Linear and Affine Transformations
Coordinate Systems



Recall

A transformation T Is linear |If
e T(v+w)=T(v)+ T (w)
e T(av) = aT(v)



Recall

A transformation T Is linear |If
e T(v+w)=T(v)+ T (w)
e T(av) = aT(v)

Every linear transformation can be
represented as matrix



Linear Transformation Examples

Uniform Scaling
Non-uniform Scaling
Rotations

Reflections
Orthogonal Projections

Translations?



Problem with Translation

Translation by (t..t,,t.) not linear!
T(aw) = (avy + tz, av, + 1, v, +t,)
al'(v) = (qvy + aty, avy + at,y, av, + at )

Would like a unified framework for
handling all transformations...



Homogeneous Goordinates

Main idea: add a dummy 4t dimension
* points:  (z,y,2) — (z,y,2,1)
e vectors: (z,y,z) — (z,y,2,0)



In Homogeneous Goordinates
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In Homogeneous Goordinates
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In Homogeneous Goordinates
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Homogeneous Goordinates

Main idea: add a dummy 4t dimension
* points:  (z,y,2) — (z,y,2,1)
« vectors: (x,y,z) — (z,y,2,0)

Now translation is matrix multiplication!

4 x 4 matrix transformations called affine



Linear Transformation Zoo

Translation:
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Linear Transformation Zoo

Translation:
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Linear Transformation Zoo

Rotation:
) 11 T12
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Linear Transformation Zoo

Rotation:
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Linear Transformation Zoo

Rotation:
) 11
R — T21
- T31

what about in
homogeneous coordinates?



Linear Transformation Zoo

Rotation:
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Linear Transformation Zoo

Rotation:
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Linear Transformation Zoo

Uniform scaling:




Linear Transformation Zoo

Uniform scaling:
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Linear Transformation Zoo

Scaling:
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What About Non-Axis-Aligned?




What About Non-Axis-Aligned?

compose transformations!




What About Non-Axis-Aligned?

compose transformations!

RTSR




Linear Transformation Zoo

Reflection:




Linear Transformation Zoo

Reflection:

«— axis to reflect
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Linear Transformation Zoo

Reflection:
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Linear Transformation Zoo

Shear: §
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Linear Transformation Zoo

Shear: §
=




Linear Transformation Zoo

Shear: §
=

shear y-axis
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Linear Transformation Zoo
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Gombining Transformations
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matrix multiplication does not commute



Example: Rotate About Point
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Example: Rotate About Point
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Transforming Normals

The problem:

Al - L



Transforming Normals

The problem:

A - L



Transforming Normals

The problem:

R
Points and vectors: T
Normals: 7-7 = (T-%)"



What is a Goordinate System?

1. anorigin
2. a frame of vectors spanning space
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What is a Goordinate System?

1. anorigin

2. a frame of vectors spanning space
* usually orthonormal

* usually right-handed \hﬂ)



What is a Goordinate System?

1. anorigin

2. a frame of vectors spanning space
* usually orthonormal

* usually right-handed \hﬂ)
How represented?



What is a Goordinate System?

1. anorigin

2. a frame of vectors spanning space
* usually orthonormal

* usually right-handed \hﬂ)
How represented?

* |n other coordinates...
(turtles all the way down?)



Cartesian “World” Coordinates

Canonical “root” coordinate system

N
=

Usually y points “up,” x
and z “horizontal”

N>

But this Is arbitrary



Transforming Goordinate Systems

Can define coordinate system in terms of
world coordinates

Nagt
=>




Transforming Goordinate Systems

Can define coordinate system in terms of

world coordinates X
U T

Given oq, I, U2, 22 In World coords

(@, b, €)world = 02 + aZs + byjs + cZ5




Transforming Goordinate Systems

Can define coordinate system in terms of
world coordinates

Nagt
=>

Given oq, I, U2, 22 In World coords

(@, b, €)world = 02 + aZs + byjs + cZ5
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Change of Coordinates Matrix

(CL, ba C)WOI‘ld —
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Maps from local to world coordinates




Change of Coordinates Matrix

(aa ba C)WOI‘ld —

— 0 O Q

Maps from local to world coordinates

How to map back?




More Coordinates Systems




More Coordinates Systems
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Goordinate Systems in Graphics

K world

"4
up center

camera



Goordinate Systems in Graphics

K world
\
view matrix V' (also called “look at”)

up center

camera



Building the View Matrix

Three axes: tangent, up, look

up center
. look

<>

eye



Building the View Matrix

Three axes: tangent, up, look

Note: camera looks down negative look
direction for extra confusion

up center
look
@1%“ 00
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Building the View Matrix

Three axes: tangent, up, look

Note: camera looks down negative look
direction for extra confusion
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Building the View Matrix

Three axes: tangent, up, look

Note: camera looks down negative look
direction for extra confusion
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Building the View Matrix
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Goordinate Systems in Graphics

world

& e

view matrix V'

up center
Q;k, look
€Y€  tangent

camera



Why Use Object Coordinates?



Why Use Object Coordinates?

Easier to work with / animate

E dr\twOr\




Why Use Object Coordinates?

Easier to work with / animate

Instancing




Goordinate Systems in Graphics

model world

\/
view matrix \V
object
up center
PRNE look
€Y€  tangent

camera



Transformations

Every transformation creates child
coordinate system




Two Interpretations of 7'

Backwards: transforms applied right to
left In original coordinate system




Two Interpretations of 7'

Forwards: transforms applied left to
right in new coordinate systems




Two Interpretations of 7'

Same answer either way, but both
Interpretations useful




Scene Graph

Represents hierarchy of transformations

FoOT

Assignment 3: bones in

character body Car Light

Wheels ) Body

Transtormations

Wheelgeometry



