
University of Texas at Austin Don Fussell

What is a GPU?
(and why you should care)

Donald S. Fussell
Department of Computer Science
The University of Texas at Austin

University of Texas at Austin Don Fussell

What is Rendering?

  Determining the color to be assigned to each pixel in the
image by simulating the transport of light in a synthetic
scene.

University of Texas at Austin Don Fussell

The Key Efficiency Trick

  Transform into perspective space, densely sample, and
produce a large number of independent SIMD
computations for shading

University of Texas at Austin Don Fussell

global buffers
textures

global buffers
textures

global buffers
textures

vertex
connectivity

vertex
descriptors

frame and
depth buffers

Vertex
Generation

Vertex
Processing

Primitive
Generation

Primitive
Processing

Rasterization

Fragment
Processing

Pixel
Operations

  Green - fixed function
  Orange - programmable

Evolution:
  Once all fixed function
  Then separate programmable stages
  Now homogeneous parallel system for

programmable parts, software pipeline

  For coarse polygonal models about

80% of the workload is in the shading
(fragment processing)

S
pa

rs
e

D
en

se

The Rendering Pipeline

University of Texas at Austin Don Fussell

  Homogeneous programmable
cores for all of the
programmable stages

  Relatively few special purpose
texture units

  Even fewer other types of fixed
function units.

  Fixed function for non-SIMD

operations
  Task parallel at the pipeline

level

Primitive
Assembly

Rasterizer

ROP
(Output Blend)

Work
Scheduler

Programmable
Core

Programmable
Core

Programmable
Core

Programmable
Core

Programmable
Core

Texture Unit

Texture Unit

Texture Unit

Modern GPU Characteristics

University of Texas at Austin Don Fussell

Shading a Fragment

  Simple Lambertian shading of texture-mapped fragment.
  Sequential code
  Performed in parallel on a large number of independent
fragments
  How many is “large number”? At least 10s of thousands
per frame

sampler mySamp;
Texture2D<float3> myTex;
float3 lightDir;
float4 diffuseShader(float3 norm, float2 uv) {

float3 kd;
kd = myTex.Sample(mySamp, uv);
kd *= clamp(dot(lightDir, norm), 0.0, 1.0);
return float4(kd, 1.0);

}

sample r0, v4, t0, s0
mul r3, v0, cb0[0]
madd r3, v1, cb0[1], r3
madd r3, v2, cb0[2], r3
clmp r3, r3, l(0.0), l(1.0)
mul o0, r0, r3
mul o1, r1, r3
mul o2, r2, r3
mov o3, l(1.0)

compile

University of Texas at Austin Don Fussell

Work per Fragment

  Do a a couple hundred thousand of these @ 60 Hz or so
  How?
  Since we have independent threads to execute, use
multiple cores
  What kind of cores?

sample r0, v4, t0, s0
mul r3, v0, cb0[0]
madd r3, v1, cb0[1], r3
madd r3, v2, cb0[2], r3
clmp r3, r3, l(0.0), l(1.0)
mul o0, r0, r3
mul o1, r1, r3
mul o2, r2, r3
mov o3, l(1.0)

unshaded
fragment

shaded
fragment

University of Texas at Austin Don Fussell

The CPU Way

  Big, complex, but fast on a single thread
  However, if fragment shader time << frame time, we don’t
really care how fast the shader thread executes, we care
how many of them we can do by the deadline.

Caches

Prefetch Unit

Fetch/Decode

ALU

Branch
Predictor

Instruction
Scheduler

Execution
Context

unshaded
fragment

shaded
fragment

University of Texas at Austin Don Fussell

Simplify and Parallelize

  Don’t use a few CPU style cores, use simpler ones and
more of them.

Fetch/Decode

ALU

Execution
Context

Fetch/Decode

ALU

Execution
Context

Fetch/Decode

ALU

Execution
Context

Fetch/Decode

ALU

Execution
Context

Fetch/Decode

ALU

Execution
Context

Fetch/Decode

ALU

Execution
Context

Fetch/Decode

ALU

Execution
Context

Fetch/Decode

ALU

Execution
Context

Fetch/Decode

ALU

Execution
Context

Fetch/Decode

ALU

Execution
Context

Fetch/Decode

ALU

Execution
Context

Fetch/Decode

ALU

Execution
Context

Fetch/Decode

ALU

Execution
Context

Fetch/Decode

ALU

Execution
Context

Fetch/Decode

ALU

Execution
Context

Fetch/Decode

ALU

Execution
Context

University of Texas at Austin Don Fussell

Shared Instructions

  Since we’re basically doing the same thing to each fragment (or in
other parts of the pipeline to vertices, primitives, etc.) in parallel, they
should be able to share a single instruction stream.

  Thus SIMD - Amortize instruction handling over multiple ALUs

Fetch/Decode

Context

ALU

Context

ALU

Context

ALU

Context

ALU

Context

ALU

Context

ALU

Context

ALU

Context

ALU

Context

ALU

Context

ALU

Context

ALU

Context

ALU

Context

ALU

Context

ALU

Context

ALU

Context

ALU

Shared Memory

Instruction Cache

University of Texas at Austin Don Fussell

But What about the Other Processing?

  A graphics pipeline does more than shading.
We have other places where we do different
things in parallel, like transforming vertices for
example. So we will need to be executing
more than 1 program in the system.

  If we replicate these SIMD processors, we now
have the ability to do different SIMD
computations in parallel in different parts of
the machine.

  In this example, we can have 128 threads in
parallel, but only 8 different programs
simultaneously running

University of Texas at Austin Don Fussell

What about Branches?

<unconditional shader code>
if (x > 0) {

 y = pow(x, exp);
 y *= Ks;

 refl = y + Ka;
} else {
 x = 0;
 refl = Ka;
}
<unconditional shader code>

T F F T F FT F

ALU 1 ALU 2 ALU 3 ALU 4 ALU 5 ALU 6 ALU 7 ALU 8

Ti
m

e

University of Texas at Austin Don Fussell

Efficiency - Dealing with Stalls

  A thread is stalled when its next instruction to be executed
must await a result from a previous instruction.

Pipeline dependencies
Memory latency

  The complex CPU hardware omitted from these machines
was effective at dealing with stalls.
  What will we do instead?
  Since we expect to have lots more threads than processors,
we can interleave their execution to keep the hardware
busy when a thread stalls.
  Multithreading!

University of Texas at Austin Don Fussell

Multithreading

Stall

w
ai

tin
g

Ready

Stall
w

ai
tin

g

Ready

Stall

w
ai

tin
g

Stall

Threads 1-8

Threads 24-36

Threads 17-24

Threads 9-16

University of Texas at Austin Don Fussell

Multithreading

Stall

w
ai

tin
g

Ready

Stall
w

ai
tin

g

Ready

Stall

w
ai

tin
g

Stall

Threads 1-8

Threads 24-36

Threads 17-24

Threads 9-16

extra
latency

extra
latency

University of Texas at Austin Don Fussell

Costs of Multithreading

  Adds latency to individual threads in order to minimize time to
complete all threads.

  Requires extra context storage. More contexts can mask more latency.

Fetch/Decode

Instruction Cache

Shared Memory

ALU

ALU ALU

ALU

ALU

ALU

ALU

ALU

Fetch/Decode

Instruction Cache

Storage Pool

ALU

ALU ALU

ALU

ALU

ALU

ALU

ALU

1

3 4

2

University of Texas at Austin Don Fussell

Example System

32 cores x 16 ALUs/core = 512 (madd) ALUs @ 1 GHz = 1 Teraflop

University of Texas at Austin Don Fussell

Real Example - NVIDIA GeForce GTX 285

  30 Cores
  8 SIMD Functional Units per Core
  Each FU has 1 multiplier and 1 madder
  Peak 720 floating point ops per clock
  2 level multithreading

Fine-grained: 4 threads interleaved into pipelined FUs
Thus up to 32 threads concurrently executing (called a “WARP”)
Coarse-grained: Up to 32 WARPS interleaved per core to mask
latency to memory

University of Texas at Austin Don Fussell

Real Example - AMD Radeon HD 4890

  10 Cores
  16 SIMD Functional Units per
Core
  5 madders per FU
  Peak 1600 floating point ops per
clock
  2 level multithreading

Fine-grained: 4 threads interleaved
into pipelined FUs
Up to 64 concurrent threads (not
called a “WARP”)
Coarse-grained: groups of 64 threads
interleaved to mask memory latency

University of Texas at Austin Don Fussell

“Real” Example - Intel Larrabee

  Some number of cores
  Explicit 16-wide vector
ISA (16-wide madder
unit)
  Peak 32n floating point
operations per clock for
n cores
  Each core interleaves 4
x86 instruction streams
  Additional interleaving
under software control

University of Texas at Austin Don Fussell

Memory architecture

 CPU style
Multiple levels of cache on chip
Takes advantage of temporal and spatial locality to
reduce demand on remote slow DRAM
Provides local high bandwidth to cores on chip
25GB/sec to main memory

University of Texas at Austin Don Fussell

GPU-style memory architecture

 Local execution contexts (64kB) and a similar
amount of local memory
 Read-only texture cache
 Traditionally no cache hierarchy (but see NVIDIA
Fermi and Larrabee)
 Much higher bandwidth to main memory - 150
GB/sec

University of Texas at Austin Don Fussell

Bandwidth is critical for throughput

 So GPU memory system is designed for
throughput

Wide Bus (150 GB/sec)
Likewise high bandwidth DRAM organization
(GDDR3-5)
Careful scheduling of memory requests to make
efficient use of available bandwidth

University of Texas at Austin Don Fussell

Graphics applications and GPUs

  If an NVIDIA GTX 285 has a 1.5 GHz clock (for the
arithmetic units) and 720 floating point ops per clock, we
have 1080 Gflops peak compute
  If we have 150 GB/sec memory bandwidth, then at peak
efficiency our application has to be doing at least 6 flops
per byte transferred
  For AMD Radeon HD 4890 at 1 GHz, the arithmetic
intensity needs to be about 10 rather than 6
  Many graphics workloads do this much math, but not all of
them

University of Texas at Austin Don Fussell

Rendering applications

  Transforms
4 element matrix vector multiply - matrix locally resident for many
vertices
Fetch 3 32-bit coordinates per vertex - 12 bytes
Perform 4 multiplications and 4 additions per coordinate
That’s 12 madds and 12 bytes fetched, a ratio of 1 madd per byte
Or, for wide SIMD, it’s 4 madds and 12 bytes for a .33 ratio
Fortunately, this is a small part of the workload
Also fortunately, this has a regular memory access pattern, so can
be prefetched, etc.

  DRAM bandwidth is the limiting factor for most
application designers!!

University of Texas at Austin Don Fussell

Trends

  Higher rendering quality
Micropolygons a la Pixar
Ray tracing and irregular computations
Both put more pressure on system, irregular computation, lower
arithmetic intensity (1 sample per fragment)

  Games - PC and Console
Games aren’t just renderers - they have various types of physics
simulations, character animation, AI, networking, sound, etc. All
has to work against real-time deadlines.
So, games overall are a throughput application, but multiple tasks,
each multithreded
Shouldn’t most of this leverage the high performance part of the
system - the GPU?
So, more heterogeneous apps sharing GPU resources.

University of Texas at Austin Don Fussell

Trends

  Flexibility
Larrabee has less hardware control than NVIDIA/AMD

  Scheduling flexibility makes programming more difficult, but
ameliorates issues with builtin schedulers

  Local cache hierarchy
Larrabee has a traditional cache hierarchy
Fermi has more local memory that can be configured as either
cache or local memory or both

  Software vs. hardware control?
Software scheduling?
Software rasterizing?

  Continuing pressure on memory bandwidth
Radeon HD 5870 has twice the peak computation rate of the HD
4890 (2.7 Tflops) and still 150 GB/sec memory bandwidth

University of Texas at Austin Don Fussell

Ray tracing

  Most flexible technique for global
illumination
  Primary (and shadow) rays regular
(common origin)
  Other secondary rays are a real
challenge

University of Texas at Austin Don Fussell

Ray tracing

  Lots of light bounces (specular here, actually easier than diffuse)
  Shadows can be done well

University of Texas at Austin Don Fussell

Shadows and irregular sampling

  Ray tracing does this naturally
  Rasterization can be modified to do it, but need data
structures that aren’t just uniform grids

University of Texas at Austin Don Fussell

Data structures

  Hierarchical data structures (e.g. k-d tree)
  Must be built and traversed
  For ray tracing, scaling rasterization, irregular z-buffer

 0

 1

 2

 4

 7 8

 5 6

 3

University of Texas at Austin Don Fussell

Ray Tracing

  Ray Tracing 1
Basic algorithm
Overview of pbrt
Ray-surface intersection (triangles, …)

  Ray Tracing 2
Brute force:
Acceleration data structures | | | |I O×

University of Texas at Austin Don Fussell

Ray Tracing Acceleration Techniques

1 N

Faster
Intersection

Fewer
Rays

Generalized
Rays

Approaches

Tighter bounds
Faster intersector

Uniform grids
Spatial hierarchies
 k-d, oct-tree, bsp
 hierarchical grids
Hierarchical
 bounding
 volumes (HBV)

Early ray
 termination
Adaptive
 sampling

Beam tracing
Cone tracing
Pencil tracing

University of Texas at Austin Don Fussell

Primitives

  pbrt primitive base class
Shape
Material and emission (area light)

  Primitives
Basic geometric primitive
Primitive instance

  Transformation and pointer to basic primitive
Aggregate (collection)

  Treat collections just like basic primitives
  Incorporate acceleration structures into collections
  May nest accelerators of different types
  Types: grid.cpp and kdtree.cpp

University of Texas at Austin Don Fussell

Uniform Grids

  Preprocess scene
Find bounding box

University of Texas at Austin Don Fussell

Uniform Grids

  Preprocess scene
Find bounding box

Determine resolution

v x y z on n n n n= ∝

3max(, ,)x y z on n n d n=

University of Texas at Austin Don Fussell

Uniform Grids

  Preprocess scene
Find bounding box
Determine resolution

Place object in cell, if object
overlaps cell

3max(, ,)x y z on n n d n=

University of Texas at Austin Don Fussell

Uniform Grids

  Preprocess scene
Find bounding box
Determine resolution

Place object in cell, if object
overlaps cell
Check that object intersects
cell

3max(, ,)x y z on n n d n=

University of Texas at Austin Don Fussell

Uniform Grids

  Preprocess scene
  Traverse grid

3D line – 3D-DDA
6-connected line

  Section 4.3

University of Texas at Austin Don Fussell

Caveat: Overlap

  Optimize for objects that overlap multiple cells

  Traverse until tmin(cell) > tmax(ray)
  Problem: Redundant intersection tests:
  Solution: Mailboxes

Assign each ray an increasing number
Primitive intersection cache (mailbox)

  Store last ray number tested in mailbox
  Only intersect if ray number is greater

University of Texas at Austin Don Fussell

Spatial Hierarchies

A

A

Letters correspond to planes (A)

Point Location by recursive search

University of Texas at Austin Don Fussell

Spatial Hierarchies

 B

A

B

A

Letters correspond to planes (A, B)
Point Location by recursive search

University of Texas at Austin Don Fussell

Spatial Hierarchies

 C B

D

C

D

A

B

A

Letters correspond to planes (A, B, C, D)
Point Location by recursive search

University of Texas at Austin Don Fussell

Variations

oct-tree kd-tree bsp-tree

University of Texas at Austin Don Fussell

Ray Traversal Algorithms

  Recursive inorder traversal
  [Kaplan, Arvo, Jansen]

mint

maxt *t

max *t t<

*t

min max*t t t< <

*t

min*t t<

Intersect(L,tmin,tmax) Intersect(R,tmin,tmax)Intersect(L,tmin,t*)
Intersect(R,t*,tmax)

University of Texas at Austin Don Fussell

Build Hierarchy Top-Down

Choose splitting plane
•  Midpoint
•  Median cut
•  Surface area heuristic

?

University of Texas at Austin Don Fussell

Surface Area and Rays

  Number of rays in a given direction that hit an
  object is proportional to its projected area

  The total number of rays hitting an object is
  Crofton’s Theorem:

For a convex body

  For example: sphere

4
SA =

4 Aπ

24S rπ=

A

2A A rπ= =

University of Texas at Austin Don Fussell

Surface Area and Rays

  The probability of a ray hitting a convex shape
  that is completely inside a convex cell equals

Pr[] o
o c

c

Sr S r S
S

∩ ∩ =

oScS

University of Texas at Austin Don Fussell

Surface Area Heuristic

t a a i b b iC t p N t p N t= + +

80i tt t=
a b

it

tt

Intersection time

Traversal time

University of Texas at Austin Don Fussell

Surface Area Heuristic

a
a
Sp
S

= b
b
Sp
S

=

2n splits

a b

University of Texas at Austin Don Fussell

Comparison

V. Havran, Best Efficiency Scheme Project
http://sgi.felk.cvut.cz/BES/

Spheres Rings Tree

Uniform Grid d=1 244 129 1517
d=20 3 8 83 781

Hierarchical Grid 3 4 116 34

Time

University of Texas at Austin Don Fussell

Comparison

University of Texas at Austin Don Fussell

Univ. Saarland RTRT Engine

  Ray-casts per second = FPS @ 1K × 1K

  Pentium-IV 2.5GHz laptop

•  Kd-tree with surface-area heuristic [Havran]

•  Wald et al. 2003 [http://www.mpi-sb.mpg.de/~wald/]

 RT&Shading
Scene

SSE
no shd.

SSE
simple shd.

No SSE
simple shd.

ERW6 (static) 7.1 2.3 1.37
ERW6 (dynamic) 4.8 1.97 1.06
Conf (static) 4.55 1.93 1.2

Conf (dynamic) 2.94 1.6 0.82
Soda Hall 4.12 1.8 1.055

University of Texas at Austin Don Fussell

Interactive Ray Tracing

  Highly optimized software ray tracers
Use vector instructions; Cache optimized
Clusters and shared memory MPs

  Ray tracing hardware
AR250/350 ray tracing processor

 www.art-render.com
SaarCOR

  Ray tracing on programmable GPUs

University of Texas at Austin Don Fussell

Theoretical Nugget 1

  Computational geometry of ray shooting

  1. Triangles (Pellegrini)
Time:
Space:

  2. Sphere (Guibas and Pellegrini)
Time:
Space:

(log)O n

2(log)O n

5()O n ε+

5()O n ε+

University of Texas at Austin Don Fussell

Theoretical Nugget 2

  Optical computer = Turing machine
  Reif, Tygar, Yoshida

  Determining if a ray
  starting at y0 arrives
  at yn is undecidable

y = y+1

y = -2*y

if(y>0)

University of Texas at Austin Don Fussell

Ray tracing and rasterization

  For nice regular primary and shadow rays
Ray tracing: for each ray {

 for each object {

 is there an intersection?
 }
 }

Graphics pipeline: for each object {
 for each ray {

 is there an intersection?
 }
 }

  Just a loop transform
  Trick - Make it regular - do it in perspective space
  Regular doesn’t have to mean regular samples, just easy search!
  Now can be done in real time for primary and shadows
  Faster on CPUs than GPUs

University of Texas at Austin Don Fussell

Micropolygons

University of Texas at Austin Don Fussell

Micropolygons

  Lots of tiny fragments to
shade
  Lots of pressure on
rasterization!
  Current best algorithms for
SIMD software rasterizers
get 50%-50% utilization
  More pressure for hardware
rasterizers?

Split

Blend & Filter

Sample

Bust & Bound

Shade

Dice

Bound
Primitives

Unshaded Grids

Shaded Grids

Micropolygons

Visible Points

Primitives

Multiple Primitives

University of Texas at Austin Don Fussell

Trends

  More cores integrated onto common substrate
With DRAM?

  Will the cores be homogeneous or
heterogeneous?

Some CPU style latency-oriented cores?
Some GPU style throughput-oriented cores?
Only CPU style?

  Fewer, more area devoted to on-chip memory
Only GPU style?

  More cores, more compute, more pressure on
memory bandwidth

  How are we going to program any of this stuff?

University of Texas at Austin Don Fussell

Summary

  High performance GPUs have some of the characteristics
of the macrochip design and need some of the same parts
capabilities.
  But these are commodity products. Can the optical
interconnect and high-bandwidth DRAMs be commodity
components?
  Are there other graphics applications, such as perhaps
render farms for animation companies, that would be better
suited? Could this help solve the big production problem
of managing data more effectively?

University of Texas at Austin Don Fussell

Summary

  Wide SIMD is here to stay.
  But we had to make some basic quality tradeoffs to make things like

this
  So it’s not enough, irregular computations growing in importance
  DRAM bandwidth!
  Parallel programming!
  Can we rely less on streaming techniques, regular access patterns, etc.?
  Lower the arithmetic intensity (flops/byte)

Acknowledgment
Portions of this talk adapted from Kayvon Fatahalian’s excellent Siggraph GPU tutorial

Thanks Kayvon!

