CS395T: Structured Models for NLP
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Administrivia

» Project 1 graded by late week / this weekend



Recall: Eisner’s Algorithm

» Left and right children are built independently, heads are edges of spans

» Complete item: all children are attached, head is at the “tall end”
» Incomplete item: arc from “tall end” to “short end”, may still expect children

ROOT
the dog ran to the house



Recall: MST Algorithm

» Eisner: search over the space of projective trees, O(n3)

» MST: find maximum directed spanning tree — finds nonprojective trees
as well as projective trees O(n?)

» MST restricted to features on single dependencies, Eisner can be
generalized to incorporate higher-order features (grandparents, siblings,
etc.) at a time complexity cost, or with beaming



Recall: Transition-Based Parsing

» Start: stack contains [ROOT], buffer contains [l ate some spaghetti bologhese]

» Arc-standard system: three operations

» Shift: top of buffer -> top of stack

» Left-Arc: U|w_2, w_1|— O'|w_1 W_o IS now a child of w_1
» Right-Arc U|w—27 W—_1|— U|w—2 , W_1is now a child of w_»

» End: stack contains [ROOT], buffer is empty |[]

» Must take 2n steps for n words (n shifts, n LA/RA)



ROOT S top of buffer -> top of stack

N S LA pop two, left arc between them

| ate some spaghetti bolognese
P ° RA pop two, right arc between them

[ROOT ate] [some spaghetti bologhese]
v

.
[ROOT ate some spaghetti] [bolognese]

v
|
[ROOT ai(e spaghetti] [bolognese]
v

| some



This Lecture

» Global Decoding
» Early updating
» Connections to reinforcement learning, dynamic oracles

» State-of-the-art dependency parsers, related tasks



Greedy Training: Static States

State space
» Greedy: each box forms a training example (s,a™)

Start state -

-------------------

--------------

Gold end state

N~ = Bad alternative decisions




Global Decoding

» Greedy parser: trained to make the right decision (S, LA, RA) from
any gold state we might come to

» What we optimizing when we decode each sentence?
» Nothing...we’re executing:

Abest argmaxawa(s, &)

S < Ahest (S)

» Why might this be bad?



Global Decoding
ROOT
AA_\ [ROOT gave him] [dinner]

| gave him dinner v
|

» Correct: Right-arc, Shift, Right-arc, Right-arc

[ROOT gave] [dinner]
¥
| him

[ROOT gave dinner] || [ROOT gave] ]
v X YN

| him | him dinner



Global Decoding: A Cartoon

ROOT
AA_\ [ROOT gave him] [dinner]

| gave him dinner v
|

LA
» Both wrong! Also

[ROOT gave him dinner] [] both probably

/ T RA low scoring!
\tﬁ<

> high
RA [ROOT gave] [dinner] S correct, hig

AN scoring option

| him



Global Decoding: A Cartoon

ROOT
m [ROOT gave him] [dinner]

| gave him dinner v
|

» Lookahead can help us avoid getting stuck in bad spots

» Global model: maximize sum of scores over all decisions

» Similar to how Viterbi works: we maintain uncertainty over the current
state so that if another one looks more optimal going forward, we can
use that one



Global Shift-Reduce Parsing
ROOT
m [ROOT gave him] [dinner]

| gave him dinner v
|

» Greedy: repeatedly execute

abest < argmax,w  f(s,a)

S < Ahest (S)

» Can we do search exactly?

» How many states s are there?

» No! Use beam search

» Global:

2n
argmax , f(s,a) = Z w' f(s;,a;)
i=1

Si4+1 — @i(Sz')



Global Shift-Reduce Parsing

[ROOTgave] """" [dlnner] 333 ‘\ ‘ ':.:.::.:.::.:.::.:.:.:.:.:.:.:.:.:.:.:.::.:.::.:::.:::.:::.:::.:::.:::.:::.:::.:.::.:.:::::::::::.'E

Y\

[ROOT gave him]

» Beam search gave us the
lookahead to make the right RA ;
decision D



Training Global Parsers

» Can compute approximate maxes with beam search

2n
argmax , f(s,a) = Z w' f(s;,a;)
i=1

» Structured SVM: do loss-augmented decode,
gradient = gold feats - guess feats

» Structured perceptron: normal decode,
gradient = gold feats - guess feats

» What happens if we set beam size =17



Global Training

For each epoch
For each sentence
For i=1...2*len(sentence) # 2n transitions in arc-standard
beam[i] = compute successors(beamli-1])

prediction = beam[2*len(sentence),0] # argmax = top of last beam
# Feats are cumulative over the whole sentence

apply gradient update(feats(gold) - feats(prediction))



Global Training

State space

» In global, we keep going if we screw up!

Start state Gold end state
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

9, M) |
o T Pred énd state

» Learn negative weights for features in these states —
greedy training would never see these states




Global vs. Greedy

State space

» In global, we keep going if we screw up!

Start state

» Greedy: 2n local training examples

» Global: one global example




Early Updating



Early Updating

State space

Start state Gold end state
O > ~ :
This O
decision But these might’ve been
was bad good! hard to tell

Collins and Roark (2004)



Early Updating
S\

| gave him dinner

[ROOT gave dinner] 1 A ~ [ROOT gave] ]
¢ ' b
: 5 s Inner
| him | \
................................................................................................................................... hlm
» Wrong state — we already ) I\/Iade the best of a bad 5|tuat|on by
messed up! putting a good arc in (gave->dinner)

» Ideally we don’t want to penalize this decision (update away from it)
— instead just penalize the decision that was obviously wrong

Collins and Roark (2004)



Early Updating

» Solution: make an update as soon as the gold parse falls off the beam

» gold feats - guess feats computed up to this point




Early Updating

[ROOT gave him dinner] [} RA| : [ROQT gave him] [] ;
- ' +0.9 | : oo +1.0
| | dinner 5
[ROOT gfv\eA] dinner] [ROOT gave dinner] []
ki 1.2 LAN { \ -2.0
' ' | him
ot hae fallon off beam [ROOTgavedlnner][] .............. ;
¢ N\ -3.0
» Update: gold feats - pred feats | him E



Training with Early Updating
For each epoch
For each sentence
For i=1...2*len(sentence) # 2n transitions in arc-standard
beam[i] = compute successors(beamli-1])

If beam[i] does not contain gold:
# Feats are cumulative up until this point
apply gradient update(feats(gold[O:i]) - feats(beam[i,0]))
break

# Gold survived to the end but may still not be one-best
apply gradient update(feats(gold) - feats(beam[2*len(sentence),0]))



Connections to Reinforcement
Learning



Motivation

» Part of the benefit is we see states we wouldn’t
have seen during greedy decoding

» (Still true even with early updating due to beam search)




Better Greedy Algorithm

For each epoch:
For each sentence:
Parse the sentence with the current weights
For each state s in the parse:
Determine what the right action a* was » How do we determine this?

Train on this example (update towards f(s, a*), away from f(s, Qpred))



Dynamic Oracles

» When you make some bad decisions, how do you dig yourself out?

» best possible tree(s): computes the optimal decision sequence from
state s to the end resulting the lowest overall loss

» Implemented by a bunch of logic that looks at the tree: “if we put a right-
arc from a->b, we can’t give b any more children, so lose a point for
every unbound child, also lose a point if aisn’t b’s head...”

» Score of decision a in state s leading to s”:
loss(a) = loss(best possible tree(s’)) - loss(best possible tree(s))

» @* = argmin, loss(a) Goldberg and Nivre (2012)



Connections to Reinforcement Learning

» Markov Decision Process: states s, actions a, transitions T, rewards r,
discount factor 7y

» Tis deterministic for us, 7Y =1 (no discount)

» Maximize sum of rewards over the parse
» One reward system: r =1 if action is what dynamic oracle says, 0 otherwise

» Using the “better greedy algorithm” corresponds to on-policy learning
here

» But dynamic oracles are hard to build :(



Searn

» What if we just had a loss function /(y,y*) that scored whole predictions?
l.e., all reward comes at the end

» Searn: framework for turning structured problems into classification
problems

» Take the current policy (= weights), generate states s by running that
policy on a given example

» Evalute action a in state s by taking a, then following your current policy
to completion and computing the loss (= best possible loss is
approximated by current policy)

» DAGGER algorithm from RL literature Daume et al. (2009)



Motivation

O y*

State s, evaluate actions a ..by computing losses here

O Uy1,y")
g(y27y*)
O Z(Y?n / )




Global Models vs. RL

» Structured prediction problems aren’t really “RL” in that the
environment dynamics are understood

» RL techniques are usually not the right thing to do unless you loss
function and state space are really complicated

» Otherwise, best to use dynamic oracles or global models

» These issues arise far beyond parsing! Coreference, machine translation,
dialogue systems, ...



State-of-the-art Parsers



State-of-the-art Parsers

» 2005: MSTParser got solid performance (~91 UAS)
» 2010: Koo’s 3rd-order parser was SOTA for graph-based (~93 UAS)

» 2012: Maltparser was SOTA was for transition-based (~90 UAS),
similar to what you’ll build

» 2014: Chen and Manning got 92 UAS with transition-based neural
model



State-of-the-art Parsers

Softmax layer:

p = softmax(Wsh)
Hidden layer:

= (W¥a¥ + Wizt + Wizt + b1)3

Input layer: [z, 2!, ']

words POS tags arc labels
Stack Buffer

Configuration ROOT has_VBZ good_JJ control_ NN ...

//

<" nsubj

He_PRP

Chen and Manning (2014)



Parsey McParselace

» Current state-of-the-art, released by Google publicly

» 94.61 UAS on the Penn Treebank using a global transition-based
system with early updating

» Additional data harvested via “tri-training”

» Feedforward neural nets looking at words and POS associated with
» Words at the top of the stack
» Those words’ children

» Words in the buffer
» Feature set pioneered by Chen and Manning (2014), Google fine-tuned it

Andor et al. (2016)



Stack LSTMs

» Use LSTMs over stack, buffer, past action sequence. Trained greedily
» Slightly less good than Parsey

S
ﬁ)\
| | amoa |
0} an [\ ciiecision
overhasty

7

-

T

was

T

made

<— REDUCE-LEFT(amod)

<— SHIFT

T T

ROOT f)

Dvyer et al. (2015)



Semantic Role Labeling

» Another kind of tree-structured annotation, like a subset of dependency

» Verb roles from Propbank (Palmer et al., 2005), nominal predicates too

cold [ vlarez

Housing starts | are expected to quicken |a bit from August’s pacel

quicken:

Arg0-PAG: causer of speed-up

Argl-PPT: thing becoming faster (vnrole: 45 .4-patient)
Arg2-EXT: EXT

Arg3-DIR: old speed

Arg4-PRD: new speed Figure from He et al. (2017)



Abstract Meaning Representation

. Banarescu et al. (2014)
» Graph-structured annotation

» Superset of SRL: full sentence analyses, contains coreference and multi-
word expressions as well

» F1 scores in the 60s: hard! ARG1

Instance

» So comprehensive that it’s
hard to predict, but still want.01
doesn’t handle tense or
some other things...

iInstance

Instance go-01

boy
The boy wants to go



Takeaways

» Global training is an alternative to greedy training

» Use beam search for inference combined with early updating for best
results

» Dynamic oracles + following the predicted path in the state space looks
like reinforcement learning



Survey

» Pace of last lecture + this lecture: [too slow] [just right] [too fast]

» Pace of class overall: [too slow] [just right] [too fast]

» Write one thing you like about the class

» Write one thing you don’t like about the class



