CS395T: Structured Models for NLP
Lecture 13: Neural Networks

Greg Durrett



Administrivia
» Project 2 due on Tuesday

» Project 1 samples posted on website



This Lecture

» Neural network history

» Neural network basics
» Feedforward neural networks
» Backpropagation

» Applications



A brief history of (modern) NLP

1 | Penn

“Al winter” wiu Collins vs. Unsup: topic [
Tk . oo fo—@
rule-based, i treeSbank Charniak models,
expert systems A parsers grammar induction
_ J NP VP | | L
earliest stat MT Ratnaparkhi || sup: SVMs, || Semi-sup,
work at IBM tagger CRFs, NER, ||structured
o ﬂ NNP VBZ Sentiment ||Prediction

VT VT TV

B

1980 1990 2000 2010 2017



History: NN “dark ages”

» Convnets: applied to MNIST by LeCun in 1998

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

I_ CS: layer F6 layer OUTPUT

32x32
120

LAONN

FuII comjlectnon | Gaussnan connections
Convolutions Subsampling Convolutnons Subsamplmg Full connection

S2: 1. maps
6@14x14

=

net,_ S

» LSTMs: Hochreiter and Schmidhuber (1997)

A\
e

» Henderson (2003): neural shift-reduce parser, not SOTA

O
16
o2

N



2008-2013: A glimmer of light...

» Collobert and Weston 2011: “NLP (almost) from scratch”

» Feedforward neural nets induce features for
sequential CRFs (“neural CRF”)

» 2008 version was marred by bad experiments,
claimed SOTA but wasn’t, 2011 version tied SOTA

» Krizhevskey et al. (2012): AlexNet for vision

» Socher: tree-structured RNNs

» Started working well for sentiment in 2013, but
only worked for weird tasks before that, some
lackluster parsing results

Input Window

Text
Feature 1

Feature K

. hot

d

Lookup Table
L1 'W 1 N

cat sat on the mat

wi

ws ... Wy

“'N
N
Bt

very
b

good ...
C




2014: Stuft starts working

» Kim (2014) + Kalchbrenner et al. (2014): sentence classification / sentiment

» Basic convnets work pretty well for NLP
» Sutskever et al., Bahdanau et al. seq2seq for neural MT

» LSTMs actually do well at NLP problems

» Chen and Manning transition-based dependency parser

» Feedforward neural networks for parsing

» 2015: explosion of neural nets for everything under the sun



Why didn’t they work before?

» Datasets too small: for MT, not really better until you have 1M+ parallel
sentences (and really need a lot more)

» Optimization not well understood: good initialization, per-feature scaling
+ momentum (Adagrad / Adadelta / Adam) work best out-of-the-box

» Regularization: dropout was very important

» Computers not big enough: can’t run for enough iterations

» Inputs: need word representations to have the right continuous semantics

» Dealing with unknown words: word pieces, use character LSTMs, ...
complex stuff!



Neural Net Basics



Neural Networks

» Linear classification: argmax,w ' f(z,y)
» How can we do nonlinear classification?

» Polynomial, etc. from kernels, but these are slow!

» Kernels are neither necessary nor sufficient: not every pair of features
interacts, might need to go beyonds pairs

» Instead, want to learn intermediate conjunctive features of the input



Neural Networks: XOR

» Let’s see how we can use neural nets

to learn a simple nonlinear function L2
1 0
» Inputs 1, To
(generally x = (x1,...,Zm)) . .
XL
» Output ¥ 1
(generally Y = (ylv tee 7yn)) L1 Lo Y= XOR L9
0 O 0
0 1 1
1 0 1
1 1 0



Neural Networks: XOR

L2 Y = a1T1 + a2 X

y = a121 + azx2 + ag tanh(x; + x2) &

1 1)

or

4 T (looks like action
B potential in neuron)

1 ! }

L1 L2 L1 XOR L9 /
0 0 0
0 1 1 2 p 1 ;
1 0 1 /
1 1 0 . . . .




Neural Networks: XOR

L2 Y = a1x1 + a2 X

Yy = a1x1 + asxo + ag tanh(x; + o) ‘/
y = —x1 — X2 + 2tanh(xq + x2)
zl A “Or”

0 0 0 L2
0 1 1
1 0 1
1 1 0




XOR

V)
-
S
O
=
)
)
Z
(O
S
-
Q
Z

Y = —25131 — Lo + Qtanh(ajl -+ .CUQ)

-1

Inot]

the movie was not good



Neural Networks

(Linear model: Yy = W - X + b)

y=g(W-X+b>
WX—I—b

[N

Nonlinear Warp Shift
transformation space

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/



Neural Networks

...possible because
Linear classifier Neural network we transformed the

=

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/



Deep Neural Networks

(this was our neural net from the XOR example)

Adopted from Chris Dyer



Deep Neural Networks

Adopted from Chris Dyer



Deep Neural Networks

|npUt First

Layer
&
N

@0%:‘ X
SRS
(s,

r W vYy V

(K7

& ®)

Second
Layer

Q

S S (2)

<

y =g9(Wz +b)
z = g(Vy + c)

z=g(Vg(Wx + b) + c)

W_/

output of first layer

“Feedforward”: computation “feeds

forward” (not recurrent)

Check: what happens if no nonlinearity?
More powerful than basic linear models?

= V(Wx

b)

C

Adopted from Chris Dyer



Deep Neural Networks

...possible because we

Linear classifier Neural network transformed the
space!

=

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/



Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/



Deep Neural Networks

» Using multiple layers of
processing to induce deep
representations parallels visual
processing in the brain

<% ' N .. > ‘ .‘ A-\A :
v e :. } AR ¢ <
A Retina/LGN
\ filtered input
\ *

— EXxcitatory R
—e |nhibitory

From O’Reilly et al. (2013)



Feedforward Networks,
Backpropagation



Logistic Regression with NNs

-
P(y|x) = exp(w_f(%,y)) » Single scalar probability
2y exp(w! f(x,9'))
Yy )
P(y|x) = softmax, (w ' f(x,y)) » softmaxy: score vector -> prob of y

P(y|x) = softmaxy(w;g(Vf(x))) » Feature function no longer

—— looks at label — same shared

Hidden representation z, can processing for each label.
see this as “induced features”

P(y|x) = softmax(Wg(V f(x))) » softmax: score vector ->
probability vector

» Assumes that the labels y are indexed and associated with
coordinates in a vector space



Neural Networks for Classification

P(y|x) = softmax(Wg(V f(x)))

d hidden units

H
g

d x n matrix nonlinearity m x d matrix
n features (tanh, relu, ...)




Training Neural Networks

P(y|x) = softmax(Wg(V f(x)))

» Maximize log likelihood of training data

log P(y = 1" |x) = log (softmax(Wg(V f(x))) - €;+)
» i*: index of the gold label

» ei: 1in the ith row, zero elsewhere. Dot by this = select ith index

L(x,i*) =Wg(Vf(x)) e~ —log » exp(Wg(Vf(x))-e;)

7=1



Computing Gradients

L(x,i*) =Wg(V f(x)) e —log Y exp(Wg(V f(x))-e)

j=1
£06#%) = Waer —log Y exp(Wa-e;) 5= oV (x)
J=1 Activations at
» Gradient with respect to W j hidden layer
z; — Py =i|x)z; ifi=i* i
0 L(x,1") = g 7
OWi; —P(y =i|x)z;  otherwise

» Looks like logistic regression with z as the features!



Neural Networks for Classification

P(y|x) = softmax(Wg(V f(x)))

.
g
Z 8W




Computing Gradients: Backpropagation

L(x,1") =Wz ex — logZeXp (Wz-e;) *~ g(V f(x))

Activations at

1=1
hidden layer

» Gradient with respect to V: apply the chain rule

0L(x,1") _ 0L(x,1*) 0z OE(X 0 — ZP W

» weights(gold) - E[weights(guess)], like LR with weights and features flipped!

vector ‘ vector




Backpropagation: Picture

P(y|x) = softmax(Wg(V f(x)))

| N
. :
g
8W

Z
err(z) err(root)

N




Computing Gradients: Backpropagation

L(x,1") =Wz-ex —log Z exp(Wz-e;) z=9(Vf(x))

Activations at

7=1
hidden layer

» Gradient with respect to V: apply the chain rule

OL(x,i*) _ OL(x,i") Oz _Pgla)oa |, _ vy

6‘/;3' 07
» First term: gradient of nonlinear activation function at a (depends on
current value)

» Second term: gradient of linear function

» Straightforward computation once we have err(z)



Backpropagation: Picture

P(y|x) = softmax(Wg(V f(x)))

H .
g
8W

Z
0z err(z) err(root)

oV \—/




Backpropagation

P(y|x) = softmax(Wg(V f(x)))
» Step 1: compute err(root) = e;« — P(y|x) (vector)

» Step 2: compute derivatives of W using err(root) (matrix)

0L(x,1*)
0z
» Step 4: compute derivatives of V using err(z) (matrix)

» Step 3: compute = err(z) =W err(root) (vector)

» Step 5+: continue backpropagation (compute err(f(x)) if necessary...)



Backpropagation: Takeaways

» Gradients of output weights W are easy to compute — looks like
logistic regression with hidden layer z as feature vector

» Can compute derivative of loss with respect to z to form an “error
signal” for backpropagation

III

» Easy to update parameters based on “error signal” from next layer,

keep pushing error signal back as backpropagation

» Need to remember the values from the forward computation



Applications



NLP with Feedforward Networks

» Part-of-speech tagging with FFNNs f(x)

Fed raises interest rates in order to .. previous word

» Word embeddings for each word form input

(sasipJ)quia

» ~1000 features here — smaller feature vector ~ curr word
than in sparse models, but every feature fires on

every example
next word

(D
3
=2
S.
~
Q)
-
M
n
=
D
3
2
-
Q
~
M
2

» Weight matrix learns position-dependent

processing of the words other words, feats, etc. L=
Botha et al. (2017)




NLP with Feedforward Networks

COe00 Py

]
[OOOOOCT)OOOOO] hi » Hidden layer mixes these
[@55_@_@5@@_@@@@@@'Q‘_‘Q‘i ho different signals and learns
ég g 29 ga feature conjunctions

o m— | F——ewe

igrams at E trigrams

no queue at

Botha et al. (2017)



» Multilingual tagging results:

NLP with Feedforward Networks

Model Acc. Wts. MB Ops.
Gillick et al. (2016) | 95.06 900k -  6.63m
Small FF 94716 241k 0.6 0.27m
+Clusters 95.56 261k 1.0 0.31m
2 Dim. 95.39 143k 0.7 0.18m

» Gillick used LSTMs; this is smaller, faster, and better

Botha et al. (2017)



Sentiment Analysis

» Deep Averaging Networks: feedforward neural network on average of
word embeddings from input

softmax

] \Tl | | he=f(W2-hi + by)
hl - f(Wl av + bl)

‘ 4

av =), 6 G
// \ g
| ENEENIEE | |

Predator 18 a masterpiece

c1 C2 c3 Ca lyyer et al. (2015)



Sentiment Analysis

Model RT SST SST IMDB Time
fine bin (s)
DAN-ROOT  — 469 857  — 31
DAN-RAND 773 454 832 888 136
DAN 803 47.7 863 894 136
NBOW-RAND 762 423 814 889 91
0 : q NBOW 790 436 836 890 91
dg-0T-woras BiNB — 419 831 — —  Wangand
NBSVM-bi 794 — — 912  — .
Manning
RecNN* 777 432 824 @ — —
RecNTN*  — 457 854 —  — (2012)
DRecNN — 498 866 — 431
Tree RNNs / TreeLSTM 506 869 —
DCNN* — 485 869 894  —
CNNS / LSTMS PVEC* — 487 878 926  —
CNN-MC 474 88.1 Kim (2014)
WRRBM® S L —

lyyer et al. (2015)



Coreference Resolution

» Feedforward networks identify coreference arcs

Mention-Pair Representation 7,

President Obama signed... idden I[Jie?h@ eielele ?RSSWSQ?IS L. O]
, OO0OO000O00O00OO0OOO0
. Hidden Layer h; TRGLU(thl + by)
He later gave a speech... [OOOOOQOOOOOOOOO]
(Input Layer hy TRGLU(Wlho + b1) ‘
[OO"'OO][O"'O] [OO'"OO](O'"OJ [O"'Ol
Candidate Candidate Mention Mention Pair and
Antecedent  Antecedent Embeddings Features Document
Embeddings Features Features

Clark and Manning (2015), Wiseman et al. (2015)



Next Time

» How to implement neural networks for NLP

» Tensorflow

» Practical training techniques

» Word representations / word vectors

» word2vec, GloVe



