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What is Rendering? 

  Determining the color to be assigned to each pixel in the 
image by simulating the transport of light in a synthetic 
scene. 
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The Key Efficiency Trick 

  Transform into perspective space, densely sample, and 
produce a large number of independent SIMD 
computations for shading 
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Evolution: 
  Once all fixed function 
  Then separate programmable stages 
  Now homogeneous parallel system for 

programmable parts, software pipeline 

 
  For coarse polygonal models about 
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The Rendering Pipeline 
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  Homogeneous programmable 
cores for all of the 
programmable stages 

  Relatively few special purpose 
texture units 

  Even fewer other types of fixed 
function units. 

 
 
  Fixed function for non-SIMD 

operations 
  Task parallel at the pipeline 

level 
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Shading a Fragment 

  Simple Lambertian shading of texture-mapped fragment. 
  Sequential code 
  Performed in parallel on a large number of independent 
fragments 
  How many is “large number”?  At least 10s of thousands 
per frame 

sampler mySamp;
Texture2D<float3> myTex;
float3 lightDir;
float4 diffuseShader(float3 norm, float2 uv) {

float3 kd;
kd = myTex.Sample(mySamp, uv);
kd *= clamp(dot(lightDir, norm), 0.0, 1.0);
return float4(kd, 1.0);

}

sample r0, v4, t0, s0
mul r3, v0, cb0[0]
madd r3, v1, cb0[1], r3
madd r3, v2, cb0[2], r3
clmp r3, r3, l(0.0), l(1.0)
mul o0, r0, r3
mul o1, r1, r3
mul o2, r2, r3
mov o3, l(1.0)

compile 
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Work per Fragment 

  Do a a couple hundred thousand of these @ 60 Hz or so 
  How? 
  Since we have independent threads to execute, use 
multiple cores 
  What kind of cores? 

sample r0, v4, t0, s0
mul r3, v0, cb0[0]
madd r3, v1, cb0[1], r3
madd r3, v2, cb0[2], r3
clmp r3, r3, l(0.0), l(1.0)
mul o0, r0, r3
mul o1, r1, r3
mul o2, r2, r3
mov o3, l(1.0)

unshaded 
fragment

shaded 
fragment
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The CPU Way 

  Big, complex, but fast on a single thread 
  However, if fragment shader time << frame time, we don’t 
really care how fast the shader thread executes, we care 
how many of them we can do by the deadline. 
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Simplify and Parallelize 

  Don’t use a few CPU style cores, use simpler ones and 
more of them. 
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Shared Instructions 

  Since we’re basically doing the same thing to each fragment (or in 
other parts of the pipeline to vertices, primitives, etc.) in parallel, they 
should be able to share a single instruction stream. 

  Thus SIMD - Amortize instruction handling over multiple ALUs 
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But What about the Other Processing? 

  A graphics pipeline does more than shading.  
We have other places where we do different 
things in parallel, like transforming vertices for 
example.  So we will need to be executing 
more than 1 program in the system. 

  If we replicate these SIMD processors, we now 
have the ability to do different SIMD 
computations in parallel in different parts of 
the machine. 

  In this example, we can have 128 threads in 
parallel, but only 8 different programs 
simultaneously running 
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What about Branches? 

<unconditional shader code>
if (x > 0) {

     y = pow(x, exp);
     y *= Ks;

     refl = y + Ka; 
} else {
     x = 0;
     refl = Ka;
}
<unconditional shader code>

T F F T F FT F
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Efficiency - Dealing with Stalls 

  A thread is stalled when its next instruction to be executed 
must await a result from a previous instruction. 

Pipeline dependencies 
Memory latency 

  The complex CPU hardware omitted from these machines  
was effective at dealing with stalls. 
  What will we do instead? 
  Since we expect to have lots more threads than processors, 
we can interleave their execution to keep the hardware 
busy when a thread stalls. 
  Multithreading! 
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Costs of Multithreading 

  Adds latency to individual threads in order to minimize time to 
complete all threads. 

  Requires extra context storage.  More contexts can mask more latency. 
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Example System 

32 cores x 16 ALUs/core = 512 (madd) ALUs @ 1 GHz = 1 Teraflop 
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Real Example - NVIDIA GeForce GTX 285 

  30 Cores 
  8 SIMD Functional Units per Core 
  Each FU has 1 multiplier and 1 madder 
  Peak 720 floating point ops per clock 
  2 level multithreading 

Fine-grained: 4 threads interleaved into pipelined FUs 
Thus up to 32 threads concurrently executing (called a “WARP”) 
Coarse-grained: Up to 32 WARPS interleaved per core to mask 
latency to memory 
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Real Example - AMD Radeon HD 4890 

  10 Cores 
  16 SIMD Functional Units per 
Core 
  5 madders per FU 
  Peak 1600 floating point ops per 
clock 
  2 level multithreading 

Fine-grained: 4 threads interleaved 
into pipelined FUs 
Up to 64 concurrent threads (not 
called a “WARP”) 
Coarse-grained: groups of 64 threads 
interleaved to mask memory latency 
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“Real” Example - Intel Larrabee 

  Some number of cores 
  Explicit 16-wide vector 
ISA (16-wide madder 
unit) 
  Peak 32n floating point 
operations per clock for 
n cores 
  Each core interleaves 4 
x86 instruction streams 
  Additional interleaving 
under software control 
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Memory architecture 

 CPU style 
Multiple levels of cache on chip 
Takes advantage of temporal and spatial locality to 
reduce demand on remote slow DRAM 
Provides local high bandwidth to cores on chip 
25GB/sec to main memory 
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GPU-style memory architecture 

 Local execution contexts (64kB) and a similar 
amount of local memory 
 Read-only texture cache 
 Traditionally no cache hierarchy (but see NVIDIA 
Fermi and Larrabee) 
 Much higher bandwidth to main memory - 150 
GB/sec 
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Bandwidth is critical for throughput 

 So GPU memory system is designed for 
throughput 

Wide Bus (150 GB/sec) 
Likewise high bandwidth DRAM organization 
(GDDR3-5) 
Careful scheduling of memory requests to make 
efficient use of available bandwidth 
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Graphics applications and GPUs 

  If an NVIDIA GTX 285 has a 1.5 GHz clock (for the 
arithmetic units) and 720 floating point ops per clock, we 
have 1080 Gflops peak compute 
  If we have 150 GB/sec memory bandwidth, then at peak 
efficiency our application has to be doing at least 6 flops 
per byte transferred 
  For AMD Radeon HD 4890 at 1 GHz, the arithmetic 
intensity needs to be about 10 rather than 6 
  Many graphics workloads do this much math, but not all of 
them 
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Rendering applications 

  Transforms 
4 element matrix vector multiply - matrix locally resident for many 
vertices 
Fetch 3  32-bit coordinates per vertex - 12 bytes 
Perform 4 multiplications and 4 additions per coordinate 
That’s 12 madds and 12 bytes fetched, a ratio of 1 madd per byte 
Or, for wide SIMD, it’s 4 madds and 12 bytes for a .33 ratio 
Fortunately, this is a small part of the workload 
Also fortunately, this has a regular memory access pattern, so can 
be prefetched, etc. 

  DRAM bandwidth is the limiting factor for most 
application designers!! 
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Trends 

  Higher rendering quality 
Micropolygons a la Pixar 
Ray tracing and irregular computations 
Both put more pressure on system, irregular computation, lower 
arithmetic intensity (1 sample per fragment) 

  Games - PC and Console 
Games aren’t just renderers - they have various types of physics 
simulations, character animation, AI, networking, sound, etc.  All 
has to work against real-time deadlines. 
So, games overall are a throughput application, but multiple tasks, 
each multithreded 
Shouldn’t most of this leverage the high performance part of the 
system - the GPU? 
So, more heterogeneous apps sharing GPU resources. 
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Trends 

  Flexibility 
Larrabee has less hardware control than NVIDIA/AMD 

  Scheduling flexibility makes programming more difficult, but 
ameliorates issues with builtin schedulers 

  Local cache hierarchy 
Larrabee has a traditional cache hierarchy 
Fermi has more local memory that can be configured as either 
cache or local memory or both 

  Software vs. hardware control? 
Software scheduling? 
Software rasterizing? 

  Continuing pressure on memory bandwidth 
Radeon HD 5870 has twice the peak computation rate of the HD 
4890 (2.7 Tflops) and still 150 GB/sec memory bandwidth 
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Ray tracing 

  Most flexible technique for global 
illumination 
  Primary (and shadow) rays regular 
(common origin) 
  Other secondary rays are a real 
challenge 
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Ray tracing 

  Lots of light bounces (specular here, actually easier than diffuse) 
  Shadows can be done well 
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Shadows and irregular sampling 

  Ray tracing does this naturally 
  Rasterization can be modified to do it, but need data 
structures that aren’t just uniform grids 
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Data structures 

  Hierarchical data structures (e.g. k-d tree) 
  Must be built and traversed 
  For ray tracing, scaling rasterization, irregular z-buffer 
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Ray Tracing 

  Ray Tracing 1 
Basic algorithm 
Overview of pbrt 
Ray-surface intersection (triangles, …) 

  Ray Tracing 2 
Brute force: 
Acceleration data structures | | | |I O×
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Ray Tracing Acceleration Techniques 
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Primitives 

  pbrt primitive base class 
Shape 
Material and emission (area light) 

  Primitives 
Basic geometric primitive 
Primitive instance 

  Transformation and pointer to basic primitive 
Aggregate (collection) 

  Treat collections just like basic primitives 
  Incorporate acceleration structures into collections 
  May nest accelerators of different types 
  Types: grid.cpp and kdtree.cpp 
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Uniform Grids 

  Preprocess scene 
Find bounding box 
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Uniform Grids 

  Preprocess scene 
Find bounding box 

 
Determine resolution 

   
v x y z on n n n n= ∝

3max( , , )x y z on n n d n=
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Uniform Grids 

  Preprocess scene 
Find bounding box 
Determine resolution 

 
Place object in cell, if object 
overlaps cell 

3max( , , )x y z on n n d n=
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Uniform Grids 

  Preprocess scene 
Find bounding box 
Determine resolution 

Place object in cell, if object 
overlaps cell 
Check that object intersects 
cell 

3max( , , )x y z on n n d n=
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Uniform Grids 

  Preprocess scene 
  Traverse grid 

3D line – 3D-DDA 
6-connected line 

  Section 4.3 
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Caveat: Overlap 

  Optimize for objects that overlap multiple cells 

  Traverse until tmin(cell) > tmax(ray) 
  Problem: Redundant intersection tests: 
  Solution: Mailboxes 

Assign each ray an increasing number 
Primitive intersection cache (mailbox) 

  Store last ray number tested in mailbox 
  Only intersect if ray number is greater 
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Spatial Hierarchies 
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Spatial Hierarchies 
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Spatial Hierarchies 
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Variations 

oct-tree kd-tree bsp-tree 
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Ray Traversal Algorithms 

  Recursive inorder traversal  
  [Kaplan, Arvo, Jansen] 

mint

maxt *t

max *t t<

*t

min max*t t t< <

*t

min*t t<

Intersect(L,tmin,tmax) Intersect(R,tmin,tmax)Intersect(L,tmin,t*)
Intersect(R,t*,tmax)
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Build Hierarchy Top-Down 

Choose splitting plane 
•  Midpoint 
•  Median cut 
•  Surface area heuristic 

? 
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Surface Area and Rays 

  Number of rays in a given direction that hit an 
  object is proportional to its projected area 

  The total number of rays hitting an object is 
  Crofton’s Theorem: 

For a convex body 

  For example: sphere 

4
SA =

4 Aπ

24S rπ=

A

2A A rπ= =
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Surface Area and Rays 

  The probability of a ray hitting a convex shape  
  that is completely inside a convex cell equals 

Pr[ ] o
o c

c

Sr S r S
S

∩ ∩ =

oScS
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Surface Area Heuristic 

t a a i b b iC t p N t p N t= + +

80i tt t=
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Surface Area Heuristic 
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Comparison 

V. Havran, Best Efficiency Scheme Project 
http://sgi.felk.cvut.cz/BES/

Spheres Rings Tree

Uniform Grid d=1 244 129 1517
d=20 3 8 83 781

Hierarchical Grid 3 4 116 34

Time
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Comparison 
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Univ. Saarland RTRT Engine 

  Ray-casts per second = FPS @ 1K × 1K 

 
 
 
 
 
 
 
 
 
  Pentium-IV 2.5GHz laptop 

•  Kd-tree with surface-area heuristic [Havran] 

•  Wald et al. 2003 [http://www.mpi-sb.mpg.de/~wald/] 

        RT&Shading 
Scene 

SSE 
no shd. 

SSE 
simple shd. 

No SSE 
simple shd. 

ERW6 (static) 7.1 2.3 1.37 
ERW6 (dynamic) 4.8 1.97 1.06 
Conf (static) 4.55 1.93 1.2 

Conf (dynamic) 2.94 1.6 0.82 
Soda Hall 4.12 1.8 1.055 



University of Texas at Austin                                                                                        Don Fussell 

Interactive Ray Tracing 

  Highly optimized software ray tracers 
Use vector instructions; Cache optimized 
Clusters and shared memory MPs 

  Ray tracing hardware 
AR250/350 ray tracing processor 

 www.art-render.com 
SaarCOR 

  Ray tracing on programmable GPUs 
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Theoretical Nugget 1 

  Computational geometry of ray shooting 

  1. Triangles (Pellegrini) 
Time: 
Space: 

  2. Sphere (Guibas and Pellegrini) 
Time: 
Space: 

(log )O n

2(log )O n

5( )O n ε+

5( )O n ε+
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Theoretical Nugget 2 

  Optical computer = Turing machine 
  Reif, Tygar, Yoshida 

  Determining if a ray  
  starting at y0 arrives  
  at yn is undecidable 

y = y+1 

y = -2*y 

if( y>0 ) 



University of Texas at Austin                                                                                        Don Fussell 

Ray tracing and rasterization 

  For nice regular primary and shadow rays 
Ray tracing:  for each ray {

     for each object {

                     is there an intersection?
                  }
              }

Graphics pipeline:  for each object {
  for each ray {

                          is there an intersection?
                       }
                    }

  Just a loop transform 
  Trick - Make it regular - do it in perspective space 
  Regular doesn’t have to mean regular samples, just easy search! 
  Now can be done in real time for primary and shadows 
  Faster on CPUs than GPUs 
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Micropolygons 



University of Texas at Austin                                                                                        Don Fussell 

Micropolygons 

  Lots of tiny fragments to 
shade 
  Lots of pressure on 
rasterization! 
  Current best algorithms for 
SIMD software rasterizers 
get 50%-50% utilization 
  More pressure for hardware 
rasterizers? 

Split 

Blend & Filter 

Sample 

Bust & Bound 

Shade 

Dice 

Bound 
Primitives 

Unshaded Grids 

Shaded Grids 

Micropolygons 

Visible Points 

Primitives 

Multiple Primitives 
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Trends 

  More cores integrated onto common substrate 
With DRAM? 

  Will the cores be homogeneous or 
heterogeneous? 

Some CPU style latency-oriented cores? 
Some GPU style throughput-oriented cores? 
Only CPU style? 

  Fewer, more area devoted to on-chip memory 
Only GPU style? 

  More cores, more compute, more pressure on 
memory bandwidth 

  How are we going to program any of this stuff? 
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Summary 

  High performance GPUs have some of the characteristics 
of the macrochip design and need some of the same parts 
capabilities. 
  But these are commodity products.  Can the optical 
interconnect and high-bandwidth DRAMs be commodity 
components? 
  Are there other graphics applications, such as perhaps 
render farms for animation companies, that would be better 
suited?  Could this help solve the big production problem 
of managing data more effectively? 
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Summary 

  Wide SIMD is here to stay. 
  But we had to make some basic quality tradeoffs to make things like 

this 
  So it’s not enough, irregular computations growing in importance 
  DRAM bandwidth! 
  Parallel programming! 
  Can we rely less on streaming techniques, regular access patterns, etc.? 
  Lower the arithmetic intensity (flops/byte) 

Acknowledgment 
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