Linear and Affine Transformations
Coordinate Systems

Recall

A transformation T Is linear |If
e T(v+w)=T(v)+ T (w)
e T(av) = aT(v)

Recall

A transformation T Is linear |If
e T(v+w)=T(v)+ T (w)
e T(av) = aT(v)

Every linear transformation can be
represented as matrix

Linear Transformation Examples

Uniform Scaling
Non-uniform Scaling
Rotations

Reflections
Orthogonal Projections

Translations?

Problem with Translation

Translation by (t..t,,t.) not linear!
T(aw) = (avy + tz, av, + 1, v, +t,)
al'(v) = (qvy + aty, avy + at,y, av, + at)

Would like a unified framework for
handling all transformations...

Homogeneous Goordinates

Main idea: add a dummy 4t dimension
* points: (z,y,2) — (z,y,2,1)
e vectors: (z,y,z) — (z,y,2,0)

In Homogeneous Goordinates

I 0 0 ¢, Do

0O 1 0 O Py |

0O 0 1 O p, |
0 0 0 1 | 1T

In Homogeneous Goordinates

o OO ==

O O = O

O = O O

t

8

—_— O O

Pz
Py

Dz
1

 pr it
Py
Pz

1

In Homogeneous Goordinates

o OO ==

o OO =

O O = O

S O = O

O = O O

O = O O

ST —_ O O g

_ O O

Pz
Py

 pr it
Py
Pz

1

In Homogeneous Goordinates

o OO ==

o OO =

O O = O

S O = O

O = O O

O = O O

ST —_ O O g

_ O O

Pz
Py

Po+ 1ty

D=

Homogeneous Goordinates

Main idea: add a dummy 4t dimension
* points: (z,y,2) — (z,y,2,1)
« vectors: (x,y,z) — (z,y,2,0)

Now translation is matrix multiplication!

4 x 4 matrix transformations called affine

Linear Transformation Zoo

Translation:

1 0 0 t,
o1 0 ¢
=10 01 ¢
00 0 1

Linear Transformation Zoo

Translation:
—_

1 0 0 t, | 1 0 0 —t, |
0o 1 0 t L. |01 0 —t,
T_()OltzT_OOl—tz

00 0 1 00 0 1

Linear Transformation Zoo

Rotation:
) 11 T12
R= | ro1 7o
731 T32

Linear Transformation Zoo

Rotation:
) 11 T12
R= | ro1 7o
731 T32

Linear Transformation Zoo

Rotation:
) 11
R — T21
- T31

what about in
homogeneous coordinates?

Linear Transformation Zoo

Rotation:

|

ﬂ
DO
—
ﬁ
DO
DO
ﬁ
DO
o

—_— O O O

Linear Transformation Zoo

Rotation:
) 11
R — 21
31
0

0
0
0
1

R—l _ RT

Linear Transformation Zoo

Uniform scaling:

Linear Transformation Zoo

Uniform scaling:

o »w O O
O O O

0 0
0 0
L0
0 1

OO Ol
O QOunlm O

OO O W
SO »w O

Linear Transformation Zoo

Scaling:
(s, 0 0 0 T
10 s, 0 0., |O
=l o0 s, 0| =
0 0 0 T | 0

0
0
0
1

What About Non-Axis-Aligned?

What About Non-Axis-Aligned?

compose transformations!

What About Non-Axis-Aligned?

compose transformations!

RTSR

Linear Transformation Zoo

Reflection:

Linear Transformation Zoo

Reflection:

«— axis to reflect

O = O O
— O O O

o O = O

Linear Transformation Zoo

Reflection:
—_
- —1 0 0 0| - —1 0 0 0|
| 0 1 0 0 4 |0 1 0 0
Rf_0010Rf_0010
0 0 0 1 0 0 0 1

Linear Transformation Zoo

Shear: §
=

Linear Transformation Zoo

Shear: §
=

Linear Transformation Zoo

Shear: §
=

shear y-axis

|

>

— |n X-axis direction

Sh =

o = O O
= o O O

o O O =

o O =

Linear Transformation Zoo

0
0

0
1

-
©
)
=
)

Gombining Transformations

kS

R.(776)

/“/

S(s)

N

4

2.

matrix multiplication does not commute

Example: Rotate About Point

‘

Example: Rotate About Point

I T RT T-iRT

Transforming Normals

The problem:

Al - L

Transforming Normals

The problem:

A - L

Transforming Normals

The problem:

R
Points and vectors: T
Normals: 7-7 = (T-%)"

What is a Goordinate System?

1. anorigin
2. a frame of vectors spanning space

QI
L 4
L4
L 4
L 4
&

What is a Goordinate System?

1. anorigin

2. a frame of vectors spanning space
* usually orthonormal

* usually right-handed \hﬂ)

What is a Goordinate System?

1. anorigin

2. a frame of vectors spanning space
* usually orthonormal

* usually right-handed \hﬂ)
How represented?

What is a Goordinate System?

1. anorigin

2. a frame of vectors spanning space
* usually orthonormal

* usually right-handed \hﬂ)
How represented?

* |n other coordinates...
(turtles all the way down?)

Cartesian “World” Coordinates

Canonical “root” coordinate system

N
=

Usually y points “up,” x
and z “horizontal”

N>

But this Is arbitrary

Transforming Goordinate Systems

Can define coordinate system in terms of
world coordinates

Nagt
=>

Transforming Goordinate Systems

Can define coordinate system in terms of

world coordinates X
U T

Given oq, I, U2, 22 In World coords

(@, b, €)world = 02 + aZs + byjs + cZ5

Transforming Goordinate Systems

Can define coordinate system in terms of
world coordinates

Nagt
=>

Given oq, I, U2, 22 In World coords

(@, b, €)world = 02 + aZs + byjs + cZ5

(afa b7 C)World —

a
To Y2 22| 02 b
%
1

0O 0 0]1

Change of Coordinates Matrix

(CL, ba C)WOI‘ld —

— 0 O Q

Maps from local to world coordinates

Change of Coordinates Matrix

(aa ba C)WOI‘ld —

— 0 O Q

Maps from local to world coordinates

How to map back?

More Coordinates Systems

More Coordinates Systems

¢“
.

Goordinate Systems in Graphics

K world

"4
up center

camera

Goordinate Systems in Graphics

K world
\
view matrix V' (also called “look at”)

up center

camera

Building the View Matrix

Three axes: tangent, up, look

up center
. look

<>

eye

Building the View Matrix

Three axes: tangent, up, look

Note: camera looks down negative look
direction for extra confusion

up center
look
@1%“ 00
eye

Building the View Matrix

Three axes: tangent, up, look

Note: camera looks down negative look
direction for extra confusion

" 711 up center
S I
o >
V=1§ ~ =|° oo look
T
00 01 €Yye tangent

Building the View Matrix

Three axes: tangent, up, look

Note: camera looks down negative look
direction for extra confusion

bi
e -@ up center
) 4
o S 3|5
V=1§ = +|° i look
T
00 01 €Yye tangent

Building the View Matrix

A
. tangent | ¢ |
up %)
V= Jook | &
i 0 0 O]. | b\g SOUrCe Of bUQS\.
" -(::) up center
S ¢
v > 5 8 %
— —- look
S oile oo
00 01 €Yye tangent

Goordinate Systems in Graphics

world

& e

view matrix V'

up center
Q;k, look
€Y€ tangent

camera

Why Use Object Coordinates?

Why Use Object Coordinates?

Easier to work with / animate

E dr\twOr\

Why Use Object Coordinates?

Easier to work with / animate

Instancing

Goordinate Systems in Graphics

model world

\/
view matrix \V
object
up center
PRNE look
€Y€ tangent

camera

Transformations

Every transformation creates child
coordinate system

Two Interpretations of 7'

Backwards: transforms applied right to
left In original coordinate system

Two Interpretations of 7'

Forwards: transforms applied left to
right in new coordinate systems

Two Interpretations of 7'

Same answer either way, but both
Interpretations useful

Scene Graph

Represents hierarchy of transformations

FoOT

Assignment 3: bones in

character body Car Light

Wheels) Body

Transtormations

Wheelgeometry

