CS395T: Structured Models for NLP
Lecture 13: Neural Networks

Greg Durrett

Administrivia
» Project 2 due on Tuesday

» Project 1 samples posted on website

This Lecture

» Neural network history

» Neural network basics

» Feedforward neural networks
» Backpropagation

» Applications

A brief history of (modern) NLP

Penn

“Al winter” ue Collins vs. Unsup: topic

Al winter 3&}%; treebank > del oI

rule-based, "% s Charniak models,

expert systems A parsers grammar induction
NP VP

I

earliest stat MT Ratnaparkhi || sup: SVMs, || Semi-sup, || Neural
work a'E_IBIVI tagger CRFs, NER, ||structured
“ \l NNP VBZ Sentiment ||Prediction

1980 1990 2000 2010 2017




History: NN “dark ages”

» Convnets: applied to MNIST by LeCun in 1998

C3: 1. maps 16@10x10
C1: feature maps S4:f. maps 16@5x5
6@26x28

52:1. maps G5:layer
6@1éxtd I r rl_ B0 8 tayer QUTPUT

INPUT
32332

net, s, =s.+gy"

» LSTMs: Hochreiter and Schmidhuber (1997)

» Henderson (2003): neural shift-reduce parser, not SOTA

2008-2013: A glimmer of light...

Input Window

Text cat sat on the mat

» Collobert and Weston 2011: “NLP (almost) from scratch” =~ ™= ==~ =
» Feedforward neural nets induce features for i) :
sequential CRFs (“neural CRF”) N—
» 2008 version was marred by bad experiments, e —
claimed SOTA but wasn’t, 2011 version tied SOTA = m—
inear . M
» Krizhevskey et al. (2012): AlexNet for vision i

» Socher: tree-structured RNNs

» Started working well for sentiment in 2013, but
only worked for weird tasks before that, some

CXe))
. .. hot very good..
lackluster parsing results a b .

2014: Stuff starts working

» Kim (2014) + Kalchbrenner et al. (2014): sentence classification / sentiment
» Basic convnets work pretty well for NLP

» Sutskever et al., Bahdanau et al. seq2seq for neural MT
» LSTMs actually do well at NLP problems

» Chen and Manning transition-based dependency parser

» Feedforward neural networks for parsing

» 2015: explosion of neural nets for everything under the sun

Why didn’t they work before?

» Datasets too small: for MT, not really better until you have 1M+ parallel
sentences (and really need a lot more)

» Optimization not well understood: good initialization, per-feature scaling
+ momentum (Adagrad / Adadelta / Adam) work best out-of-the-box

» Regularization: dropout was very important
» Computers not big enough: can’t run for enough iterations

» Inputs: need word representations to have the right continuous semantics

» Dealing with unknown words: word pieces, use character LSTMs, ...
complex stuff!




Neural Net Basics

Neural Networks

. I . . T
» Linear classification: argmax,w ' f(z,y)
» How can we do nonlinear classification?

» Polynomial, etc. from kernels, but these are slow!

» Kernels are neither necessary nor sufficient: not every pair of features

interacts, might need to go beyonds pairs

» Instead, want to learn intermediate conjunctive features of the input

Neural Networks: XOR

» Let’s see how we can use neural nets
to learn a simple nonlinear function L2

» Inputs x1, X2

(generally x = (zq,...

» Output ¥y ! : .
(generally y = (y1,...,Yn)) r1 X9 y=z1 XOR z2
0 0 0
0 1 1
1 0 1
1 1 0

Neural Networks: XOR

T2 Y= a121 + asx2
1 0.
Yy = a121 + a2 + a3 tanh(x; + x2) «
"""""" L “or”
Q. A 1 (looks like action
' * potential in neuron)

r1 z2 x1 XOR x4 |/

0 0 0

0 1 1 2 E 1 2

1 0 1 /I

1 1 0 4

X




Neural Networks

...possible because

we transformed the

space!

Neural network

Linear classifier

05

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

—
N
8
+ MM _
—
) &
=
g =
~ e
\\\\n‘w‘mm\»mm‘mwm\\\\.\u\\\\\ww\»www\\n\w\w
Q t @ 7
X ~ Facsiciiz o
8 =
. e \\\\ \\\\M“\W\\ 2222222222222%%
=
— a \\\\\\\W\\\W\WN\\W\\M\WNMH\M\\\NW\\\\\\
O _ =
= I
o
—_ - 5
© 8 £
=
z 3
e S
Z o
- ol s
<
7.3
S
2
Y
— o >
' )
—
Mm. ES) IS
w )
> S <
=
— N
N
8 8 —
=
TS
S =%
= 4+
m —
- &
o 3 hn
o . + £
X s N N
N S +
. 3 [l
(7)) 3 ~
¥ T o4 0B
| - x_l. — [
o - & g
2 L5
o oy
v = > >
=2 _ x2
© 8
— ~
w m O O
o — .
T8
Slo = o«
< o
@ $1 0O « -

Neural Networks

(Linear model: ¥y = W - X + b)

o5
05

g(Wx + b)

[ N\

y=g(w-x+Db)
Nonlinear
transformation space

y

Shift

Warp

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/




Deep Neural Networks

(this was our neural net from the XOR example)

e saeeeeseeeeaesesesssssesssesesssseeesss

Y1 =g(wi-x+b1)

Adopted from Chris Dyer

Deep Neural Networks

Adopted from Chris Dyer

Deep Neural Networks

Input First ~ Second _
Layer Layer y=9(Wz +b)
z=g(Vy +c)
z=9g(Vg(Wx+Db)+c)
| —

output of first layer

“Feedforward”: computation “feeds
forward” (not recurrent)

Check: what happens if no nonlinearity?
More powerful than basic linear models?

Deep Neural Networks

...possible because we

Linear classifier Neural network transformed the
space!

z=V(Wx+b)+c

Adopted from Chris Dyer

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/




Deep Neural Networks

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Deep Neural Networks

-F g .
Naming \ “fish” o ‘.,; = Semantic
output ==

properties

Retina/LGN
\@ filtered input
*

8o

— Excitatory
—e Inhibitory

» Using multiple layers of
processing to induce deep
representations parallels visual
processing in the brain

From O'Reilly et al. (2013)

Feedforward Networks,
Backpropagation

Logistic Regression with NNs

€exX "LUT X
Pyl — P FG.0)

>y exp(w’ f(x,y))
P(y|x) = Softmaxy(wa(x, Y))

P(ylx) = softmaxy(w;g(Vf(x)))

—
Hidden representation z, can

see this as “induced features”

P(ylx) = softmax(Wg(V f(x)))

» Single scalar probability

» softmaxy: score vector -> prob of y

» Feature function no longer
looks at label — same shared
processing for each label.

» softmax: score vector ->
probability vector

» Assumes that the labels y are indexed and associated with

coordinates in a vector space




Neural Networks for Classification

P(y[x) = softmax(Wg(V f(x)))

] d hidden units

. 0
. ®
sl v e w e
g
| dxnmatrix ponlinearity m x d matrix
n features (tanh, relu, ...)

Training Neural Networks

P(y[x) = softmax(Wg(Vf(x)))

» Maximize log likelihood of training data

log P(y = i*|x) = log (softmax(Wg(V f(x))) - €;+)
» i*:index of the gold label

» ei: 1in the ith row, zero elsewhere. Dot by this = select ith index

L(x,i") =Wg(Vf(x))-eir —log Y exp(Wg(V f(x))-e;)

j=1

Computing Gradients

L(x,i*) = Wg(Vf(x))- e —log ¥ exp(Wg(Vf(x))-e;)

J=1
m
L(x,i") =Wz e —log ) jexp(Wz-ej) 2= g(V(x)
j=1 Activations at
» Gradient with respect to W hidden layer
0 £(x.i) z; — Py =i[x)z; ifi=i* i
x, - z; — P(y = i|x)z;
oW —P(y =ilx)z;  otherwise 1= Ply = o2y
» Looks like logistic regression with z as the features! —P(y = i[x)z,

Neural Networks for Classification

P(y|x) = softmax(Wg(V f(x)))

®
» AN
= 4 ] —| Z [ W softmax [—{ >




Computing Gradients: Backpropagation

£(X’ Z*) — WZ CEix — log in: exp(WZ . 63) YA g(Vf(X))

) Activations at
) ) ) hidden layer
» Gradient with respect to V: apply the chain rule
= =/ L = Wi = f
Vi 8Q/§j/' Oz vector vecto

» weights(gold) - E[weights(guess)], like LR with weights and features flipped!

P Or: ferr(root) = e — Plylx)  QEST) oy T e (root)
dim=m Oz

dim=d

Backpropagation: Picture

P(y|x) = softmax(Wg(V f(x)))

v e W Hehme

g oL

P(ylx)

— err(z)z W(TOO’C)

N

Computing Gradients: Backpropagation

L(x,i*) =Wz e — log Z exp(Wz-e;) 27 g(Vf(x))

- Activations at
7=1
hidden layer
» Gradient with respect to V: apply the chain rule
OL(x, i) _ IL(x,i)|dz 9z _0g(@)| da | e
oVi; 0z |V Vi da |0V,
~__"

» First term: gradient of nonlinear activation function at a (depends on
current value)

» Second term: gradient of linear function

» Straightforward computation once we have err(z)

Backpropagation: Picture

P(y|x) = softmax(Wg(V f(x)))

—~
N
o

. ®
v HOHeH W Hoskma
a9

g L oL
f(x) U(Z) W(mot)
oV \/




Backpropagation

P(y[x) = softmax(Wg(V f(x)))

» Step 1: compute err(root) = e;» — P(y|x) (vector)

» Step 2: compute derivatives of W using err(root)  (matrix)

» Step 3: compute ch;’i*) = err(z) = W'err(root)  (vector)

» Step 4: compute derivatives of V using err(z) (matrix)

» Step 5+: continue backpropagation (compute err(f(x)) if necessary...)

Backpropagation: Takeaways

» Gradients of output weights W are easy to compute — looks like
logistic regression with hidden layer z as feature vector

» Can compute derivative of loss with respect to z to form an “error
signal” for backpropagation

» Easy to update parameters based on “error signal” from next layer,
keep pushing error signal back as backpropagation

» Need to remember the values from the forward computation

Applications

NLP with Feedforward Networks

» Part-of-speech tagging with FFNNs
??

~
~—
E

Fed raises interest rates in order to ... previous word

(sasis)quia

» Word embeddings for each word form input
curr word

(259423u1)qUID

» ~1000 features here — smaller feature vector
than in sparse models, but every feature fires on

every example

next word

(sa204)quin

» Weight matrix learns position-dependent

processing of the words other words, feats, etc. L]
Botha et al. (2017)




NLP with Feedforward Networks

00e00 P(y)
[OOOOO?OOOOO} h:

» Hidden layer mixes these
different signals and learns
feature conjunctions

(©000)C000) @O0V ODOQ): ho
RS s Fo F

@ @ ® @

‘
1
'

qu
no que|
e ueu|
eu
eue
Ebigrams at  Euigrams
no queue at

Botha et al. (2017)

NLP with Feedforward Networks

» Multilingual tagging results:

Model | Acc. Wts. MB Ops.
Gillick et al. (2016) | 95.06 900k - 6.63m
Small FF 9476 241k 0.6 0.27m
+Clusters 95.56 261k 1.0 0.3Im
1 Dim, 9539 143k 07 0.18m

» Gillick used LSTMs; this is smaller, faster, and better

Botha et al. (2017)

Sentiment Analysis

» Deep Averaging Networks: feedforward neural network on average of
word embeddings from input

softmax
hy = f(Wa- h1 + ba)
h1 = f(W1 -av + bl)
4
aw=y %
i=1
(TT T TP TP T
Predator is a masterpiece
a o cs cs lyyer et al. (2015)

Sentiment Analysis

Model RT SST SST IMDB Time
fine  bin (s)
DAN-ROOT  — 469 857 — 31
DAN-RAND 773 454 832 888 136
[ DAN 80.3 47.7 863 894 136 |
NBOW-RAND 762 423 814 889 91
NBOW 790 436 836 890 91
Bag-of-words BiNB — 419 81— —  Wangand
[ NBSVM-bi 794 —  — 912 — M .
RecNN* 777 432 824 @ — — anning
ReeNTN*  — 457 854 — —  (2012)
DRecNN — 498 866 — 431
Tree RNNs / TreeLSTM  — 506 869  — —
DCNN* — 485 869 894 —
CNNS / LSTMS PVEC* — 487 878 926

CNN-MC 81.1 474 881 —
WRRBM™ — — — 89.2

2452 ] Kim (2014)

lyyer et al. (2015)




Coreference Resolution
» Feedforward networks identify coreference arcs

Mention-Pair Representation 7,

President Obama signed... Hidden Eje?hzo SR (T)RSIS()WEi?bE)) o0
5 (OO0000000000O000]
: Hidden Layer h,; TRELU(VVzhl + by)
He later gave a speech... [OOOOOOOOOOOOOOO]
Input Layer hg TRQLU(Wlho + by)
|[OO OO] [O'"O] [OO QQ](@...Q] [OO]I
Candidate Candidate Mention Mention Pair and
Antecedent  Antecedent Embeddings Features Document
Embeddings Features Features

Clark and Manning (2015), Wiseman et al. (2015

Next Time

» How to implement neural networks for NLP

» Tensorflow

» Practical training techniques

» Word representations / word vectors

» word2vec, GloVe




