
University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

CS352H: Computer Systems Architecture

Topic 9: MIPS Pipeline - Hazards

October 1, 2009

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 2

Data Hazards in ALU Instructions

Consider this sequence:
sub $2, $1,$3
and $12,$2,$5
or $13,$6,$2
add $14,$2,$2
sw $15,100($2)

We can resolve hazards with forwarding
How do we detect when to forward?

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 3

Dependencies & Forwarding

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 4

Detecting the Need to Forward

Pass register numbers along pipeline
e.g., ID/EX.RegisterRs = register number for Rs
sitting in ID/EX pipeline register

ALU operand register numbers in EX stage are
given by

ID/EX.RegisterRs, ID/EX.RegisterRt
Data hazards when
1a. EX/MEM.RegisterRd = ID/EX.RegisterRs
1b. EX/MEM.RegisterRd = ID/EX.RegisterRt
2a. MEM/WB.RegisterRd = ID/EX.RegisterRs
2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

Fwd from
EX/MEM
pipeline reg

Fwd from
MEM/WB
pipeline reg

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 5

Detecting the Need to Forward

But only if forwarding instruction will write to a
register!

EX/MEM.RegWrite, MEM/WB.RegWrite
And only if Rd for that instruction is not $zero

EX/MEM.RegisterRd ≠ 0,
MEM/WB.RegisterRd ≠ 0

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 6

Forwarding Paths

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 7

Forwarding Conditions

EX hazard
if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
 and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
 ForwardA = 10
if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
 and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
 ForwardB = 10

MEM hazard
if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
 and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
 ForwardA = 01
if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
 and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
 ForwardB = 01

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 8

Double Data Hazard

Consider the sequence:
add $1,$1,$2
add $1,$1,$3
add $1,$1,$4

Both hazards occur
Want to use the most recent

Revise MEM hazard condition
Only fwd if EX hazard condition isn’t true

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 9

Revised Forwarding Condition

MEM hazard
if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
 and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
 and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
 and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
 ForwardA = 01

if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
 and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
 and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
 and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
 ForwardB = 01

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 10

Datapath with Forwarding

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 11

Load-Use Data Hazard

Need to stall
for one cycle

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 12

Load-Use Hazard Detection

Check when using instruction is decoded in ID stage
ALU operand register numbers in ID stage are given by

IF/ID.RegisterRs, IF/ID.RegisterRt
Load-use hazard when

ID/EX.MemRead and
 ((ID/EX.RegisterRt = IF/ID.RegisterRs) or
 (ID/EX.RegisterRt = IF/ID.RegisterRt))

If detected, stall and insert bubble

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 13

How to Stall the Pipeline

Force control values in ID/EX register
to 0

EX, MEM and WB do nop (no-operation)

Prevent update of PC and IF/ID register
Using instruction is decoded again
Following instruction is fetched again
1-cycle stall allows MEM to read data for lw

Can subsequently forward to EX stage

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 14

Stall/Bubble in the Pipeline

Stall inserted
here

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 15

Stall/Bubble in the Pipeline

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 16

Datapath with Hazard Detection

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 17

Stalls and Performance

Stalls reduce performance
But are required to get correct results

Compiler can arrange code to avoid hazards and stalls
Requires knowledge of the pipeline structure

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 18

Branch Hazards

If branch outcome determined in MEM

PC

Flush these
instructions
(Set control
values to 0)

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 19

Reducing Branch Delay

Move hardware to determine outcome to ID stage
Target address adder
Register comparator

Example: branch taken
36: sub $10, $4, $8
40: beq $1, $3, 7
44: and $12, $2, $5
48: or $13, $2, $6
52: add $14, $4, $2
56: slt $15, $6, $7
 ...
72: lw $4, 50($7)

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 20

Example: Branch Taken

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 21

Example: Branch Taken

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 22

Data Hazards for Branches

If a comparison register is a destination of 2nd or 3rd

preceding ALU instruction

…

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

add $4, $5, $6

add $1, $2, $3

beq $1, $4, target

Can resolve using forwarding

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 23

Data Hazards for Branches

If a comparison register is a destination of preceding ALU
instruction or 2nd preceding load instruction

Need 1 stall cycle

beq stalled

IF ID EX MEM WB

IF ID EX MEM WB

IF ID

ID EX MEM WB

add $4, $5, $6

lw $1, addr

beq $1, $4, target

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 24

Data Hazards for Branches

If a comparison register is a destination of immediately
preceding load instruction

Need 2 stall cycles

beq stalled

IF ID EX MEM WB

IF ID

ID

ID EX MEM WB

beq stalled

lw $1, addr

beq $1, $0, target

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 25

Dynamic Branch Prediction

In deeper and superscalar pipelines, branch
penalty is more significant
Use dynamic prediction

Branch prediction buffer (aka branch history table)
Indexed by recent branch instruction addresses
Stores outcome (taken/not taken)
To execute a branch

Check table, expect the same outcome
Start fetching from fall-through or target
If wrong, flush pipeline and flip prediction

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 26

1-Bit Predictor: Shortcoming

Inner loop branches mispredicted twice!
outer: …
 …
inner: …
 …
 beq …, …, inner
 …
 beq …, …, outer

Mispredict as taken on last iteration of inner loop
Then mispredict as not taken on first iteration of
inner loop next time around

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 27

2-Bit Predictor

Only change prediction on two successive mispredictions

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 28

Calculating the Branch Target

Even with predictor, still need to calculate the target
address

1-cycle penalty for a taken branch

Branch target buffer
Cache of target addresses
Indexed by PC when instruction fetched

If hit and instruction is branch predicted taken, can fetch target
immediately

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 29

Exceptions and Interrupts

“Unexpected” events requiring change
in flow of control

Different ISAs use the terms differently

Exception
Arises within the CPU

e.g., undefined opcode, overflow, syscall, …

Interrupt
From an external I/O controller

Dealing with them without sacrificing performance is hard

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 30

Handling Exceptions

In MIPS, exceptions managed by a System
Control Coprocessor (CP0)
Save PC of offending (or interrupted) instruction

In MIPS: Exception Program Counter (EPC)
Save indication of the problem

In MIPS: Cause register
We’ll assume 1-bit

0 for undefined opcode, 1 for overflow

Jump to handler at 8000 00180

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 31

An Alternate Mechanism

Vectored Interrupts
Handler address determined by the cause

Example:
Undefined opcode: C000 0000
Overflow: C000 0020
…: C000 0040

Instructions either
Deal with the interrupt, or
Jump to real handler

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 32

Handler Actions

Read cause, and transfer to relevant handler
Determine action required
If restartable

Take corrective action
use EPC to return to program

Otherwise
Terminate program
Report error using EPC, cause, …

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 33

Exceptions in a Pipeline

Another form of control hazard
Consider overflow on add in EX stage
add $1, $2, $1

Prevent $1 from being clobbered
Complete previous instructions
Flush add and subsequent instructions
Set Cause and EPC register values
Transfer control to handler

Similar to mispredicted branch
Use much of the same hardware

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 34

Pipeline with Exceptions

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 35

Exception Properties

Restartable exceptions
Pipeline can flush the instruction
Handler executes, then returns to the instruction

Refetched and executed from scratch

PC saved in EPC register
Identifies causing instruction
Actually PC + 4 is saved

Handler must adjust

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 36

Exception Example

Exception on add in
40 sub $11, $2, $4
44 and $12, $2, $5
48 or $13, $2, $6
4C add $1, $2, $1
50 slt $15, $6, $7
54 lw $16, 50($7)
…

Handler
80000180 sw $25, 1000($0)
80000184 sw $26, 1004($0)
…

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 37

Exception Example

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 38

Exception Example

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 39

Multiple Exceptions

Pipelining overlaps multiple instructions
Could have multiple exceptions at once

Simple approach: deal with exception from earliest
instruction

Flush subsequent instructions
“Precise” exceptions

In complex pipelines
Multiple instructions issued per cycle
Out-of-order completion
Maintaining precise exceptions is difficult!

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 40

Imprecise Exceptions

Just stop pipeline and save state
Including exception cause(s)

Let the handler work out
Which instruction(s) had exceptions
Which to complete or flush

May require “manual” completion

Simplifies hardware, but more complex handler software
Not feasible for complex multiple-issue
out-of-order pipelines

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 41

Fallacies

Pipelining is easy (!)
The basic idea is easy
The devil is in the details

e.g., detecting data hazards

Pipelining is independent of technology
So why haven’t we always done pipelining?
More transistors make more advanced techniques
feasible
Pipeline-related ISA design needs to take account of
technology trends

e.g., predicated instructions

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 42

Pitfalls

Poor ISA design can make pipelining harder
e.g., complex instruction sets (VAX, IA-32)

Significant overhead to make pipelining work
IA-32 micro-op approach

e.g., complex addressing modes
Register update side effects, memory indirection

e.g., delayed branches
Advanced pipelines have long delay slots

