CS395T Final Project

Proposal Due: November 9, 9:30am
Presentation: December 5/7, 9:30am
Final Report Due: December 15, 11:59pm

Collaboration You are free to work on this project either individually or in teams of two. Both partners
should contribute equally to the submission, and both partners will receive the same grade for it. You
may collaborate with a person from outside the course as well in case you’re also using this final project for
another course. You are also free to discuss your project with others in the course, though only the people on
your team should contribute to the actual implementation/experimentation involved. Any external resources
used must be clearly cited.

Combining with other final projects You are allowed to (and even encouraged to) combine this project
with your research or projects from other courses. However, your project must still involve concepts from
this course! You are allowed to apply these models to data that isn’t language data provided that it has some
interesting structure (e.g., genomics data, time-series data, etc.). Investigating feedforward neural network
architectures on the UCI repository would not be an acceptable course project.

Deliverables

This project is an independently-conducted study that constitutes original research on an NLP problem. The
final project is worth 30 points total (50% of your course grade). The deliverables are as follows.

Proposal (5 points) You should turn in a one page proposal on the proposal due date. This proposal
should outline what problem you want to address, what dataset(s) you plan to use, and a rough plan for how
you will pursue the project (e.g., “we propose to download X system, run it, then implement our system on
top of their framework and compare the results”). While you don’t need a full related work section, you
should mention a few pieces of prior work and state how your project relates to them. The course staff will
then provide feedback and guidance on the direction to maximize the project’s change of succeeding.
Grading: 5 points for turning in a proposal meeting a minimum level of coherence and quality. You are
not evaluated on how good the idea is—this is a stage to get feedback and refine things.

Final Report (20 points) The primary deliverable is a paper written in the style of an ACL/NIPS/etc.
conference submission. It should begin with an abstract and introduction, clearly describe the proposed
idea, present technical details, give results, compare to baselines, provide analysis and discussion of the
results, and cite sources throughout (you’ll probably want to cite at least 5-10 papers depending on how
broad your topic is).

For people working individually, this might be around 4 pages excluding references; for teams of two,
this might be closer to 8 pages excluding references. However, don’t treat these as hard page limits, and let
the project drive things. If you have lots of analysis and discussion or are trying something more ambitious,
your paper might be longer; if you’re implementing something complex but succinctly described, your paper
might be shorter.

Note that your project is not graded solely on the basis of results. You should feel free to try an idea that’s
a bit “out there” or challenging as long as it’s well-motivated. Critically, you should also approach the work



in such a way that success isn’t all-or-nothing. You should be able to show results, describe some successes,
and analyze why things worked or didn’t work beyond “my code errored out.” Think about structuring
your proposal in a few phases (like projects 1 through 3) so that even if everything you set out to do isn’t
successful, you’ve at least gotten something working, run some experiments, and gotten some kind of results
to report.

Grading: We will grade the projects according to the following rubric:

e Clarity/Writing (5 points): Your paper should clearly convey a core idea/hypothesis, describe how
you tested it/what you built, and situate it with respect to related work. See the “Tips for Academic
Writing” on the course website if you have doubts about what is expected.

o Implementation/Soundness (5 points): Is the idea technically sound? Do you describe what seems
like a convincing implementation? Is the experimental design correct?

e Results/Analysis (5 points) Whether the results are positive or negative, try to motivate them by pro-
viding examples and analysis. If things worked, what error classes are reduced? If things didn’t work,
why might that be? What aspects of the data/model might not be right? If you’re writing a paper that
revolves around building a system, you should try to report results for a baseline from the literature,
your own baseline, your best model, and possibly results of ablation experiments.

e Substance (5 points): Is the scope of the report and the work done appropriate for a final project? Is
the project sufficiently sophisticated and meaty, or does it seem incomplete?

Final Presentation (5 points) During the last week of class, everyone will give a 5S-minute presentation on
their project. This presentation should state the problem, describe the methodology used, and give highlights
of the results. Because the projects won’t have been due yet, these results may be preliminary. Teams will
be assigned a presentation date randomly at the time the proposal is due.

Grading: 5 points for giving a presentation.

Choosing a Topic

There are a few directions you can go with this project. You might do a more engineering-style project: pick
a task and a dataset, design or expand on some model, and try to get good results, similar to what you were
doing in the first three projects. You can also do a more analytical project: pick some problem and try to
characterize it in greater depth. What does the data tell us? What does this tell us about language or about
how we should design our NLP systems? Doing a project of this latter form can be tricky because it can
sometimes be hard to find the right method of rigorously characterizing the data—this can be as challenging
as building a strong system!

Your project should be novel work: you shouldn’t set out to redo what others have done. However,
implementing someone else’s model or downloading and running an existing model are worthy first steps.
One good way to attack things is to pick a task and a dataset, download and run a model from the literature,
and assess the errors to see what it does wrong. While it’s best to go in with some intuition of how you
can improve things, letting yourself be guided by the data and not sticking to assumptions that may prove
incorrect is the best way to build something that actually works well.

Be bold in your choice! This project is not graded on how well your system works, as long as you can
convincingly show that your model is doing something. Start with baby steps rather than implementing
the full model from scratch: build baselines and improve them in a direction that will eventually take you



towards your full model. The initial three projects in this class are structured to do this, to give you an
example of this process.

The following is a (non-exhaustive!) list of tasks and corpora, just a few to give you some pointers.
Another approach is to look through the papers in recent ACL/EMNLP and see if there are topics that seem
interesting to you, then try to find datasets for those tasks.

Text annotation tasks Tasks like POS tagging, NER, sentiment analysis, and parsing are well understood
and have been thoroughly studied; it is hard to improve on state-of-the-art models for these on English
datasets. However, other domains (web forums, biomedical text, Twitter), and other languages are less well
understood, but datasets exist for these and there are small “cottage industries” of papers around each of
these topics. Many of the state-of-the-art English systems for these tasks have been discussed in class—
perhaps download these and see how they compare to other models on new data. If you want to explore
parsing more, a good parser to start from might be the parser of Qi and Manning (2017), which is a neural
network version of the parser from class with several different transition systems available.

Entity Linking Entity linking involves resolving a span of text in a document (John Smith) to a Wikipedia

article capturing that entity’s true identity (https://en.wikipedia.org/wiki/John_Smith_(explorer)).
Classical methods use data from Wikipedia and use features such as cosine similarity of tf-idf vectors be-

tween the source context and target Wikipedia article (Ratinov et al., 2011). A newly released dataset (Eshel

et al., 2017) is much cleaner and larger and more admissible to training neural network models. The paper

gives some strong baselines, but you might be able to improve on them!

Summarization Several recent papers have addressed summarization with neural networks. Some work
has addressed what could more properly be called sentence compression (Chopra et al., 2016), while other
work has tackled full summarization using either a dataset of CNN/Daily Mail highlights (Cheng and Lapata,
2016) or a dataset based on New York Times articles (Paulus et al., 2017). Methods for summarization are
somewhat similar to those used for machine translation (encoder-decoder models producing summaries
from documents), but the inputs and outputs are much longer and more complex than those for machine
translation.

Dialogue A recent dataset and dialogue framework released by Facebook called parl.ai focuses on
several dialogue subtasks for building a goal-oriented multi-turn dialogue system (Bordes et al., 2017).
Interpreting sentences and forming API calls looks like parsing, but dialogue state must also be tracked
across utterances—there are several challenges here.

QA / Machine Reading A plethora of question-answering datasets have been released recently including
SQuAD (Rajpurkar et al., 2016), TriviaQA (Joshi et al., 2017), RACE (Lai et al., 2017), WikiHop (Welbl
et al., 2017). Each of these datasets has different properties. SQuAD in particular has seen a lot of work
recently (see the online leaderboard), but is a relatively straightforward problem. The other datasets are
more complex in ways that defy traditional NLP techniques. Building models to work well broadly on these
datasets may be too ambitious for a course project, but handling a subset of examples may be possible.

Machine Translation A good resource to explore for machine translation is the Europarl corpus, which
contains parallel data for many pairs of European languages. While this dataset is a bit artificial, it’s publicly
available and easy to deal with. Full-scale machine translation models are computationally intensive to train



and evaluate, so you might investigate low-resource machine translation settings to make your life a bit
easier.

Computational Linguistics While we haven’t focused on it much in this class, if you want to use any of
the models in this course to study phenomena in language, you are more than welcome to!

Computational Resources Available

This course has an allocation on TACC. Each student gets roughly 40 hours of compute time (1000 SUs)
on large compute nodes. Try to reserve this for when your model is working and you need to run full-scale
experiments.

Submission

You should submit your final report in a single PDF on Canvas. No other datasets, code, results, etc. need to
be uploaded.

Slip Days Slip days may not be used for any component of this project.

References

Antoine Bordes, Y-Lan Boureau, and Jason Weston. 2017. Learning End-to-End Goal-Oriented Dialog. In arXiv.

Jianpeng Cheng and Mirella Lapata. 2016. Neural Summarization by Extracting Sentences and Words. In Proceed-
ings of the 54th Annual Meeting of the Association for Computational Linguistics (ACL).

Sumit Chopra, Michael Auli, and Alexander M. Rush. 2016. Abstractive Sentence Summarization with Attentive
Recurrent Neural Networks. In Proceedings of the Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (NAACL).

Yotam Eshel, Noam Cohen, Kira Radinsky, Shaul Markovitch, Ikuya Yamada, and Omer Levy. 2017. Named En-
tity Disambiguation for Noisy Text. In Proceedings of the 21st Conference on Computational Natural Language
Learning (CoNLL).

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. 2017. TriviaQA: A Large Scale Distantly Supervised
Challenge Dataset for Reading Comprehension. In Proceedings of the Association for Computational Linguistics
(ACL).

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. 2017. RACE: Large-scale ReAding Compre-
hension Dataset From Examinations. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing (EMNLP).

Romain Paulus, Caiming Xiong, and Richard Socher. 2017. A Deep Reinforced Model for Abstractive Summariza-
tion. In arXiv.

Peng Qi and Christopher D. Manning. 2017. Arc-swift: A Novel Transition System for Dependency Parsing. In
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
(ACL).

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. SQuAD: 100,000+ Questions for Machine
Comprehension of Text. In Proceedings of the Conference on Empirical Methods in Natural Language Processing
(EMNLP).

Lev Ratinov, Dan Roth, Doug Downey, and Mike Anderson. 2011. Local and Global Algorithms for Disambiguation
to Wikipedia. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies (ACL).



Johannes Welbl, Pontus Stenetorp, and Sebastian Riedel. 2017. Constructing Datasets for Multi-hop Reading Com-
prehension Across Documents. In arXiv.



