
CS395T:	Structured	Models	for	NLP	
Lecture	10:	Loopy	Graphical	Models

Greg	Durrett



Recall:	Global	vs.	Greedy

‣ Greedy:	2n	local	training	examples,	only	see	gold	states

State	space

Gold	end	stateStart	state

‣ Global:	one	global	example,	might	see	new	states



Recall:	Global	Training	with	Early	UpdaMng
For	each	epoch
For	each	sentence

For	i=1…2*len(sentence)						#	2n	transiMons	in	arc-standard
beam[i]	=	compute_successors(beam[i-1])
If	beam[i]	does	not	contain	gold:

break

apply_gradient_update(feats(gold[0:i])	-	feats(beam[i,0]))
	#	Feats	are	cumulaMve	up	unMl	this	point

If	i	==	2*len(sentence):
	#	If	we	got	to	the	end,	gold	may	sMll	not	be	one-best

apply_gradient_update(feats(gold)	-	feats(beam[2*len(sentence),0]))



Administrivia
‣ Survey	results:	pace	a	bit	too	fast	(assumes	too	much	prior	knowledge)

‣ Fast	pace	for	a	couple	of	lectures	on	graph-structured	models,	classical	
machine	translaMon

‣ FronMers	/	current	research:	a]er	RNNs

‣ It	starts	at	9:30am:	sorry	:(

‣More	materials:	precision/recall	of	readings?

‣ “Don’t	have	expectaMons	for	the	final	project”

‣More	moderate	pace	on	fundamentals	of	NNs	/	RNNs	/	neural	MT

‣ Details	for	projects:	I’ll	try	to	do	this	more



Road	Map

POS	tagging

SyntacMc	parsing

NER

Coreference	resoluMon

Summarize

Extract	informaMon

Answer	quesMons

IdenMfy	senMment

Translate

Text	Analysis Applica/onsText Annota/ons

‣ Second	half	of	the	class:	more	applicaMons

‣ First	half	of	the	class:	more	text	analysis



Road	Map

‣ Trees:	consMtuency	parsing,	dependency	parsing,	semanMc	role	labeling

‣ Today:	graph-structured	models	with	two	inference	techniques:	belief	
propagaMon,	Gibbs	sampling

‣ Sequences:	POS,	NER

‣ Next	Mme:	classical	(non-neural)	machine	translaMon

‣ Then,	part	2	of	the	class:	neural	networks,	RNNs,	CNNs,	etc.



Recall:	CRFs

y1 y2 yn…

�e

�t

P (y|x) = 1

Z

nY

i=2

exp(�t(yi�1, yi))
nY

i=1

exp(�e(yi, i,x))

‣ Z	is	normalizing	constant:	how	did	we	compute	it?	And	marginals?

‣ Forward-backward:	efficient	dynamic	program	for	summing	things	out



ORG

Skip-chain	CRFs

The	delegaMon	met	the	president	at	the	airport,	Tanjug	said.

Finkel	and	Manning	(2008)

ORG?
PER?

The	news	agency	Tanjug	reported	on	the	outcome	of	the	meeMng.

‣ Coreferent	enMMes	—	should	be	the	same	type

‣ “One	sense	per	discourse”	assumpMon:	“bank”	(river)	and	“bank”	(financial)	
rarely	occur	in	the	same	context



Skip-chain	CRFs

Finkel	and	Manning	(2008)

ORG
PER

ORG
PER

?

‣ (j,	k)	are	pairs	of	variables	that	we	manually	linked	up

P (y|x) /
nY

i=2

exp(�t(yi�1, yi))
nY

i=1

exp(�e(yi, i,x))
Y

(j,k)

exp(�`(yj , yk))



Inference

Finkel	and	Manning	(2008)

‣ How	do	we	do	forward-backward	in	this	case?	Assume	just	one	sentence

‣What	if	there’s	one	link	(j,	k)?
‣ Iterate	upward	through	i:	keep	track	of	state	i-1,	keep	track	of	state	j

‣What	if	there	are	no	links	(j,	k)?

‣ Dynamic	program	now	tracks	two	states,	so	an	extra	factor	of	s

P (y|x) /
nY

i=2

exp(�t(yi�1, yi))
nY

i=1

exp(�e(yi, i,x))
Y

(j,k)

exp(�`(yj , yk))

‣ For	k	links,	state	blows	up	by	factor	of	sk



Inference

The	delegaMon	met	the	president	at	the	airport,	Tanjug	said.

The	news	agency	Tanjug	reported	on	the	outcome	of	the	meeMng.

‣ Forward  
matrix	
(tensor):

doc	len

state	j

st
at
e	
at
	c
ur
r 

Mm
es
te
p

sta
te	
j

O(s2)	predecessors



Inference

The	delegaMon	met	the	president	at	the	airport,	Tanjug	said.

The	news	agency	Tanjug	reported	on	the	outcome	of	the	meeMng.

Yesterday,	Tanjug	also	reported	on…

‣ Now	would	need	to	track	two	prior	states…generally	becomes	intractable



Inference

‣ SoluMon	1:	Belief	propagaMon

‣ SoluMon	2:	Gibbs	sampling



Belief	PropagaMon



Belief	PropagaMon

‣ Sum-product	doesn’t	work	when	there	are	loops,	but	it’s	usually	a	good	
approximaMon,	so	we	can	just	use	it	anyway

‣ Forward-backward:	instance	of	sum-product	algorithm	for	inference	in	
general	tree-structured	CRFs



Sum-Product	Algorithm
y2y1

‣ NotaMon:
N(v) factors	that	are	neighbors	of	variable	v	(use	y	for	values)
N(f) variables	that	are	neighbors	of	factor	f

‣ Posteriors	are	products	of	
messages	from	factors:

P (yi = y|x) /
Y

f2N(vi)

µf!vi(y)

P (y1, y2|x) =
exp(�(y1)) exp(�(y1, y2))P

y0
1,y

0
2
exp(�(y01)) exp(�(y

0
1, y

0
2))

‣ “Messages”					:	vectors	of	values	on	edges	between	variable	and	factor	
(one	message	in	each	direcMon	along	edge).	“DistribuMons”	over	y

µ

v1 v2f2f1

yf y	values	associated	with	a	factor	f



Sum-Product	Algorithm

µv!f (y) =
Y

f 02N(v),f 0 6=f

µf 0!v(y)

‣ Sum	over	all	values	of	y	for	this	factor	
with	the	ith	coordinate	set	to	yi

‣ V->f	messages:

‣ F->v	messages:

‣ Value	of	y	is	a	product	of	what	all	other	incoming	messages	say	
about	y.	I.e.,	propagate	informaMon	from	the	rest	of	the	graph,	but	
don’t	feed	the	factor	its	own	outputs

µf!vi(yi) =
X

yf,�i

exp(�(yf,�i, yi))
Y

k:vk2N(f),k 6=i

µvk!f (yf,k)

‣ Product	over	all	other	factors’	
messages



Sum-Product	Algorithm

exp(�(y1)) = [0.9, 0.1]
exp(�(y1, y2)) =

1				0  
0				1

P (y1, y2) =
0.9			0  
0				0.1

‣ Factor	requires	y1	=	y2	(these	
are	zeroes	in	real	space!)

‣ Probability	reflects	both	
factors

P (y1, y2|x) =
exp(�(y1)) exp(�(y1, y2))P

y0
1,y

0
2
exp(�(y01)) exp(�(y

0
1, y

0
2))

y2y1

v1 v2f2f1



Sum-Product	Algorithm

µv!f (y) =
Y

f 02N(v),f 0 6=f

µf 0!v(y)

‣ IniMalize	messages	arbitrarily,	then	iterate	over	nodes	(in	some	order):

exp(�(y1)) = [0.9, 0.1]
exp(�(y1, y2)) =

1				0  
0				1

P (y1, y2|x) =
exp(�(y1)) exp(�(y1, y2))P

y0
1,y

0
2
exp(�(y01)) exp(�(y

0
1, y

0
2))

y2y1

v1 v2f2f1

µf!vi(yi) =
X

yf,�i

exp(�(yf,�i, yi))
Y

k:vk2N(f),k 6=i

µvk!f (yf,k)



Sum-Product	Algorithm

‣ If	graph	is	tree	structured:	once	every	node/factor	has	“talked	to”	
every	other	node/factor,	we	have	convergence

‣ For	linear	chains:	need	to	run	a	“forward”	pass	and	a	“backward”	pass

P (yi = y|x) /
Y

f2N(vi)

µf!vi(y)‣ Final	marginals:

P (y1, y2|x) =
exp(�(y1)) exp(�(y1, y2))P

y0
1,y

0
2
exp(�(y01)) exp(�(y

0
1, y

0
2))

y2y1

v1 v2f2f1



ConnecMons	to	Forward-Backward
y2y1

‣Message	from	variable	to	“next”	factor:	product	over	current	
emission	and	previous	factor	message

µv!f (y) =
Y

f 02N(v),f 0 6=f

µf 0!v(y)

‣Message	from	factor	to	variable:	incorporates	transiMon	scores

‣We’ve	just	broken	the	forward	update	into	two	pieces!

µf!vi(yi) =
X

yf,�i

exp(�(yf,�i, yi))
Y

k:vk2N(f),k 6=i

µvk!f (yf,k)



Loopy	Sum-Product

‣What	happens	in	this	case?	Posteriors	blow	up!

y3y2

y1

exp(�(y1)) = [0.9, 0.1]

exp(�(y1, y2)) =
1				0  
0				1

exp(�(y2, y3)) =

exp(�(y3, y1)) =

1				0  
0				1

1				0  
0				1

‣ Sum-product	algorithm	is	not	correct	with	loops



Belief	PropagaMon	Algorithm

‣Most	of	the	Mme	cyclic	dependencies	are	not	strong	and	it	works	out

y3y2

y1

exp(�(y1)) = [0.9, 0.1]

exp(�(y1, y2)) =
1				0  
0				1

exp(�(y2, y3)) =

exp(�(y3, y1)) =

1				0  
0				1

1				0  
0				1

‣ Some	moMvaMon	from	staMsMcal	physics,	no	guarantees	on	results

‣ Belief	propaga/on:	ignore	this	problem.	Run	sum-product	for	a	while	
and	use	what	it	computes	as	an	approxima3on	to	the	true	posterior



EnMty	Analysis

The	company		was	founded	…

ORG/PER?

ORG

Coreference	
ResoluMon

SemanMc	
Typing

Dell		is	headquartered	just	outside		AusMn	.
LOC

PER ORG}

Durres	and	Klein	(2014)

‣Model	for	joint	coreference,	NER,	and	enMty	linking	to	Wikipedia;	
here	we’ll	just	look	at	coref+NER



EnMty	Analysis

PERSON,	
ORG,	

...

NEW

Dell

}
}

Coreference

SemanMc	typing

AusMn The	company

t3

Each	menMon	chooses	an	antecedent c3

Durres	and	Klein	(2014)



EnMty	Analysis

Dell AusMn

t3t2t1

The	company

Coreference

SemanMc	typing
f(x, t3)

c3c2c1

f(x, c3)

Durres	and	Klein	(2014)



EnMty	Analysis

SemanMc	type

Coreference

The	company

}
}

…

PERSON,	
ORG,	... t2

If	coreferent,	
these	menMons	

should	have	the	same	
semanMc	type

Dell

t1

The	companyDell

c1 c2

Durres	and	Klein	(2014)



EnMty	Analysis

Durres	and	Klein	(2014)

}
5	menMons…and	a	typical	document	has	200



What	does	BP	inference	look	like?

Dell The	company

PE
RS
O
N

O
RG …

PE
RS
O
N

O
RG

…

			
	D
el
l

N
ew

t2t1

Coreference

SemanMc	type

c2

Durres	and	Klein	(2014)



Belief	PropagaMon

Bansal	et	al.	(2014)

“Be	a	tree”	factor	—	imposes	the	
tree	constraint	on	the	variables

Sibling	factors	make	it	loopy

‣ Achieve	the	same	thing	as	Koo’s	higher-order	features



Gibbs	Sampling



Skip-chain	CRFs

Finkel	and	Manning	(2008)

ORG
PER

ORG
PER

?

‣ Can	we	approximate	P(y|x)	in	other	ways?

P (y|x) /
nY

i=2

exp(�t(yi�1, yi))
nY

i=1

exp(�e(yi, i,x))
Y

(j,k)

exp(�`(yj , yk))



Inference

Finkel	and	Manning	(2008)

‣ Can	we	sample	from	P(y|x)	and	use	those	samples	to	approximate	it?	
(Monte	Carlo	methods)

P (y|x) /
nY

i=2

exp(�t(yi�1, yi))
nY

i=1

exp(�e(yi, i,x))
Y

(j,k)

exp(�`(yj , yk))

‣ For	distribuMons	that	are	very	peaked,	samples	look	like	the	max	anyway…



Gibbs	Sampling

Finkel	and	Manning	(2008)

‣ Key	idea:	resample	a	single	variable	at	a	Mme	condiMoned	on	all	others

P (yi = y|y�i,x) / exp [�t(yi�1, y) + �t(y, yi+1) + �e(y, i,x)+

X

k:(i,k) linked

�`(y, yk) +
X

k:(k,i) linked

�`(yk, y)

3

5



Gibbs	Sampling

Finkel	and	Manning	(2008)

‣ Fix	all	predicMons	except	one,	easy	to	compute	condiMonal	probabiliMes	
(normalize	scores	for	this	parMcular	variable	y)

‣ Iterate	over	all	variables	repeatedly,	like	belief	propagaMon

‣ Orange	things	are	all	constants	now!

P (yi = y|y�i,x) / exp [�t(yi�1, y) + �t(y, yi+1) + �e(y, i,x)+

X

k:(i,k) linked

�`(y, yk) +
X

k:(k,i) linked

�`(yk, y)

3

5



Gibbs	Sampling
IniMalize	y	values	to	something	reasonable	
for	k=1…t	iteraMons:	
	for	i=1…m	words	in	the	document:	
		yi	=	Sample	from	

‣ The	Gibbs	sampling	procedure	forms	a	Markov	chain	whose	equilibrium	
distribuMon	is	the	posterior

‣ Note:	we	need	to	iterate	over	the	document	several	Mmes!

‣ However,	you	might	need	to	run	it	for	a	very	long	Mme	to	get	samples	
which	don’t	depend	on	the	iniMalizaMon….

P (yi|y1,...,i�1,i+1,...,m,x)



Problems	with	Gibbs	Sampling

0 1

0 0.49 0.01

1 0.01 0.49
x1

x2

P (x2|x1 = 0) = [0.98, 0.02]

P (x1|x2 = 0) = [0.98, 0.02]

P (x1, x2)

‣ Start	with	x	=	(0,	0)

‣ Takes	~50	steps	before	we	switch	to	(1,	1)	—	need	to	run	Gibbs	
sampling	for	a	long	Mme	to	get	a	good	approximaMon	of	the	posterior

‣ stay	at	(0,	0)	98%	of	the	Mme

‣ stay	at	(0,	0)	98%	of	the	Mme



Gibbs	Sampling

Finkel	and	Manning	(2008)



Gibbs	Sampling

Naseem	et	al.	(2009)

‣ Unsupervised	POS	inducMon	with	alignments	across	languages



Takeaways
‣ Can	define	“loopy”	factor	graphs	and	sMll	do	inference

‣ Belief	propagaMon	and	Gibbs	sampling	both	work	best	if	there	are	only	
weak	cyclic	dependencies.	This	is	usually	the	case	if	the	loopy	factors	
incorporate	features	and	the	loops	are	large

‣ Can	incorporate	nice	features	this	way,	not	as	commonplace	and	a	bit	
harder	to	get	working,	but	everyone	thinks	this	stuff	is	cool

‣ Other	ways	of	doing	this:	output	reranking,	beam	search	(give	up	on	
doing	principled	inference),	…


