at the rate of 60 frames per second, as in the emissive de-
vices. Backlighting is also commonly applied using solid-state electronic devices,
so that the system is not completely dependent on outside light sources. Colors
can be displayed by using different materials or dyes and by placing a triad of
color pixels at each screen location. Another method for constructing LCDs is to
place a transistor at each pixel location, using thin-film transistor technology. The
transistors are used to control the voltage at pixel locations and to prevent charge
from gradually leaking out of the liquid-crystal cells. These devices are called
active-matrix displays.

Three-Dimensional Viewing Devices
Graphics monitors for the display of three-dimensional scenes have been de-
vised using a technique that reflects a CRT image from a vibrating, flexible mirror
(Fig. 2-16). As the varifocal mirror vibrates, it changes focal length. These vibra-
tions are synchronized with the display of an object on a CRT so that each point
on the object is reflected from the mirror into a spatial position corresponding
to the distance of that point from a specified viewing location. This allows us to
walk around an object or scene and view it from different sides.

Figure 2-17 shows the Genisco SpaceGraph system, which uses a vibrat-
ing mirror to project three-dimensional objects into a 25-cm by 25-cm by 25-cm
volume. This system is also capable of displaying two-dimensional cross-sectional

Timing and
Control
System

CRT

Viewer

Vibrating
Flexible
Mirror

Projected
3D Image

FIGURE 2-16 Operation of a three-dimensional display
system using a vibrating mirror that changes focal length to
match the depths of points in a scene.

FIGURE 2-17 The SpaceGraph interactive
graphics system displays objects in three
dimensions using a vibrating, flexible mirror.
(Courtesy of Genisco Computers Corporation.)

hearn-50265; ISBN: 0-13-015390-7 book July 29, 2003 14:54

48 CHAPTER 2 Overview of Graphics Systems

“slices” of objects selected at different depths. Such systems have been used in
medical applications to analyze data from ultrasonography and CAT scan devices,
in geological applications to analyze topological and seismic data, in design appli-
cations involving solid objects, and in three-dimensional simulations of systems,
such as molecules and terrain.

Stereoscopic and Virtual-Reality Systems
Another technique for representing a three-dimensional object is to display stereo-
scopic views of the object. This method does not produce true three-dimensional
images, but it does provide a three-dimensional effect by presenting a different
view to each eye of an observer so that scenes do appear to have depth (Fig. 2-18).

To obtain a stereoscopic projection, we must obtain two views of a scene
generated with viewing directions along the lines from the position of each eye
(left and right) to the scene. We can construct the two views as computer-generated
scenes with different viewing positions, or we can use a stereo camera pair to
photograph an object or scene. When we simultaneously look at the left view
with the left eye and the right view with the right eye, the two views merge into
a single image and we perceive a scene with depth. Figure 2-19 shows two views
of a computer-generated scene for stereoscopic projection. To increase viewing
comfort, the areas at the left and right edges of this scene that are visible to only
one eye have been eliminated.

One way to produce a stereoscopic effect on a raster system is to display each
of the two views on alternate refresh cycles. The screen is viewed through glasses,
with each lens designed to act as a rapidly alternating shutter that is synchronized
to block out one of the views. Figure 2-20 shows a pair of stereoscopic glasses
constructed with liquid-crystal shutters and an infrared emitter that synchronizes
the glasses with the views on the screen.

Stereoscopic viewing is also a component in virtual-reality systems, where
users can step into a scene and interact with the environment. A headset
(Fig. 2-21) containing an optical system to generate the stereoscopic views can

FIGURE 2-18 Simulated
viewing of a stereoscopic
projection. (Courtesy of
StereoGraphics Corporation.)

hearn-50265; ISBN: 0-13-015390-7 book July 29, 2003 14:54

2-1 Video Display Devices 49

(a) (b)

FIGURE 2-19 A stereoscopic viewing pair. (Courtesy of Jerry Farm.)

FIGURE 2-20 Glasses for viewing a
stereoscopic scene and an infrared synchronizing
emitter. (Courtesy of StereoGraphics Corporation.)

FIGURE 2-21 A headset used in virtual-reality systems.
(Courtesy of Virtual Research.)

be used in conjunction with interactive input devices to locate and manipulate
objects in the scene. A sensing system in the headset keeps track of the viewer’s
position, so that the front and back of objects can be seen as the viewer “walks
through” and interacts with the display. Another method for creating a virtual-
reality environment is to use projectors to generate a scene within an arrangement
of walls, as in Figure 2-22, where a viewer interacts with a virtual display using
stereoscopic glasses and data gloves (Section 2-4).

Lower-cost, interactive virtual-reality environments can be set up using a
graphics monitor, stereoscopic glasses, and a head-tracking device. Figure 2-23
shows an ultrasound tracking device with six degrees of freedom. The track-
ing device is placed above the video monitor and is used to record head move-
ments, so that the viewing position for a scene can be changed as head position
changes.

hearn-50265; ISBN: 0-13-015390-7 book July 29, 2003 14:54

50 CHAPTER 2 Overview of Graphics Systems

FIGURE 2-22 A molecular biologist analyzing
molecular structures inside a virtual-reality system
called the Trimension ReaCTor. The “Fakespace
Pinch gloves” enable the scientist to grasp and
rearrange virtual objects in a projected scene.
(Courtesy Silicon Graphics, Inc. and Trimension
Systems ReaCTor. c© 2003 SGI. All rights reserved.)

FIGURE 2-23 An ultrasound tracking device
used with stereoscopic glasses to record changes in
a viewer’s head position. (Courtesy of StereoGraphics
Corporation.)

2-2 RASTER-SCAN SYSTEMS

Interactive raster-graphics systems typically employ several processing units. In
addition to the central processing unit, or CPU, a special-purpose processor, called
the video controller or display controller, is used to control the operation of the
display device. Organization of a simple raster system is shown in Fig. 2-24. Here,
the frame buffer can be anywhere in the system memory, and the video controller
accesses the frame buffer to refresh the screen. In addition to the video controller,
more sophisticated raster systems employ other processors as coprocessors and
accelerators to implement various graphics operations.

Video Controller
Figure 2-25 shows a commonly used organization for raster systems. A fixed area
of the system memory is reserved for the frame buffer, and the video controller is
given direct access to the frame-buffer memory.

Frame-buffer locations, and the corresponding screen positions, are refer-
enced in Cartesian coordinates. In an application program, we use the commands

FIGURE 2-24
Architecture of a simple
raster-graphics system.

CPU Video
Controller

System
Memory

System Bus

I/O Devices

Monitor

hearn-50265; ISBN: 0-13-015390-7 book July 29, 2003 14:54

2-2 Raster-Scan Systems 51

CPU

I/O Devices

Video
Controller

System
Memory

Frame
Buffer

System Bus

Monitor

FIGURE 2-25
Architecture of a raster
system with a fixed portion of
the system memory reserved
for the frame buffer.

x

y

FIGURE 2-26 A Cartesian
reference frame with origin at the
lower-left corner of a video monitor.

x
Register

Horizontal and
Vertical Deflection
Voltages

Raster-Scan
Generator

Memory Address Pixel
Register Intensity

y
Register

Frame Buffer

FIGURE 2-27 Basic video-controller refresh operations.

within a graphics software package to set coordinate positions for displayed ob-
jects relative to the origin of the Cartesian reference frame. Often, the coordinate
origin is referenced at the lower-left corner of a screen display area by the software
commands, although we can typically set the origin at any convenient location
for a particular application. Figure 2-26 shows a two-dimensional Cartesian ref-
erence frame with the origin at the lower-left screen corner. The screen surface is
then represented as the first quadrant of a two-dimensional system, with positive
x values increasing from left to right and positive y values increasing from the
bottom of the screen to the top. Pixel positions are then assigned integer x values
that range from 0 to xmax across the screen, left to right, and integer y values that
vary from 0 to ymax, bottom to top. However, hardware processes such as screen
refreshing, as well as some software systems, reference the pixel positions from
the top-left corner of the screen.

In Fig. 2-27, the basic refresh operations of the video controller are dia-
grammed. Two registers are used to store the coordinate values for the screen

hearn-50265; ISBN: 0-13-015390-7 book July 29, 2003 14:54

52 CHAPTER 2 Overview of Graphics Systems

pixels. Initially, the x register is set to 0 and the y register is set to the value
for the top scan line. The contents of the frame buffer at this pixel position are
then retrieved and used to set the intensity of the CRT beam. Then the x reg-
ister is incremented by 1, and the process is repeated for the next pixel on the
top scan line. This procedure continues for each pixel along the top scan line.
After the last pixel on the top scan line has been processed, the x register is re-
set to 0 and the y register is set to the value for the next scan line down from
the top of the screen. Pixels along this scan line are then processed in turn, and
the procedure is repeated for each successive scan line. After cycling through
all pixels along the bottom scan line, the video controller resets the registers
to the first pixel position on the top scan line and the refresh process starts
over.

Since the screen must be refreshed at a rate of at least 60 frames per second,
the simple procedure illustrated in Fig. 2-27 may not be accommodated by typical
RAM chips if the cycle time is too slow. To speed up pixel processing, video
controllers can retrieve multiple pixel values from the refresh buffer on each pass.
The multiple pixel intensities are then stored in a separate register and used to
control the CRT beam intensity for a group of adjacent pixels. When that group
of pixels has been processed, the next block of pixel values is retrieved from the
frame buffer.

A video controller can be designed to perform a number of other opera-
tions. For various applications, the video controller can retrieve pixel values
from different memory areas on different refresh cycles. In some systems, for
example, multiple frame buffers are often provided so that one buffer can be
used for refreshing while pixel values are being loaded into the other buffers.
Then the current refresh buffer can switch roles with one of the other buffers.
This provides a fast mechanism for generating real-time animations, for ex-
ample, since different views of moving objects can be successively loaded into
a buffer without interrupting a refresh cycle. Another video-controller task is
the transformation of blocks of pixels, so that screen areas can be enlarged,
reduced, or moved from one location to another during the refresh cycles. In
addition, the video controller often contains a lookup table, so that pixel val-
ues in the frame buffer are used to access the lookup table instead of control-
ling the CRT beam intensity directly. This provides a fast method for changing
screen intensity values, and lookup tables are discussed in more detail in Chap-
ter 4. Finally, some systems are designed to allow the video controller to mix the
frame-buffer image with an input image from a television camera or other input
device.

Raster-Scan Display Processor
Figure 2-28 shows one way to organize the components of a raster system that
contains a separate display processor, sometimes referred to as a graphics con-
troller or a display coprocessor. The purpose of the display processor is to free
the CPU from the graphics chores. In addition to the system memory, a separate
display-processor memory area can be provided.

A major task of the display processor is digitizing a picture definition given
in an application program into a set of pixel values for storage in the frame buffer.
This digitization process is called scan conversion. Graphics commands spec-
ifying straight lines and other geometric objects are scan converted into a set

hearn-50265; ISBN: 0-13-015390-7 book July 29, 2003 14:54

2-2 Raster-Scan Systems 53

CPU

I/O Devices

Display
Processor

System Bus

Video
Controller

Display-
Processor
Memory

Frame
Buffer Monitor

System
Memory

FIGURE 2-28
Architecture of a
raster-graphics system with a
display processor.

of discrete points, corresponding to screen pixel positions. Scan converting a
straight-line segment, for example, means that we have to locate the pixel po-
sitions closest to the line path and store the color for each position in the frame
buffer. Similar methods are used for scan converting other objects in a picture
definition. Characters can be defined with rectangular pixel grids, as in Fig. 2-29,
or they can be defined with outline shapes, as in Fig. 2-30. The array size for
character grids can vary from about 5 by 7 to 9 by 12 or more for higher-quality
displays. A character grid is displayed by superimposing the rectangular grid
pattern into the frame buffer at a specified coordinate position. For characters
that are defined as outlines, the shapes are scan converted into the frame buffer
by locating the pixel positions closest to the outline.

FIGURE 2-29 A character
defined as a rectangular grid
of pixel positions.

Display processors are also designed to perform a number of additional op-
erations. These functions include generating various line styles (dashed, dotted,
or solid), displaying color areas, and applying transformations to the objects in a
scene. Also, display processors are typically designed to interface with interactive
input devices, such as a mouse.

FIGURE 2-30 A character
defined as an outline shape.

In an effort to reduce memory requirements in raster systems, methods
have been devised for organizing the frame buffer as a linked list and encod-
ing the color information. One organization scheme is to store each scan line
as a set of number pairs. The first number in each pair can be a reference to
a color value, and the second number can specify the number of adjacent pix-
els on the scan line that are to be displayed in that color. This technique, called
run-length encoding, can result in a considerable saving in storage space if a
picture is to be constructed mostly with long runs of a single color each. A
similar approach can be taken when pixel colors change linearly. Another ap-
proach is to encode the raster as a set of rectangular areas (cell encoding). The
disadvantages of encoding runs are that color changes are difficult to record
and storage requirements increase as the lengths of the runs decrease. In ad-
dition, it is difficult for the display controller to process the raster when many
short runs are involved. Moreover, the size of the frame buffer is no longer a
major concern, because of sharp declines in memory costs. Nevertheless, en-
coding methods can be useful in the digital storage and transmission of picture
information.

hearn-50265; ISBN: 0-13-015390-7 book July 29, 2003 14:54

54 CHAPTER 2 Overview of Graphics Systems

2-3 GRAPHICS WORKSTATIONS
AND VIEWING SYSTEMS

Most graphics monitors today operate as raster-scan displays, and both CRT
and flat-panel systems are in common use. Graphics workstations range from
small general-purpose computer systems to multi-monitor facilities, often with
ultra-large viewing screens. For a personal computer, screen resolutions vary
from about 640 by 480 to 1280 by 1024, and diagonal screen lengths measure from
12 inches to over 21 inches. Most general-purpose systems now have consider-
able color capabilities, and many are full-color systems. For a desktop workstation
specifically designed for graphics applications, the screen resolution can vary from
1280 by 1024 to about 1600 by 1200, with a typical screen diagonal of 18 inches
or more. Commercial workstations can also be obtained with a variety of devices
for specific applications. Figure 2-31 shows the features in one type of artist’s
workstation.

High-definition graphics systems, with resolutions up to 2560 by 2048, are
commonly used in medical imaging, air-traffic control, simulation, and CAD. A
2048 by 2048 flat-panel display is shown in Fig. 2-32.

Many high-end graphics workstations also include large viewing screens,
often with specialized features. Figure 2-33 shows a large-screen system for stereo-
scopic viewing, and Fig. 2-34 is a multi-channel wide-screen system.

Multi-panel display screens are used in a variety of applications that require
“wall-sized” viewing areas. These systems are designed for presenting graphics
displays at meetings, conferences, conventions, trade shows, retail stores, mu-
seums, and passenger terminals. A multi-panel display can be used to show
a large view of a single scene or several individual images. Each panel in the
system displays one section of the overall picture, as illustrated in Fig. 2-35.
Large graphics displays can also be presented on curved viewing screens, such as
the system in Fig. 2-36. A large, curved-screen system can be useful for view-
ing by a group of people studying a particular graphics application, such as
the examples in Figs. 2-37 and 2-38. A control center, featuring a battery of

FIGURE 2-31 An artist’s workstation, featuring
a monitor, a keyboard, a graphics tablet with a
hand cursor, and a light table, in addition to data
storage and telecommunications devices. (Courtesy
of DICOMED Corporation.)

FIGURE 2-32 A high-
resolution (2048 by 2048)
graphics monitor. (Courtesy of
BarcoView.)

hearn-50265; ISBN: 0-13-015390-7 book August 15, 2003 15:40

2-3 Graphics Workstations and Viewing Systems 55

FIGURE 2-33 The SGI Reality Center 2000D,
featuring an ImmersaDesk R2 and displaying a
large-screen stereoscopic view of pressure contours
in a vascular blood-flow simulation superimposed
on a volume-rendered anatomic data set. (Courtesy
of Silicon Graphics, Inc. and Professor Charles Taylor,
Stanford University. c© 2003 SGI. All rights reserved.)

FIGURE 2-34 A wide-screen view of a
molecular system displayed on the three-channel
SGI Reality Center 3300W. (Courtesy of Silicon
Graphics, Inc. and Molecular Simulations. c© 2003
SGI. All rights reserved.)

FIGURE 2-35 A multi-panel display system
called the “Super Wall”. (Courtesy of RGB Spectrum.)

FIGURE 2-36 A homeland security study
displayed using a system with a large curved
viewing screen. (Courtesy of Silicon Graphics, Inc.
c© 2003. All rights reserved.)

standard monitors, allows an operator to view sections of the large display and
to control the audio, video, lighting, and projection systems using a touch-screen
menu. The system projectors provide a seamless, multichannel display that in-
cludes edge blending, distortion correction, and color balancing. And a surround-
sound system is used to provide the audio environment. Fig 2-39 shows a 360◦

paneled viewing system in the NASA control-tower simulator, which is used
for training and for testing ways to solve air-traffic and runway problems at
airports.

hearn-50265; ISBN: 0-13-015390-7 book July 29, 2003 14:54

56 CHAPTER 2 Overview of Graphics Systems

FIGURE 2-37 A
curved-screen graphics
system displaying an
interactive walk-through of a
natural gas plant. (Courtesy of
Silicon Graphics, Inc.,
Trimension Systems, and the
Cadcentre, Cortaillod,
Switzerland. c© 2003 SGI.
All rights reserved.)

FIGURE 2-38 A
geophysical visualization
presented on a 25-foot
semicircular screen, which
provides a 160◦ horizontal
and 40◦ vertical field of view.
(Courtesy of Silicon Graphics,
Inc., the Landmark Graphics
Corporation, and Trimension
Systems. c© 2003 SGI. All rights
reserved.)

FIGURE 2-39 The 360◦
viewing screen in the NASA
airport control-tower
simulator, called the
FutureFlight Central Facility.
(Courtesy of Silicon Graphics,
Inc. and NASA. c© 2003 SGI.
All rights reserved.)

hearn-50265; ISBN: 0-13-015390-7 book July 29, 2003 14:54

2-4 Input Devices 57

2-4 INPUT DEVICES

Graphics workstations can make use of various devices for data input. Most sys-
tems have a keyboard and one or more additional devices specifically designed for
interactive input. These include a mouse, trackball, spaceball, and joystick. Some
other input devices used in particular applications are digitizers, dials, button
boxes, data gloves, touch panels, image scanners, and voice systems.

Keyboards, Button Boxes, and Dials
An alphanumeric keyboard on a graphics system is used primarily as a device for
entering text strings, issuing certain commands, and selecting menu options. The
keyboard is an efficient device for inputting such nongraphic data as picture labels
associated with a graphics display. Keyboards can also be provided with features
to facilitate entry of screen coordinates, menu selections, or graphics functions.

Cursor-control keys and function keys are common features on general-
purpose keyboards. Function keys allow users to select frequently accessed opera-
tions with a single keystroke, and cursor-control keys are convenient for selecting
a displayed object or a location by positioning the screen cursor. A keyboard can
also contain other types of cursor-positioning devices, such as a trackball or joy-
stick, along with a numeric keypad for fast entry of numeric data. In addition to
these features, some keyboards have an ergonomic design (Fig. 2-40) that provides
adjustments for relieving operator fatigue.

For specialized tasks, input to a graphics application may come from a set of
buttons, dials, or switches that select data values or customized graphics opera-
tions. Figure 2-41 gives an example of a button box and a set of input dials. Buttons
and switches are often used to input predefined functions, and dials are common
devices for entering scalar values. Numerical values within some defined range
are selected for input with dial rotations. A potentiometer is used to measure dial
rotation, which is then converted to the corresponding numerical value.

Mouse Devices
Figure 2-40 illustrates a typical design for one-button mouse, which is a small
hand-held unit that is usually moved around on a flat surface to position the
screen cursor. Wheels or rollers on the bottom of the mouse can be used to record
the amount and direction of movement. Another method for detecting mouse

FIGURE 2-40
Ergonomically designed
keyboard with removable
palm rests. The slope of each
half of the keyboard can be
adjusted separately. A one-
button mouse, shown in front
of the keyboard, has a cable
attachment for connection to
the main computer unit.
(Courtesy of Apple Computer,
Inc.)

hearn-50265; ISBN: 0-13-015390-7 book July 29, 2003 14:54

58 CHAPTER 2 Overview of Graphics Systems

(a) (b)

FIGURE 2-41 A button box (a) and a set of input dials (b). (Courtesy of Vector General.)

FIGURE 2-42 The Z mouse
features three buttons, a mouse ball
underneath, a thumbwheel on the
side, and a trackball on top. (Courtesy
of the Multipoint Technology
Corporation.)

motion is with an optical sensor. For some optical systems, the mouse is moved
over a special mouse pad that has a grid of horizontal and vertical lines. The
optical sensor detects movement across the lines in the grid. Other optical mouse
systems can operate on any surface. And some are cordless, communicating with
computer processors using digital radio technology.

Since a mouse can be picked up and put down at another position without
change in cursor movement, it is used for making relative changes in the position
of the screen cursor. One, two, three, or four buttons are included on the top of
the mouse for signaling the execution of operations, such as recording cursor
position or invoking a function. Most general-purpose graphics systems now
include a mouse and a keyboard as the primary input devices.

Additional features can be included in the basic mouse design to increase
the number of allowable input parameters. The Z mouse in Fig. 2-42 has three
buttons, a thumbwheel on the side, a trackball on the top, and a standard mouse

hearn-50265; ISBN: 0-13-015390-7 book July 29, 2003 14:54

2-4 Input Devices 59

ball underneath. This design provides six degrees of freedom to select spatial
positions, rotations, and other parameters. With the Z mouse, we can select an
object displayed on a video monitor, rotate it, and move it in any direction. We
could also use the Z mouse to navigate our viewing position and orientation
through a three-dimensional scene. Applications of the Z mouse include virtual
reality, CAD, and animation.

Trackballs and Spaceballs
A trackball is a ball device that can be rotated with the fingers or palm of the hand
to produce screen-cursor movement. Potentiometers, connected to the ball, mea-
sure the amount and direction of rotation. Laptop keyboards are often equipped
with a trackball to eliminate the extra space required by a mouse. A trackball can
be mounted also on other devices, such as the Z mouse shown in Fig. 2-42, or
it can be obtained as a separate add-on unit that contains two or three control
buttons.

An extension of the two-dimensional trackball concept is the spaceball
(Fig. 2-44), which provides six degrees of freedom. Unlike the trackball, a spaceball
does not actually move. Strain gauges measure the amount of pressure applied to
the spaceball to provide input for spatial positioning and orientation as the ball is
pushed or pulled in various directions. Spaceballs are used for three-dimensional
positioning and selection operations in virtual-reality systems, modeling, anima-
tion, CAD, and other applications.

Joysticks
Another positioning device is the joystick, which consists of a small, vertical lever
(called the stick) mounted on a base. We use the joystick to steer the screen cursor
around. Most joysticks, such as the unit in Fig. 2-43, select screen positions with
actual stick movement; others respond to pressure on the stick. Some joysticks
are mounted on a keyboard, and some are designed as stand-alone units.

The distance that the stick is moved in any direction from its center po-
sition corresponds to the relative screen-cursor movement in that direction.

FIGURE 2-43 A movable
joystick. (Courtesy of the
CalComp Group, Sanders
Associates, Inc.)

hearn-50265; ISBN: 0-13-015390-7 book July 29, 2003 14:54

60 CHAPTER 2 Overview of Graphics Systems

Potentiometers mounted at the base of the joystick measure the amount of move-
ment, and springs return the stick to the center position when it is released. One
or more buttons can be programmed to act as input switches to signal actions that
are to be executed once a screen position has been selected.

In another type of movable joystick, the stick is used to activate switches that
cause the screen cursor to move at a constant rate in the direction selected. Eight
switches, arranged in a circle, are sometimes provided so that the stick can select
any one of eight directions for cursor movement. Pressure-sensitive joysticks, also
called isometric joysticks, have a non-movable stick. A push or pull on the stick is
measured with strain gauges and converted to movement of the screen cursor in
the direction of the applied pressure.

Data Gloves
Figure 2-44 shows a data glove that can be used to grasp a “virtual object”. The
glove is constructed with a series of sensors that detect hand and finger motions.
Electromagnetic coupling between transmitting antennas and receiving antennas
are used to provide information about the position and orientation of the hand.
The transmitting and receiving antennas can each be structured as a set of three
mutually perpendicular coils, forming a three-dimensional Cartesian reference
system. Input from the glove is used to position or manipulate objects in a vir-
tual scene. A two-dimensional projection of the scene can be viewed on a video
monitor, or a three-dimensional projection can be viewed with a headset.

Digitizers
A common device for drawing, painting, or interactively selecting positions is a
digitizer. These devices can be designed to input coordinate values in either a
two-dimensional or a three-dimensional space. In engineering or architectural
applications, a digitizer is often used to scan a drawing or object and to input
a set of discrete coordinate positions. The input positions are then joined with
straight-line segments to generate an approximation of a curve or surface shape.

One type of digitizer is the graphics tablet (also referred to as a data tablet),
which is used to input two-dimensional coordinates by activating a hand cursor
or stylus at selected positions on a flat surface. A hand cursor contains cross hairs
for sighting positions, while a stylus is a pencil-shaped device that is pointed
at positions on the tablet. Figures 2-45 and 2-46 show examples of desktop and

FIGURE 2-44 A virtual-
reality scene, displayed on a
two-dimensional video
monitor, with input from a
data glove and a spaceball.
(Courtesy of The Computer
Graphics Center, Darmstadt,
Germany.)

hearn-50265; ISBN: 0-13-015390-7 book July 29, 2003 14:54

2-4 Input Devices 61

FIGURE 2-45 The SummaSketch III desktop
tablet with a sixteen-button hand cursor. (Courtesy
of Summagraphics Corporation.)

FIGURE 2-46 The Microgrid III tablet with
a sixteen-button hand cursor, designed for
digitizing larger drawings. (Courtesy of
Summagraphics Corporation.)

FIGURE 2-47 The NotePad
desktop tablet with stylus.
(Courtesy of CalComp Digitizer
Division, a part of CalComp, Inc.)

FIGURE 2-48 An artist’s digitizer system, with a
pressure-sensitive, cordless stylus. (Courtesy of Wacom
Technology Corporation.)

floor-model tablets, using hand cursors that are available with two, four, or six-
teen buttons. Examples of stylus input with a tablet are shown in Figs. 2-47 and
2-48. The artist’s digitizing system in Fig. 2-48 uses electromagnetic resonance to
detect the three-dimensional position of the stylus. This allows an artist to pro-
duce different brush strokes by applying different pressures to the tablet surface.
Tablet size varies from 12 by 12 inches for desktop models to 44 by 60 inches or

hearn-50265; ISBN: 0-13-015390-7 book July 29, 2003 14:54

62 CHAPTER 2 Overview of Graphics Systems

larger for floor models. Graphics tablets provide a highly accurate method for
selecting coordinate positions, with an accuracy that varies from about 0.2 mm
on desktop models to about 0.05 mm or less on larger models.

Many graphics tablets are constructed with a rectangular grid of wires em-
bedded in the tablet surface. Electromagnetic pulses are generated in sequence
along the wires, and an electric signal is induced in a wire coil in an activated
stylus or hand-cursor to record a tablet position. Depending on the technology,
signal strength, coded pulses, or phase shifts can be used to determine the position
on the tablet.

An acoustic (or sonic) tablet uses sound waves to detect a stylus position. Ei-
ther strip microphones or point microphones can be employed to detect the sound
emitted by an electrical spark from a stylus tip. The position of the stylus is cal-
culated by timing the arrival of the generated sound at the different microphone
positions. An advantage of two-dimensional acoustic tablets is that the micro-
phones can be placed on any surface to form the “tablet” work area. For example,
the microphones could be placed on a book page while a figure on that page is
digitized.

Three-dimensional digitizers use sonic or electromagnetic transmissions to
record positions. One electromagnetic transmission method is similar to that em-
ployed in the data glove: a coupling between the transmitter and receiver is used
to compute the location of a stylus as it moves over an object surface. Figure 2-49
shows a digitizer recording the locations of positions on the surface of a three-
dimensional object. As the points are selected on a nonmetallic object, a wire-frame
outline of the surface is displayed on the computer screen. Once the surface out-
line is constructed, it can be rendered using lighting effects to produce a realistic
display of the object. Resolution for this system is from 0.8 mm to 0.08 mm, de-
pending on the model.

Image Scanners
Drawings, graphs, photographs, or text can be stored for computer processing
with an image scanner by passing an optical scanning mechanism over the

FIGURE 2-49 A three-
dimensional digitizing system
for use with Apple Macintosh
computers. (Courtesy of Mira
Imaging.)

hearn-50265; ISBN: 0-13-015390-7 book August 15, 2003 15:40

2-4 Input Devices 63

information to be stored. The gradations of gray scale or color are then recorded
and stored in an array. Once we have the internal representation of a picture, we
can apply transformations to rotate, scale, or crop the picture to a particular screen
area. We can also apply various image-processing methods to modify the array
representation of the picture. For scanned text input, various editing operations
can be performed on the stored documents. Scanners are available in a variety of
sizes and capabilities. A small hand-model scanner is shown in Fig. 2-50, while
Figs. 2-51 and 2-52 show larger models.

FIGURE 2-50 A hand-held
scanner that can be used to input
either text or graphics images.
(Courtesy of Thunderware, Inc.)

(a) (b)

FIGURE 2-51 Desktop scanners: (a) drum scanner and (b) flatbed scanner. (Courtesy
of Aztek, Inc., Lake Forest, California.)

hearn-50265; ISBN: 0-13-015390-7 book August 19, 2003 16:22

64 CHAPTER 2 Overview of Graphics Systems

FIGURE 2-52
A wide-format scanner.
(Courtesy of Aztek, Inc., Lake
Forest, California.)

(a) (b)

FIGURE 2-53 Plasma panels with touch screens. (Courtesy of Photonics Systems.)

Touch Panels
As the name implies, touch panels allow displayed objects or screen positions to
be selected with the touch of a finger. A typical application of touch panels is for
the selection of processing options that are represented as a menu of graphical
icons. Some monitors, such as the plasma panels shown in Fig. 2-53, are designed
with touch screens. Other systems can be adapted for touch input by fitting a
transparent device (Fig. 2-54) containing a touch-sensing mechanism over the
video monitor screen. Touch input can be recorded using optical, electrical, or
acoustical methods.

Optical touch panels employ a line of infrared light-emitting diodes (LEDs)
along one vertical edge and along one horizontal edge of the frame. Light detec-
tors are placed along the opposite vertical and horizontal edges. These detectors
are used to record which beams are interrupted when the panel is touched. The
two crossing beams that are interrupted identify the horizontal and vertical coor-
dinates of the screen position selected. Positions can be selected with an accuracy
of about 1/4 inch. With closely spaced LEDs, it is possible to break two horizontal
or two vertical beams simultaneously. In this case, an average position between
the two interrupted beams is recorded. The LEDs operate at infrared frequencies
so that the light is not visible to a user.

An electrical touch panel is constructed with two transparent plates separated
by a small distance. One of the plates is coated with a conducting material, and

hearn-50265; ISBN: 0-13-015390-7 book August 14, 2003 15:32

2-4 Input Devices 65

FIGURE 2-54 Resistive touch-screen overlays.
(Courtesy of Elo TouchSystems, Inc.)

FIGURE 2-55 A light pen with a button
activator. (Courtesy of Interactive Computer Products.)

the other plate is coated with a resistive material. When the outer plate is touched,
it is forced into contact with the inner plate. This contact creates a voltage drop
across the resistive plate that is converted to the coordinate values of the selected
screen position.

In acoustical touch panels, high-frequency sound waves are generated in
horizontal and vertical directions across a glass plate. Touching the screen causes
part of each wave to be reflected from the finger to the emitters. The screen position
at the point of contact is calculated from a measurement of the time interval
between the transmission of each wave and its reflection to the emitter.

Light Pens
Figure 2-55 shows the design of one type of light pen. Such pencil-shaped devices
are used to select screen positions by detecting the light coming from points on
the CRT screen. They are sensitive to the short burst of light emitted from the
phosphor coating at the instant the electron beam strikes a particular point. Other
light sources, such as the background light in the room, are usually not detected by
a light pen. An activated light pen, pointed at a spot on the screen as the electron
beam lights up that spot, generates an electrical pulse that causes the coordinate
position of the electron beam to be recorded. As with cursor-positioning devices,
recorded light-pen coordinates can be used to position an object or to select a
processing option.

Although light pens are still with us, they are not as popular as they once
were since they have several disadvantages compared to other input devices that
have been developed. For example, when a light pen is pointed at the screen, part
of the screen image is obscured by the hand and pen. And prolonged use of the
light pen can cause arm fatigue. Also, light pens require special implementations
for some applications since they cannot detect positions within black areas. To be
able to select positions in any screen area with a light pen, we must have some
nonzero light intensity emitted from each pixel within that area. In addition, light
pens sometimes give false readings due to background lighting in a room.

Voice Systems
Speech recognizers are used with some graphics workstations as input devices
for voice commands. The voice system input can be used to initiate graphics

hearn-50265; ISBN: 0-13-015390-7 book July 29, 2003 14:54

66 CHAPTER 2 Overview of Graphics Systems

FIGURE 2-56 A speech-
recognition system. (Courtesy of
Threshold Technology, Inc.)

operations or to enter data. These systems operate by matching an input against
a predefined dictionary of words and phrases.

A dictionary is set up by speaking the command words several times. The
system then analyzes each word and establishes a dictionary of word frequency
patterns, along with the corresponding functions that are to be performed.
Later, when a voice command is given, the system searches the dictionary for
a frequency-pattern match. A separate dictionary is needed for each operator us-
ing the system. Input for a voice system is typically spoken into a microphone
mounted on a headset, as in Fig. 2-56, and the microphone is designed to mini-
mize input of background sounds. Voice systems have some advantage over other
input devices, since the attention of the operator need not switch from one device
to another to enter a command.

2-5 HARD-COPY DEVICES

We can obtain hard-copy output for our images in several formats. For presen-
tations or archiving, we can send image files to devices or service bureaus that
will produce overhead transparencies, 35mm slides, or film. And we can put our
pictures on paper by directing graphics output to a printer or plotter.

The quality of the pictures obtained from an output device depends on dot
size and the number of dots per inch, or lines per inch, that can be displayed.
To produce smooth patterns, higher-quality printers shift dot positions so that
adjacent dots overlap.

Printers produce output by either impact or nonimpact methods. Impact print-
ers press formed character faces against an inked ribbon onto the paper. A line
printer is an example of an impact device, with the typefaces mounted on bands,
chains, drums, or wheels. Nonimpact printers and plotters use laser techniques,
ink-jet sprays, electrostatic methods, and electrothermal methods to get images
onto paper.

Character impact printers often have a dot-matrix print head containing a
rectangular array of protruding wire pins, with the number of pins dependent
upon the quality of the printer. Individual characters or graphics patterns are
obtained by retracting certain pins so that the remaining pins form the pattern to
be printed. Figure 2-57 shows a picture printed on a dot-matrix printer.

In a laser device, a laser beam creates a charge distribution on a rotating drum
coated with a photoelectric material, such as selenium. Toner is applied to the
drum and then transferred to paper. Ink-jet methods produce output by squirting
ink in horizontal rows across a roll of paper wrapped on a drum. The electrically
charged ink stream is deflected by an electric field to produce dot-matrix patterns.
And an electrostatic device places a negative charge on the paper, one complete

hearn-50265; ISBN: 0-13-015390-7 book July 29, 2003 14:54

2-5 Hard-Copy Devices 67

FIGURE 2-57 A picture
generated on a dot-matrix
printer, illustrating how the
density of dot patterns can be
varied to produce light and
dark areas. (Courtesy of Apple
Computer, Inc.)

FIGURE 2-58 A desktop
pen plotter with a resolution
of 0.025 mm. (Courtesy of
Summagraphics Corporation.)

row at a time across the sheet. Then the paper is exposed to a positively charged
toner. This causes the toner to be attracted to the negatively charged areas, where
it adheres to produce the specified output. Another output technology is the
electrothermal printer. With these systems, heat is applied to a dot-matrix print
head to output patterns on heat-sensitive paper.

We can get limited color output on some impact printers by using different-
colored ribbons. Nonimpact devices use various techniques to combine three
different color pigments (cyan, magenta, and yellow) to produce a range of color
patterns. Laser and electrostatic devices deposit the three pigments on separate
passes; ink-jet methods shoot the three colors simultaneously on a single pass
along each print line.

Drafting layouts and other drawings are typically generated with ink-jet or
pen plotters. A pen plotter has one or more pens mounted on a carriage, or cross-
bar, that spans a sheet of paper. Pens with varying colors and widths are used
to produce a variety of shadings and line styles. Wet-ink, ball-point, and felt-tip
pens are all possible choices for use with a pen plotter. Plotter paper can lie flat or
it can be rolled onto a drum or belt. Crossbars can be either movable or stationary,
while the pen moves back and forth along the bar. The paper is held in position
using clamps, a vacuum, or an electrostatic charge. An example of a table-top,
flatbed pen plotter is given in Figure 2-58, and a larger, roll-feed pen plotter is
shown in Fig. 2-59.

hearn-50265; ISBN: 0-13-015390-7 book July 29, 2003 14:54

68 CHAPTER 2 Overview of Graphics Systems

FIGURE 2-59 A large, roll-feed
pen plotter with an automatic
multicolor eight-pen changer and a
resolution of 0.0127 mm. (Courtesy
of Summagraphics Corporation.)

2-6 GRAPHICS NETWORKS

So far, we have mainly considered graphics applications on an isolated system
with a single user. However, multiuser environments and computer networks are
now common elements in many graphics applications. Various resources, such as
processors, printers, plotters, and data files, can be distributed on a network and
shared by multiple users.

A graphics monitor on a network is generally referred to as a graphics server,
or simply a server. Often, the monitor includes standard input devices such as a
keyboard and a mouse or trackball. In that case, the system can provide input, as
well as being an output server. The computer on the network that is executing a
graphics application program is called the client, and the output of the program is
displayed on a server. A workstation that includes processors, as well as a monitor
and input devices, can function as both a server and a client.

When operating on a network, a client computer transmits the instructions
for displaying a picture to the monitor (server). Typically, this is accomplished by
collecting the instructions into packets before transmission, instead of sending the
individual graphics instructions one at a time over the network. Thus, graphics
software packages often contain commands that affect packet transmission, as
well as the commands for creating pictures.

2-7 GRAPHICS ON THE INTERNET

A great deal of graphics development is now done on the Internet, which is a
global network of computer networks. Computers on the Internet communicate
using TCP/IP (transmission control protocol/internetworking protocol). In addition,
the World Wide Web provides a hypertext system that allows users to locate
and view documents that can contain text, graphics, and audio. Resources, such
as graphics files, are identified by a uniform resource locator (URL). Each URL,

hearn-50265; ISBN: 0-13-015390-7 book July 29, 2003 14:54

2-8 Graphics Software 69

sometimes also referred to as a universal resource locator, contains two parts: (1)
the protocol for transferring the document, and (2) the server that contains the
document and, optionally, the location (directory) on the server. For example, the
URL http://www.siggraph.org indicates a document that is to be transferred with
the hypertext transfer protocol (http) and that the server is www.siggraph.org, which
is the home page of the Special Interest Group in Graphics (SIGGRAPH) of the
Association for Computing Machinery. Another common type of URL begins with
ftp://. This identifies an “ftp site”, where programs or other files can be downloaded
using the file-transfer protocol.

Documents on the Internet can be constructed with the Hypertext Markup
Language (HTML). The development of HTML provided a simple method for
describing a document containing text, graphics, and references (hyperlinks)
to other documents. Although resources could be made available using HTML
and URL addressing, it was difficult originally to find information on the Inter-
net. Subsequently, the National Center for Supercomputing Applications (NCSA)
developed a “browser” called Mosaic that made it easier for users to search for
Web resources. The Mosaic browser later evolved into the browser called Netscape
Navigator.

The Hypertext Markup Language provides a simple method for developing
graphics on the Internet, but it has limited capabilities. Therefore, other languages
have been developed for internet graphics applications, and we discuss these
languages in Section 2-8.

2-8 GRAPHICS SOFTWARE

There are two broad classifications for computer-graphics software: special-
purpose packages and general programming packages. Special-purpose pack-
ages are designed for nonprogrammers who want to generate pictures, graphs,
or charts in some application area without worrying about the graphics proce-
dures that might be needed to produce such displays. The interface to a special-
purpose package is typically a set of menus that allows users to communicate
with the programs in their own terms. Examples of such applications include
artist’s painting programs and various architectural, business, medical, and en-
gineering CAD systems. By contrast, a general programming package provides
a library of graphics functions that can be used in a programming language such
as C, C++, Java, or Fortran. Basic functions in a typical graphics library include
those for specifying picture components (straight lines, polygons, spheres, and
other objects), setting color values, selecting views of a scene, and applying rota-
tions or other transformations. Some examples of general graphics programming
packages are GL (Graphics Library), OpenGL, VRML (Virtual-Reality Modeling
Language), Java 2D, and Java 3D. A set of graphics functions is often called a
computer-graphics application programming interface (CG API), because the
library provides a software interface between a programming language (such
as C++) and the hardware. So when we write an application program in C++,
the graphics routines allow us to construct and display a picture on an output
device.

Coordinate Representations
To generate a picture using a programming package, we first need to give the
geometric descriptions of the objects that are to be displayed. These descriptions

hearn-50265; ISBN: 0-13-015390-7 book July 29, 2003 14:54

70 CHAPTER 2 Overview of Graphics Systems

determine the locations and shapes of the objects. For example, a box is specified
by the positions of its corners (vertices), and a sphere is defined by its center posi-
tion and radius. With few exceptions, general graphics packages require geomet-
ric descriptions to be specified in a standard, right-handed, Cartesian-coordinate
reference frame (Appendix A). If coordinate values for a picture are given in
some other reference frame (spherical, hyperbolic, etc.), they must be converted
to Cartesian coordinates before they can be input to the graphics package. Some
packages that are designed for specialized applications may allow use of other
coordinate frames that are appropriate for those applications.

In general, several different Cartesian reference frames are used in the pro-
cess of constructing and displaying a scene. First, we can define the shapes of
individual objects, such as trees or furniture, within a separate coordinate ref-
erence frame for each object. These reference frames are called modeling coor-
dinates, or sometimes local coordinates or master coordinates. Once the indi-
vidual object shapes have been specified, we can construct (“model”) a scene
by placing the objects into appropriate locations within a scene reference frame
called world coordinates. This step involves the transformation of the individual
modeling-coordinate frames to specified positions and orientations within the
world-coordinate frame. As an example, we could construct a bicycle by defining
each of its parts (wheels, frame, seat, handle bars, gears, chain, pedals) in a sep-
arate modeling-coordinate frame. Then, the component parts are fitted together
in world coordinates. If both bicycle wheels are the same size, we only need
to describe one wheel in a local-coordinate frame. Then the wheel description
is fitted into the world-coordinate bicycle description in two places. For scenes
that are not too complicated, object components can be set up directly within
the overall world-coordinate object structure, bypassing the modeling-coordinate
and modeling-transformation steps. Geometric descriptions in modeling coordi-
nates and world coordinates can be given in any convenient floating-point or
integer values, without regard for the constraints of a particular output device.
For some scenes, we might want to specify object geometries in fractions of a foot,
while for other applications we might want to use millimeters, or kilometers, or
light-years.

After all parts of a scene have been specified, the overall world-coordinate
description is processed through various routines onto one or more output-device
reference frames for display. This process is called the viewing pipeline. World-
coordinate positions are first converted to viewing coordinates corresponding to the
view we want of a scene, based on the position and orientation of a hypothetical
camera. Then object locations are transformed to a two-dimensional projection
of the scene, which corresponds to what we will see on the output device. The
scene is then stored in normalized coordinates, where each coordinate value is
in the range from −1 to 1 or in the range from 0 to 1, depending on the system.
Normalized coordinates are also referred to as normalized device coordinates, since
using this representation makes a graphics package independent of the coordinate
range for any specific output device. We also need to identify visible surfaces and
eliminate picture parts outside of the bounds for the view we want to show on the
display device. Finally, the picture is scan converted into the refresh buffer of a
raster system for display. The coordinate systems for display devices are generally
called device coordinates, or screen coordinates in the case of a video monitor.
Often, both normalized coordinates and screen coordinates are specified in a left-
handed coordinate reference frame so that increasing positive distances from the
xy plane (the screen, or viewing plane) can be interpreted as being farther from
the viewing position.

hearn-50265; ISBN: 0-13-015390-7 book July 30, 2003 15:15

2-8 Graphics Software 71

World
Coordinates

Normalized
Coordinates

Video Monitor

Plotter

Other Output

Device
Coordinates

1

1

1

Viewing and
Projection Coordinates

Modeling
Coordinates

FIGURE 2-60 The transformation sequence from modeling coordinates to device
coordinates for a three-dimensional scene. Object shapes can be individually defined in
modeling-coordinate reference systems. Then the shapes are positioned within the
world-coordinate scene. Next, world-coordinate specifications are transformed through
the viewing pipeline to viewing and projection coordinates and then to normalized
coordinates. At the final step, individual device drivers transfer the normalized-
coordinate representation of the scene to the output devices for display.

Figure 2-60 briefly illustrates the sequence of coordinate transformations from
modeling coordinates to device coordinates for a display that is to contain a
view of two three-dimensional objects. An initial modeling-coordinate position
(xmc , ymc , zmc) in this illustration is transferred to world coordinates, then to view-
ing and projection coordinates, then to left-handed normalized coordinates, and
finally to a device-coordinate position (xdc , ydc) with the sequence:

(xmc , ymc , zmc) → (xwc , ywc , zwc) → (xvc , yvc , zvc) → (xpc , ypc , zpc)

→ (xnc , ync , znc) → (xdc , ydc)

Device coordinates (xdc , ydc) are integers within the range (0, 0) to (xmax, ymax) for
a particular output device. In addition to the two-dimensional positions (xdc , ydc)
on the viewing surface, depth information for each device-coordinate position is
stored for use in various visibility and surface-processing algorithms.

Graphics Functions
A general-purpose graphics package provides users with a variety of functions
for creating and manipulating pictures. These routines can be broadly classified
according to whether they deal with graphics output, input, attributes, transfor-
mations, viewing, subdividing pictures, or general control.

The basic building blocks for pictures are referred to as graphics output
primitives. They include character strings and geometric entities, such as points,
straight lines, curved lines, filled color areas (usually polygons), and shapes
defined with arrays of color points. Additionally, some graphics packages pro-
vide functions for displaying more complex shapes such as spheres, cones, and
cylinders. Routines for generating output primitives provide the basic tools for
constructing pictures.

hearn-50265; ISBN: 0-13-015390-7 book July 29, 2003 14:54

72 CHAPTER 2 Overview of Graphics Systems

Attributes are properties of the output primitives; that is, an attribute de-
scribes how a particular primitive is to be displayed. This includes color specifi-
cations, line styles, text styles, and area-filling patterns.

We can change the size, position, or orientation of an object within a scene
using geometric transformations. Some graphics packages provide an additional
set of functions for performing modeling transformations, which are used to con-
struct a scene where individual object descriptions are given in local coordinates.
Such packages usually provide a mechanism for describing complex objects (such
as an electrical circuit or a bicycle) with a tree (hierarchical) structure. Other pack-
ages simply provide the geometric-transformation routines and leave modeling
details to the programmer.

After a scene has been constructed, using the routines for specifying the object
shapes and their attributes, a graphics package projects a view of the picture onto
an output device. Viewing transformations are used to select a view of the scene,
the type of projection to be used, and the location on a video monitor where the
view is to be displayed. Other routines are available for managing the screen
display area by specifying its position, size, and structure. For three-dimensional
scenes, visible objects are identified and the lighting conditions are applied.

Interactive graphics applications make use of various kinds of input devices,
including a mouse, a tablet, or a joystick. Input functions are used to control and
process the data flow from these interactive devices.

Some graphics packages also provide routines for subdividing a picture de-
scription into a named set of component parts. And other routines may be avail-
able for manipulating these picture components in various ways.

Finally, a graphics package contains a number of housekeeping tasks, such as
clearing a screen display area to a selected color and initializing parameters. We
can lump the functions for carrying out these chores under the heading control
operations.

Software Standards
The primary goal of standardized graphics software is portability. When packages
are designed with standard graphics functions, software can be moved easily
from one hardware system to another and used in different implementations and
applications. Without standards, programs designed for one hardware system
often cannot be transferred to another system without extensive rewriting of the
programs.

International and national standards-planning organizations in many coun-
tries have cooperated in an effort to develop a generally accepted standard for
computer graphics. After considerable effort, this work on standards led to the
development of the Graphical Kernel System (GKS) in 1984. This system was
adopted as the first graphics software standard by the International Standards
Organization (ISO) and by various national standards organizations, including
the American National Standards Institute (ANSI). Although GKS was originally
designed as a two-dimensional graphics package, a three-dimensional GKS ex-
tension was soon developed. The second software standard to be developed and
approved by the standards organizations was PHIGS (Programmer’s Hierarchi-
cal Interactive Graphics Standard), which is an extension of GKS. Increased ca-
pabilities for hierarchical object modeling, color specifications, surface rendering,
and picture manipulations are provided in PHIGS. Subsequently, an extension
of PHIGS, called PHIGS+, was developed to provide three-dimensional surface-
rendering capabilities not available in PHIGS.

hearn-50265; ISBN: 0-13-015390-7 book July 29, 2003 14:54

2-9 Introduction to OpenGL 73

As the GKS and PHIGS packages were being developed, the graphics work-
stations from Silicon Graphics, Inc. (SGI) became increasingly popular. These
workstations came with a set of routines called GL (Graphics Library), which
very soon became a widely used package in the graphics community. Thus GL
became a de facto graphics standard. The GL routines were designed for fast,
real-time rendering, and soon this package was being extended to other hard-
ware systems. As a result, OpenGL was developed as a hardware-independent
version of GL in the early 1990s. This graphics package is now maintained and
updated by the OpenGL Architecture Review Board, which is a consortium of
representatives from many graphics companies and organizations. The OpenGL
library is specifically designed for efficient processing of three-dimensional ap-
plications, but it can also handle two-dimensional scene descriptions as a special
case of three dimensions where all the z coordinate values are 0.

Graphics functions in any package are typically defined as a set of specifica-
tions that are independent of any programming language. A language binding
is then defined for a particular high-level programming language. This binding
gives the syntax for accessing the various graphics functions from that language.
Each language binding is defined to make best use of the corresponding language
capabilities and to handle various syntax issues, such as data types, parameter
passing, and errors. Specifications for implementing a graphics package in a par-
ticular language are set by the International Standards Organization. The OpenGL
bindings for the C and C++ languages are the same. Other OpenGL bindings are
also available, such as those for Ada and Fortran.

In the following chapters, we use the C/C++ binding for OpenGL as a frame-
work for discussing basic graphics concepts and the design and application of
graphics packages. Example programs in C++ illustrate applications of OpenGL
and the general algorithms for implementing graphics functions.

Other Graphics Packages
Many other computer-graphics programming libraries have been developed.
Some provide general graphics routines, and some are aimed at specific applica-
tions or particular aspects of computer graphics, such as animation, virtual reality,
or graphics on the Internet.

A package called Open Inventor furnishes a set of object-oriented routines for
describing a scene that is to be displayed with calls to OpenGL. The Virtual-Reality
Modeling Language (VRML), which began as a subset of Open Inventor, allows us
to set up three-dimensional models of virtual worlds on the Internet. We can
also construct pictures on the Web using graphics libraries developed for the Java
language. With Java 2D, we can create two-dimensional scenes within Java applets,
for example. Or we can produce three-dimensional web displays with Java 3D.
And with the Renderman Interface from the Pixar Corporation, we can generate
scenes using a variety of lighting models. Finally, graphics libraries are often
provided in other types of systems, such as Mathematica, MatLab, and Maple.

2-9 INTRODUCTION TO OpenGL

A basic library of functions is provided in OpenGL for specifying graphics prim-
itives, attributes, geometric transformations, viewing transformations, and many
other operations. As we noted in the last section, OpenGL is designed to be hard-
ware independent, therefore many operations, such as input and output routines,

hearn-50265; ISBN: 0-13-015390-7 book July 29, 2003 14:54

74 CHAPTER 2 Overview of Graphics Systems

are not included in the basic library. However, input and output routines and many
additional functions are available in auxiliary libraries that have been developed
for OpenGL programs.

Basic OpenGL Syntax
Function names in the OpenGL basic library (also called the OpenGL core
library) are prefixed with gl, and each component word within a function name
has its first letter capitalized. The following examples illustrate this naming
convention.

glBegin, glClear, glCopyPixels, glPolygonMode

Certain functions require that one (or more) of their arguments be assigned
a symbolic constant specifying, for instance, a parameter name, a value for a
parameter, or a particular mode. All such constants begin with the uppercase
letters GL. In addition, component words within a constant name are written in
capital letters, and the underscore () is used as a separator between all component
words in the name. Following are a few examples of the several hundred symbolic
constants available for use with OpenGL functions.

GL_2D, GL_RGB, GL_CCW, GL_POLYGON, GL_AMBIENT_AND_DIFFUSE

The OpenGL functions also expect specific data types. For example, an
OpenGL function parameter might expect a value that is specified as a 32-bit
integer. But the size of an integer specification can be different on different ma-
chines. To indicate a specific data type, OpenGL uses special built-in, data-type
names, such as

GLbyte, GLshort, GLint, GLfloat, GLdouble, GLboolean

Each data-type name begins with the capital letters GL and the remainder of the
name is a standard data-type designation, written in lower-case letters.

Some arguments of OpenGL functions can be assigned values using an array
that lists a set of data values. This is an option for specifying a list of values as a
pointer to an array, rather than specifying each element of the list explicitly as a
parameter argument. A typical example of the use of this option is in specifying
xyz coordinate values.

Related Libraries
In addition to the OpenGL basic (core) library, there are a number of associ-
ated libraries for handling special operations. The OpenGL Utility (GLU) pro-
vides routines for setting up viewing and projection matrices, describing complex
objects with line and polygon approximations, displaying quadrics and B-splines
using linear approximations, processing the surface-rendering operations, and
other complex tasks. Every OpenGL implementation includes the GLU library,
and all GLU function names start with the prefix glu. There is also an object-
oriented toolkit based on OpenGL, called Open Inventor, which provides rou-
tines and predefined object shapes for interactive three-dimensional applications.
This toolkit is written in C++.

hearn-50265; ISBN: 0-13-015390-7 book July 29, 2003 14:54

2-9 Introduction to OpenGL 75

To create a graphics display using OpenGL, we first need to set up a display
window on our video screen. This is simply the rectangular area of the screen
in which our picture will be displayed. We cannot create the display window
directly with the basic OpenGL functions, since this library contains only device-
independent graphics functions, and window-management operations depend
on the computer we are using. However, there are several window-system li-
braries that support OpenGL functions for a variety of machines. The OpenGL
Extension to the X Window System (GLX) provides a set of routines that are
prefixed with the letters glX. Apple systems can use the Apple GL (AGL) in-
terface for window-management operations. Function names for this library are
prefixed with agl. For Microsoft Windows systems, the WGL routines provide a
Windows-to-OpenGL interface. These routines are prefixed with the letters wgl.
The Presentation Manager to OpenGL (PGL) is an interface for the IBM OS/2,
which uses the prefixpgl for the library routines. And the OpenGL Utility Toolkit
(GLUT) provides a library of functions for interacting with any screen-windowing
system. The GLUT library functions are prefixed with glut, and this library also
contains methods for describing and rendering quadric curves and surfaces.

Since GLUT is an interface to other device-specific window systems, we can
use GLUT so that our programs will be device independent. Information regard-
ing the latest version of GLUT and download procedures for the source code are
available at the Web site:

http://reality.sgi.com/opengl/glut3/glut3.html

Header Files
In all of our graphics programs, we will need to include the header file for the
OpenGL core library. For most applications we will also need GLU. And we need
to include the header file for the window system. For instance, with Microsoft
Windows, the header file that accesses the WGL routines is windows.h. This
header file must be listed before the OpenGL and GLU header files because
it contains macros needed by the Microsoft Windows version of the OpenGL
libraries. So the source file in this case would begin with

#include <windows.h>
#include <GL/gl.h>
#include <GL/glu.h>

However, if we use GLUT to handle the window-managing operations, we do
not need to include gl.h and glu.h because GLUT ensures that these will be in-
cluded correctly. Thus, we can replace the header files for OpenGL and GLU with

#include <GL/glut.h>

We could include gl.h and glu.h as well, but doing so would be redundant and
could affect program portability.

In addition, we will often need to include header files that are required by the
C++ code. For example,

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

hearn-50265; ISBN: 0-13-015390-7 book July 29, 2003 14:54

76 CHAPTER 2 Overview of Graphics Systems

With the new ISO/ANSI standard for C++, these header files are called cstdio,
cstdlib, and cmath.

Display-Window Management Using GLUT
To get started, we can consider a simplified, minimal number of operations for
displaying a picture. Since we are using the OpenGL Utility Toolkit, our first step
is to initialize GLUT. This initialization function could also process any command-
line arguments, but we will not need to use these parameters for our first example
programs. We perform the GLUT initialization with the statement

glutInit (&argc, argv);

Next, we can state that a display window is to be created on the screen with
a given caption for the title bar. This is accomplished with the function

glutCreateWindow ("An Example OpenGL Program");

where the single argument for this function can be any character string we want
to use for the display-window title.

Then we need to specify what the display window is to contain. For this,
we create a picture using OpenGL functions and pass the picture definition to
the GLUT routine glutDisplayFunc, which assigns our picture to the display
window. As an example, suppose we have the OpenGL code for describing a line
segment in a procedure called lineSegment. Then the following function call
passes the line-segment description to the display window.

glutDisplayFunc (lineSegment);

But the display window is not yet on the screen. We need one more GLUT
function to complete the window-processing operations. After execution of the
following statement, all display windows that we have created, including their
graphic content, are now activated.

glutMainLoop ();

This function must be the last one in our program. It displays the initial graphics
and puts the program into an infinite loop that checks for input from devices such
as a mouse or keyboard. Our first example will not be interactive, so the program
will just continue to display our picture until we close the display window. In
later chapters, we consider how we can modify our OpenGL programs to handle
interactive input.

Although the display window that we created will be in some default location
and size, we can set these parameters using additional GLUT functions. We use
the glutInitWindowPosition function to give an initial location for the top-
left corner of the display window. This position is specified in integer screen
coordinates, whose origin is at the upper-left corner of the screen. For instance,
the following statement specifies that the top-left corner of the display window
should be placed 50 pixels to the right of the left edge of the screen and 100 pixels
down from the top edge of the screen.

glutInitWindowPosition (50, 100);

hearn-50265; ISBN: 0-13-015390-7 book July 29, 2003 14:54

2-9 Introduction to OpenGL 77

Display
Window

Video screen

An Example OpenGL Program

400

300

10050

FIGURE 2-61 A 400 by 300
display window at position (50, 100)
relative to the top-left corner of the
video display.

Similarly, the glutInitWindowSize function is used to set the initial pixel
width and height of the display window. Thus, we specify a display window
with an initial width of 400 pixels and a height of 300 pixels (Fig. 2-61) with the
statement

glutInitWindowSize (400, 300);

After the display window is on the screen, we can reposition and resize it.
We can also set a number of other options for the display window, such as

buffering and a choice of color modes, with the glutInitDisplayMode func-
tion. Arguments for this routine are assigned symbolic GLUT constants. For ex-
ample, the following command specifies that a single refresh buffer is to be used
for the display window and that the RGB (red, green, blue) color mode is to be
used for selecting color values.

glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);

The values of the constants passed to this function are combined using a logical or
operation. Actually, single buffering and RGB color mode are the default options.
But we will use the function now as a reminder that these are the options that are
set for our display. Later, we discuss color modes in more detail, as well as other
display options such as double buffering for animation applications and selecting
parameters for viewing three-dimensional scenes.

A Complete OpenGL Program
There are still a few more tasks to perform before we have all the parts we need for
a complete program. For the display window, we can choose a background color.
And we need to construct a procedure that contains the appropriate OpenGL
functions for the picture that we want to display.

Using RGB color values, we set the background color for the display window
to be white, as in Fig. 2-61, with the OpenGL function

glClearColor (1.0, 1.0, 1.0, 0.0);

hearn-50265; ISBN: 0-13-015390-7 book July 29, 2003 14:54

78 CHAPTER 2 Overview of Graphics Systems

The first three arguments in this function set each of the red, green, and blue com-
ponent colors to the value 1.0. Thus we get a white color for the display window.
If, instead of 1.0, we set each of the component colors to 0.0, we would get a black
background. And if each of the red, green, and blue components were set to the
same intermediate value between 0.0 and 1.0, we would get some shade of gray.
The fourth parameter in the glClearColor function is called the alpha value
for the specified color. One use for the alpha value is as a “blending” parameter.
When we activate the OpenGL blending operations, alpha values can be used
to determine the resulting color for two overlapping objects. An alpha value of
0.0 indicates a totally transparent object, and an alpha value of 1.0 indicates an
opaque object. Blending operations will not be used for a while, so the value of
alpha is irrelevant to our early example programs. For now, we simply set alpha
to 0.0.

Although the glClearColor command assigns a color to the display win-
dow, it does not put the display window on the screen. To get the assigned window
color displayed, we need to invoke the following OpenGL function.

glClear (GL_COLOR_BUFFER_BIT);

The argument GL COLOR BUFFER BIT is an OpenGL symbolic constant spec-
ifying that it is the bit values in the color buffer (refresh buffer) that are to be set
to the values indicated in the glClearColor function. (We discuss other buffers
in later chapters.)

In addition to setting the background color for the display window, we can
choose a variety of color schemes for the objects we want to display in a scene.
For our initial programming example, we will simply set object color to be red
and defer further discussion of the various color options until Chapter 4:

glColor3f (1.0, 0.0, 0.0);

The suffix 3f on the glColor function indicates that we are specifying the three
RGB color components using floating-point (f) values. These values must be in
the range from 0.0 to 1.0, and we have set red = 1.0 and green = blue = 0.0.

For our first program, we simply display a two-dimensional line segment.
To do this, we need to tell OpenGL how we want to “project” our picture onto
the display window, because generating a two-dimensional picture is treated by
OpenGL as a special case of three-dimensional viewing. So, although we only
want to produce a very simple two-dimensional line, OpenGL processes our
picture through the full three-dimensional viewing operations. We can set the
projection type (mode) and other viewing parameters that we need with the fol-
lowing two functions.

glMatrixMode (GL_PROJECTION);
gluOrtho2D (0.0, 200.0, 0.0, 150.0);

This specifies that an orthogonal projection is to be used to map the contents of
a two-dimensional (2D) rectangular area of world coordinates to the screen, and
that the x-coordinate values within this rectangle range from 0.0 to 200.0 with
y-coordinate values ranging from 0.0 to 150.0. Whatever objects we define
within this world-coordinate rectangle will be shown within the display win-
dow. Anything outside this coordinate range will not be displayed. Therefore,
the GLU function gluOrtho2D defines the coordinate reference frame within the

hearn-50265; ISBN: 0-13-015390-7 book July 29, 2003 15:55

2-9 Introduction to OpenGL 79

FIGURE 2-62 The display
window and line segment
produced by the example
program.

display window to be (0.0, 0.0) at the lower-left corner of the display window and
(200.0, 150.0) at the upper-right window corner. Since we are only describing
a two-dimensional object, the orthogonal projection has no other effect than to
“paste” our picture into the display window that we defined earlier. For now, we
will use a world-coordinate rectangle with the same aspect ratio as the display
window, so that there is no distortion of our picture. Later, we will consider how
we can maintain an aspect ratio that is not dependent upon the display-window
specification.

Finally, we need to call the appropriate OpenGL routines to create our line seg-
ment. The following code defines a two-dimensional, straight-line segment with
integer, Cartesian endpoint coordinates (180, 15) and (10, 145). In Chapter 3, we
present a detailed explanation of these functions and the other OpenGL functions
for generating graphics primitives.

glBegin (GL_LINES);
glVertex2i (180, 15);
glVertex2i (10, 145);

glEnd ();

Now we are ready to put all the pieces together. The following OpenGL
program is organized into three procedures. We place all initializations and related
one-time parameter settings in procedure init. Our geometric description of
the “picture” we want to display is in procedure lineSegment, which is the
procedure that will be referenced by the GLUT function glutDisplayFunc.
And the main procedure contains the GLUT functions for setting up the display
window and getting our line segment onto the screen. Figure 2-62 shows the
display window and red line segment generated by this program.

hearn-50265; ISBN: 0-13-015390-7 book July 29, 2003 14:54

80 CHAPTER 2 Overview of Graphics Systems

#include <GL/glut.h> // (or others, depending on the system in use)

void init (void)
{

glClearColor (1.0, 1.0, 1.0, 0.0); // Set display-window color to white.

glMatrixMode (GL_PROJECTION); // Set projection parameters.
gluOrtho2D (0.0, 200.0, 0.0, 150.0);

}

void lineSegment (void)
{

glClear (GL_COLOR_BUFFER_BIT); // Clear display window.

glColor3f (1.0, 0.0, 0.0); // Set line segment color to red.
glBegin (GL_LINES);

glVertex2i (180, 15); // Specify line-segment geometry.
glVertex2i (10, 145);

glEnd ();

glFlush (); // Process all OpenGL routines as quickly as possible.
}

void main (int argc, char** argv)
{

glutInit (&argc, argv); // Initialize GLUT.
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB); // Set display mode.
glutInitWindowPosition (50, 100); // Set top-left display-window position.
glutInitWindowSize (400, 300); // Set display-window width and height.
glutCreateWindow ("An Example OpenGL Program"); // Create display window.

init (); // Execute initialization procedure.
glutDisplayFunc (lineSegment); // Send graphics to display window.
glutMainLoop (); // Display everything and wait.

}

At the end of procedure lineSegment is a function, glFlush, that we
have not yet discussed. This is simply a routine to force execution of our
OpenGL functions, which are stored by computer systems in buffers in differ-
ent locations, depending on how OpenGL is implemented. On a busy network,
for example, there could be delays in processing some buffers. But the call to
glFlush forces all such buffers to be emptied and the OpenGL functions to be
processed.

The procedure lineSegment that we set up to describe our picture is re-
ferred to as a display callback function. And this procedure is described as being
“registered” by glutDisplayFunc as the routine to invoke whenever the dis-
play window might need to be redisplayed. This can occur, for example, if the
display window is moved. In subsequent chapters we will take a look at other
types of callback functions and the associated GLUT routines that we use to
register them. In general, OpenGL programs are organized as a set of callback
functions that are to be invoked when certain actions occur.

hearn-50265; ISBN: 0-13-015390-7 book July 29, 2003 14:54

2-10 Summary 81

2-10 SUMMARY

In this introductory chapter, we surveyed the major hardware and software fea-
tures of computer-graphics systems. Hardware components include video moni-
tors, hardcopy output devices, various kinds of input devices, and components for
interacting with virtual environments. Some software systems, such as CAD pack-
ages and paint programs, are designed for particular applications. Other software
systems provide a library of general graphics routines that can be used within a
programming language such as C++ to generate pictures for any application.

The predominant graphics display device is the raster refresh monitor, based
on television technology. A raster system uses a frame buffer to store the color
value for each screen position (pixel). Pictures are then painted onto the screen
by retrieving this information from the frame buffer (also called a refresh buffer)
as the electron beam in the CRT sweeps across each scan line, from top to bot-
tom. Older vector displays construct pictures by drawing straight-line segments
between specified endpoint positions. Picture information is then stored as a set
of line-drawing instructions.

Many other video display devices are available. In particular, flat-panel dis-
play technology is developing at a rapid rate, and these devices are now used in a
variety of systems, including both desktop and laptop computers. Plasma panels
and liquid-crystal devices are two examples of flat-panel displays. Other dis-
play technologies include three-dimensional and stereoscopic-viewing systems.
Virtual-reality systems can include either a stereoscopic headset or a standard
video monitor.

For graphical input, we have a range of devices to choose from. Keyboards,
button boxes, and dials are used to input text, data values, or programming op-
tions. The most popular “pointing” device is the mouse, but trackballs, space-
balls, joysticks, cursor-control keys, and thumbwheels are also used to position
the screen cursor. In virtual-reality environments, data gloves are commonly used.
Other input devices are image scanners, digitizers, touch panels, light pens, and
voice systems.

Hardcopy devices for graphics workstations include standard printers and
plotters, in addition to devices for producing slides, transparencies, and film out-
put. Printers produce hardcopy output using dot-matrix, laser, inkjet, electrostatic,
or electrothermal methods. Graphs and charts can be produced with an ink-pen
plotter or with a combination printer-plotter device.

Standard graphics-programming packages developed and approved through
ISO and ANSI are GKS, 3D GKS, PHIGS, and PHIGS+. Other packages that have
evolved into standards are GL and OpenGL. Many other graphics libraries are
available for use in a programming language, including Open Inventor, VRML,
RenderMan, Java 2D, and Java 3D. Other systems, such as Mathematica, MatLab,
and Maple, often provide a set of graphics-programming functions.

Normally, graphics-programming packages require coordinate specifications
to be given in Cartesian reference frames. Each object for a scene can be de-
fined in a separate modeling Cartesian-coordinate system, which is then mapped
to a world-coordinate location to construct the scene. From world coordinates,
three-dimensional objects are projected to a two-dimensional plane, converted to
normalized device coordinates, and then transformed to the final display-device
coordinates. The transformations from modeling coordinates to normalized de-
vice coordinates are independent of particular output devices that might be used
in an application. Device drivers are then used to convert normalized coordinates
to integer device coordinates.

hearn-50265; ISBN: 0-13-015390-7 book July 29, 2003 14:54

82 CHAPTER 2 Overview of Graphics Systems

Functions that are available in graphics programming packages can be di-
vided into the following categories: graphics output primitives, attributes, geo-
metric and modeling transformations, viewing transformations, input functions,
picture-structuring operations, and control operations.

The OpenGL system consists of a device-independent set of routines (called
the core library), the utility library (GLU), and the utility toolkit (GLUT). In the
auxiliary set of routines provided by GLU, functions are available for generat-
ing complex objects, for parameter specifications in two-dimensional viewing
applications, for dealing with surface-rendering operations, and for performing
some other supporting tasks. In GLUT, we have an extensive set of functions for
managing display windows, interacting with screen-window systems, and for
generating some three-dimensional shapes. We can use GLUT to interface with
any computer system, or we can use GLX, Apple GL, WGL, or another system-
specific software package.

REFERENCES

A general treatment of electronic displays is available in Tannas (1985) and in Sherr (1993).
Flat-panel devices are discussed in Depp and Howard (1993). Additional information on
raster-graphics architecture can be found in Foley, van Dam, Feiner, and Hughes (1990).
Three-dimensional and stereoscopic displays are discussed in Johnson (1982) and in Grotch
(1983). Head-mounted displays and virtual-reality environments are discussed in Chung,
et al. (1989).

Standard sources for information on OpenGL are Woo, Neider, Davis, and Shreiner
(1999) and Shreiner (2000). Open Inventor is explored in Wernecke (1994). McCarthy and
Descartes (1998) can be consulted for discussions of VRML. A presentation on RenderMan
can be found in Upstill (1989). Examples of graphics programming in Java 2D are given in
Knudsen (1999), Hardy (2000), and Horstmann and Cornell (2001). Graphics programming
using Java 3D is explored in Sowizral, Rushforth, and Deering (2000); Palmer (2001); Selman
(2002); and Walsh and Gehringer (2002).

For information on PHIGS and PHIGS+, see Howard, Hewitt, Hubbold, and Wyrwas
(1991); Hopgood and Duce (1991); Gaskins (1992); and Blake (1993). Information on the
two-dimensional GKS standard and on the evolution of graphics standards is available in
Hopgood, Duce, Gallop, and Sutcliffe (1983). An additional reference for GKS is Enderle,
Kansy, and Pfaff (1984).

EXERCISES

2-1 List the operating characteristics for the following display technologies: raster
refresh systems, vector refresh systems, plasma panels, and LCDs.

2-2 List some applications appropriate for each of the display technologies in
Exercise 2-1.

2-3 Determine the resolution (pixels per centimeter) in the x and y directions for the
video monitor in use on your system. Determine the aspect ratio, and explain how
relative proportions of objects can be maintained on your system.

2-4 Consider three different raster systems with resolutions of 640 by 480, 1280 by 1024,
and 2560 by 2048. What size frame buffer (in bytes) is needed for each of these
systems to store 12 bits per pixel? How much storage is required for each system if
24 bits per pixel are to be stored?

2-5 Suppose an RGB raster system is to be designed using an 8 inch by 10 inch screen
with a resolution of 100 pixels per inch in each direction. If we want to store 6 bits

hearn-50265; ISBN: 0-13-015390-7 book July 29, 2003 14:54

Exercises 83

per pixel in the frame buffer, how much storage (in bytes) do we need for the frame
buffer?

2-6 How long would it take to load a 640-by-480 frame buffer with 12 bits per pixel,
if 105 bits can be transferred per second? How long would it take to load a 24-bit-
per-pixel frame buffer with a resolution of 1280 by 1024 using this same transfer
rate?

2-7 Suppose we have a computer with 32 bits per word and a transfer rate of 1 mip (one
million instructions per second). How long would it take to fill the frame buffer of
a 300 dpi (dot per inch) laser printer with a page size of 8 1/2 inches by 11 inches?

2-8 Consider two raster systems with resolutions of 640 by 480 and 1280 by 1024. How
many pixels could be accessed per second in each of these systems by a display
controller that refreshes the screen at a rate of 60 frames per second? What is the
access time per pixel in each system?

2-9 Suppose we have a video monitor with a display area that measures 12 inches across
and 9.6 inches high. If the resolution is 1280 by 1024 and the aspect ratio is 1, what
is the diameter of each screen point?

2-10 How much time is spent scanning across each row of pixels during screen refresh
on a raster system with a resolution of 1280 by 1024 and a refresh rate of 60 frames
per second?

2-11 Consider a noninterlaced raster monitor with a resolution of n by m (m scan lines
and n pixels per scan line), a refresh rate of r frames per second, a horizontal retrace
time of thor iz, and a vertical retrace time of tvert . What is the fraction of the total
refresh time per frame spent in retrace of the electron beam?

2-12 What is the fraction of the total refresh time per frame spent in retrace of the electron
beam for a noninterlaced raster system with a resolution of 1280 by 1024, a refresh
rate of 60 Hz, a horizontal retrace time of 5 microseconds, and a vertical retrace time
of 500 microseconds?

2-13 Assuming that a certain full-color (24-bit-per-pixel) RGB raster system has a 512-
by-512 frame buffer, how many distinct color choices (intensity levels) would we
have available? How many different colors could we display at any one time?

2-14 Compare the advantages and disadvantages of a three-dimensional monitor using
a varifocal mirror to those of a stereoscopic system.

2-15 List the different input and output components that are typically used with virtual-
reality systems. Also, explain how users interact with a virtual scene displayed with
different output devices, such as two-dimensional and stereoscopic monitors.

2-16 Explain how virtual-reality systems can be used in design applications. What are
some other applications for virtual-reality systems?

2-17 List some applications for large-screen displays.

2-18 Explain the differences between a general graphics system designed for a program-
mer and one designed for a specific application, such as architectural design.

2-19 Explain the differences between the OpenGL core library, the OpenGL Utility, and
the OpenGL Utility Toolkit.

2-20 What command could we use to set the color of an OpenGL display window to
light gray? What command would we use to set the color of the display window to
black?

2-21 List the statements needed to set up an OpenGL display window whose lower-right
corner is at pixel position (200, 200), with a window width of 100 pixels and a height
of 75 pixels.

2-22 Explain what is meant by the term “OpenGL display callback function”.

