CS395T: Structured Models for NLP
Lecture 14: Neural Network
Implementation

Greg Durrett



Administrivia
» Project 2 due today

» Project 3 out today

» Sentiment analysis using feedforward neural networks plus your choice
of RNNs or CNNs

» Project zip contains sample Tensorflow code demonstrating what’s in
today’s lecture



Recall: Feedforward NNs

P(y|x) = softmax(Wg(V f(x)))

d hidden units

H

d x n matrix nonlinearity m x d matrix
n features (tanh, relu, ...)




Recall: Backpropagation

P(y|x) = softmax(Wg(V f(x)))

d hidden units

) H . P
67“7“

err(root)



This Lecture

» Implementation details
» Training

» Word representations



Implementation Details



Computation Graphs

» Computing gradients is hard!

» Automatic differentiation: instrument code to keep track of derivatives
X =X *x =¥ (x,dx) = (x * x, 2 * x * dx)
codegen

» In practice: need other operations, want more control -> use an external
computation graph library



|

\

©
v
b
'
—

C

Computation Graphs

Z

» Define computation abstractly, in terms
of symbols

» Can compute gradients of ¢ with respect
to (X, v, z) easily

» Useful abstraction: supports both CPU
and GPU implementations

» Disadvantage: higher-level specification,
so hard to control memory allocation and
low-level implementation details

http://tmmse.xyz/content/images/201|6/02/theano-computation-graph.png



Tensorflow

ol

v
a
S

Q O 9 N K X

C

tf

tf.

tf
tf

tf
tf

.placeholder (“x"
placeholder(“y")
.placeholder(“z")
.add(x, V)
.multiply(a, 2z)
.add (b, a)

|
v

I ? with tf.Session() as sess:
% output = sess.run([a,c],
-

dict of input values)

http://tmmse.xyz/content/images/201|6/02/theano-computation-graph.png



Computation Graph: FFNN

P(y|x) = softmax(Wg(V f(x)))

fx = tf.placeholder(tf.float32, feat vec size)

V = tf.get variable(“V"”, [hidden size, feat vec size])
z = tf.sigmoid(tf.tensordot(V, £fx, 1))

W = tf.get variable(“W”, [num classes, hidden size])

probs = tf.nn.softmax(tf.tensordot (W, z, 1))

» placeholder: input to the system; variable: parameter to learn



Computation Graph: FFNN

P(y|x) = softmax(Wg(V f(x)))

fx = tf.placeholder(tf.float32, feat vec size)
V = tf.get variable(“V"”, [hidden size, feat vec size])
z = tf.sigmoid(tf.tensordot(V, £fx, 1))

W = tf.get variable(“W”, [num classes, hidden size])
probs = tf.nn.softmax(tf.tensordot (W, z, 1))

label = tf.placeholder(tf.int32, num classes)
loss = tf.negative(tf.log(tf.tensordot(probs, label, 1)))

» Tensorflow can compute gradients for W and V based on loss

» Shortcut helper methods exist like
tf.nn.softmax cross entropy with logits



Training a Model

Define a computation graph
Define an operator that updates the parameters based on an example

For each epoch:
For each example:

Evaluate the training operator on the example

Decode test set



Batching

» Batching data gives speedups due to more efficient matrix operations,
leads to better learning outcomes too

» Need to make the computation graph process a batch at the same time

fx = tf.placeholder(tf.float32, [batch size, feat vec size])
\Y

tf.get variable(”V"”, [hidden size, feat vec size])

Z tf.sigmoid(tf.tensordot(V, fx, [1l,1])) # batch size x hidden size

loss = [sum over losses from batch]



Batch Training a Model

Define a computation graph to process a batch of data
Define an operator that updates the parameters based on a batch

For each epoch:
For each batch:

Evaluate the training operator on the batch

Decode test set in batches



Training Tips



Tralning Basics
» Basic formula: compute gradients on batch, use first-order opt. method

» How to initialize? How to regularize? What optimizer to use?

» This lecture: some practical tricks. Take deep learning or optimization
courses to understand this further



How does initialization affect learning?

P(y|x) = softmax(Wg(V f(x)))

d hidden units

H

d x n matrix nonlinearity m x d matrix
n features (tanh, relu, ...)

» How do we initialize V and W? What consequences does this have?



How does initialization affect learning?

» Why is it important to have small activations?

» If cell activations are too large in absolute value, gradients are small too

» ReLU: larger dynamic range (all positive numbers), but can produce
big values, can break down if everything is too negative



Initialization
1) Can’t use zeroes for parameters to produce hidden layers: all values in
that hidden layer are always 0 and have gradients of O, never change

2) Initialize too large and cells are saturated

» Can do random uniform / normal initialization with appropriate scale

0 0
B \/fan—in + fan-out’ _I_\/fan—in + fan—out]

» Want variance of inputs and gradients for each layer to be the same

» Glorot initializer: U

» Batch normalization (loffe and Szegedy, 2015): periodically shift+rescale
each layer to have mean 0 and variance 1 over a batch (useful if net is deep)



Dropout

» Probabilistically zero out parts of the network during training to prevent
overfitting, use whole network at test time

» Form of stochastic
regularization

» Similar to benefits of
ensembling: network
needs to be robust to

miSSing S'g naIS, SO It (a) Standard Neural Net (b) After applying dropout.
has redundancy

Srivastava et al. (2014)



Dropout

» In tensorflow: implemented as an additional layer in a network

hidden dropped out = tf.nn.dropout(hidden, dropout keep prob)

» Often use low dropout (keep a value with probability 0.8) at the input
and moderate dropout (keep with probability 0.5) internally in
feedforward networks (not in RNNSs)



Optimizer

» Adam (Kingma and Ba, ICLR 2015) is very widely used

» Adaptive step size like Adagrad, incorporates momentum

MNIST Loglstlc Regressuon IMDB BoW feature Loglstlc Regressmn

0.7 ' T ' : L
[ ; : — AdaGrad

Adagrad+dropout
RMSProp+dropout
SGDNesterov+dropout|
Adam+dropout

—  SGDNesterov

—  Adam

0.6

0.5H

training cost
training cost
o
w
u

0.4kl i SNUONG: SORUUU: SOOI S S, S S—
. . . . . . . . 0300

a A Al -
- v Vi AV f y k
. N \."1 A |
vy vy NI \
. e “ S L b LB a R E Rttt a s st a e a N LW \‘.ln..r'...y, '\',..\\..._ .. )'."
. . vi . ¥ LAY . — e 1 I A U A [ \
. e i J 4\
: : : : S e YV

0.3 - A I F ; - L : 0.20 - i : H : : - :
0 5 10 15 20 25 30 35 40 45 0 20 40 60 80 100 120 140 160
iterations over entire dataset iterations over entire dataset




Z2RSITY
73 N
'
Mo vt
A ) ° °
T 1215
> . A Z
o\ ¢ 5,¢  *
A Y
IJd ‘\l L‘\."\

» Wilson et al. NIPS 2017: adaptive methods can actually perform badly at
test time (Adam is in pink, SGD in black)

» Check dev set periodically, decrease learning rate if not making progress

6.0 \ 6.0 T

5.8 N \,
5.6} 'g 2.8 \‘.\‘ Adam (Default): 5.47+0.02 ‘
<>l<J 5 4} ‘—3‘
a ' 2 5.6} Adam: S.BStO.Q_IJw‘-_,-,_,-—J.
g_) 5.2} ;E) L=t T
25.0 €5 al RMSProp: 5.28+0.00
S, a o - 1
Uik | — T .
- | “““‘-—---__- ‘ 5 5.2} ' HB: 5.13+0.01+

4.6 — —— 0 Y

\ ——
4.4} — AdaGrad: 5.24+0.02 SGD: 5.09+0.04
20 40 60 80 o 20 40 60 80 100
Epoch Epoch

(e) Generative Parsing (Training Set)

(f) Generative Parsing (Development Set)



Visualization with Tensorboard

» Visualize the computation graph and logs of the objective over time

Slice
Sub Shape_1
y .
learning_rate loss
Rank”™

~ - ,ﬁ.:\)
A A -, ~
0.800

W alalaTa

[ G )

A \Jg.\.‘\J N NV
.o

. Y alelaTa

Tensordot_1 gradients 0.0800
N AN
PRA0S

N atwlate
e als
igmoi 0.0600 U.ZU

- Sigmoid Lol

ni
W gradients
0.0500 J A
0.000 100.0 200.0 300.0 400.0 500.0 600.0 0.000 100.0 200.0 300.0 400.0 500.0 600.0

Tensordot gradients

o Placehol...
V init
Adam



Structured Prediction

» Four elements of a structured machine learning method:

» Model: feedforward, RNNs, CNNs can be defined in a uniform framework

4

» Objective: many loss functions look
similar, just changes the last layer of the =
neural network

? -

1.9 F

» Inference: define the network, Tensorflow
takes care of it (mostly...) S~

0

-3 -2 -1 0 1 2 3

» Training: lots of choices for optimization/hyperparameters



Word Representations



Word Representations

» Neural networks work very well at continuous data, but words are discrete

» Continuous model <-> expects continuous semantics from input



Word Embeddings

» Part-of-speech tagging with FFNNs

Fed raises interest rates in order to .. previous word

» Word embeddings for each word form input

D
3
=2
=
=
>
gV
4

2
curr word || 3
3
next word || 3

other words, feats, etc. L=
Botha et al. (2017)



Word Embeddings

» Want a vector space where similar words have similar embeddings

great
the movie was great good
x enjoyable

th ' d
e movie was goo dog

bad
IS



Word Representations

» Neural networks work very well at continuous data, but words are discrete

» Continuous model <-> expects continuous semantics from input

» “Can tell a word by the company it keeps” Firth 1957

XA XK KT RTe=iN | | NIEN|INN} y 3 NXK XS
g = > x X X B s s e e I e T X 0w R
nig " . g~ 1 - N e el
= 88 y & i L. . Uy g
bl {4 - ’ I ¥, B, B
Wl atlt LA it 5 o A1
KK R R 23l
XA XK RXNKK M { M ' M e 90 3 30 3 M TN IINN,
-xx XX = xx PR A R R e
KISETRN MR NI WM TINIIETIN I e -—
N RN

president L .

president |the  said @S / deD
governor

governor |the  of

governor |the  appointed

said sources __ 4 said
said president __ that reported

reported | sources ¢

[Finch and Chater 92, Shuetze 93, many others]



Continuous Bag-of-Words

» Predict word from context E : E Mikolov et al. (2013)
the:dog bit the:man
gold = bit
dog Multiply
softmax
. -
sum, size d Plwjw-1, wi1)

o » Parameters: d x |V| vectors, |V| x d output parameters (W)

» Maximize likelihood of gold labels (no manual labeling required!)



Skip-Gram

» Predict one word of context from word

gold = dog

bit

» Another training example: bit -> the

» Parameters: d x |V]| vectors, |V| x d output parameters (W)

Mikolov et al. (2013)



Skip-Gram with Negative Sampling

» Problem: want to train on 1B+ words,
multiplying by |V | x d matrix for each is too
expensive

the dog|bit the man

» Solution: take (word, context) pairs and classify them as “real” or not.
Create random negative examples by sampling

(bit, the) =>+1  (bit, a) =>-1 -
(bit, dog) => +1 (bit, fish) => -1 contexts select for
P(pos|w, ¢) — similar ¢ vectors
’ ew-<c 4+ 1

» d x |V| vectors, d x |V| context vectors (same # of params as before)
Mikolov et al. (2013)



Regularities in Vector Space

(king - man) + woman = queen

king
king + (woman - man) = queen . queen
» Why would this be?
» woman - man captures the difference in
the contexts that these occur in
» Dominant change: more “he” with man man
and “she” with woman — similar to < woman

difference between king and queen



GloVe

» Word co-occurrences are what matter directly

Probability and Ratio | & = solid k = gas k = water k = fashion
P(kice) [19% 104 66x10~° 3.0x10-3 1.7x10°5
P(k|steam) 22%x107° 78x%x107*% 22x107° 1.8x107°
P(k|ice)/P(k|steam) 8.9 8.5 x 1072 1.36 0.96

» Weighted least-squares problem to directly predict word co-occurrence
matrix (like matrix factorization)

Pennington et al. (2014)



Using Word Embeddings

# Indexed sentence of length sent len, e.g.: [12, 36,
input words = tf.placeholder(tf.int32, [sent len])
encoder = tf.get variable("embed", [voc size, embedding size])
embedded input words = tf.nn.embedding lookup(encoder, 1input words)

# embedded input words: sent len x embedding size tensor

47, 8]

» Approach 1: learn embeddings as parameters from your data

» Approach 2: initialize using GloVe/CBOW/SGNS, keep fixed

» Faster because no need to update these parameters

» Approach 3: initialize using GloVe/CBOW/SGNS, fine-tune
» Typically works best



Takeaways

» Lots to tune with neural networks
» Training: optimizer, initializer, regularization (dropout), ...

» Hyperparameters: dimensionality of word embeddings, layers, ...

» Word vectors: various choices of pre-trained vectors work well as
initializers

» Next time: RNNs / LSTMs / GRUs



