
CS395T:	Structured	Models	for	NLP	
Lecture	14:	Neural	Network	

Implementa@on

Greg	Durrett

Administrivia
‣ Project	2	due	today

‣ Project	3	out	today

‣ Project	zip	contains	sample	Tensorflow	code	demonstra@ng	what’s	in	
today’s	lecture

‣ Sen@ment	analysis	using	feedforward	neural	networks	plus	your	choice	
of	RNNs	or	CNNs

Recall:	Feedforward	NNs

V

n	features

d	hidden	units

d	x	n	matrix m	x	d	matrix

soQmaxWf
(x
)

z

nonlinearity 
(tanh,	relu,	…)

g P
(y

|x
)

P (y|x) = softmax(Wg(V f(x)))

Recall:	Backpropaga@on

V

d	hidden	units

soQmaxWf
(x
)

z
g P

(y
|x
)

P (y|x) = softmax(Wg(V f(x)))

@L
@W err(root)@z

@V
err(z)

zf(x)

This	Lecture

‣ Training

‣ Implementa@on	details

‣Word	representa@ons

Implementa@on	Details

Computa@on	Graphs

‣ Compu@ng	gradients	is	hard!

‣ Automa@c	differen@a@on:	instrument	code	to	keep	track	of	deriva@ves

x = x * x (x,dx) = (x * x, 2 * x * dx)
codegen

‣ In	prac@ce:	need	other	opera@ons,	want	more	control	->	use	an	external	
computa@on	graph	library

Computa@on	Graphs

http://tmmse.xyz/content/images/2016/02/theano-computation-graph.png

‣ Define	computa@on	abstractly,	in	terms	
of	symbols

‣ Can	compute	gradients	of	c	with	respect	
to	(x,	y,	z)	easily

‣ Useful	abstrac@on:	supports	both	CPU	
and	GPU	implementa@ons

‣ Disadvantage:	higher-level	specifica@on,	
so	hard	to	control	memory	alloca@on	and	
low-level	implementa@on	details

Tensorflow

http://tmmse.xyz/content/images/2016/02/theano-computation-graph.png

x = tf.placeholder(“x”)

y = tf.placeholder(“y”)
z = tf.placeholder(“z”)
a = tf.add(x, y)
b = tf.multiply(a, z)
c = tf.add(b, a)

output = sess.run([a,c],  
 dict_of_input_values)

with tf.Session() as sess:

Computa@on	Graph:	FFNN

P (y|x) = softmax(Wg(V f(x)))

fx = tf.placeholder(tf.float32, feat_vec_size)
V = tf.get_variable(“V”, [hidden_size, feat_vec_size])
z = tf.sigmoid(tf.tensordot(V, fx, 1))

probs = tf.nn.softmax(tf.tensordot(W, z, 1))

‣ placeholder:	input	to	the	system;	variable:	parameter	to	learn

W = tf.get_variable(“W”, [num_classes, hidden_size])

Computa@on	Graph:	FFNN

P (y|x) = softmax(Wg(V f(x)))

fx = tf.placeholder(tf.float32, feat_vec_size)
V = tf.get_variable(“V”, [hidden_size, feat_vec_size])
z = tf.sigmoid(tf.tensordot(V, fx, 1))

probs = tf.nn.softmax(tf.tensordot(W, z, 1))
W = tf.get_variable(“W”, [num_classes, hidden_size])

‣ Shortcut	helper	methods	exist	like	
tf.nn.softmax_cross_entropy_with_logits

loss = tf.negative(tf.log(tf.tensordot(probs, label, 1)))

‣ Tensorflow	can	compute	gradients	for	W	and	V	based	on	loss

label = tf.placeholder(tf.int32, num_classes)

Training	a	Model

Define	a	computa@on	graph

Define	an	operator	that	updates	the	parameters	based	on	an	example

For	each	epoch:

Evaluate	the	training	operator	on	the	example

For	each	example:

Decode	test	set

Batching

‣ Batching	data	gives	speedups	due	to	more	efficient	matrix	opera@ons,	
leads	to	beber	learning	outcomes	too

‣ Need	to	make	the	computa@on	graph	process	a	batch	at	the	same	@me

fx = tf.placeholder(tf.float32, [batch_size, feat_vec_size])

V = tf.get_variable(“V”, [hidden_size, feat_vec_size])

z = tf.sigmoid(tf.tensordot(V, fx, [1,1])) # batch_size x hidden_size

...

loss = [sum over losses from batch]

Batch	Training	a	Model

Define	a	computa@on	graph	to	process	a	batch	of	data

Define	an	operator	that	updates	the	parameters	based	on	a	batch

For	each	epoch:

Evaluate	the	training	operator	on	the	batch

For	each	batch:

Decode	test	set	in	batches

Training	Tips

Training	Basics
‣ Basic	formula:	compute	gradients	on	batch,	use	first-order	opt.	method

‣ How	to	ini@alize?	How	to	regularize?	What	op@mizer	to	use?

‣ This	lecture:	some	prac@cal	tricks.	Take	deep	learning	or	op@miza@on	
courses	to	understand	this	further

How	does	ini@aliza@on	affect	learning?

V

n	features

d	hidden	units

d	x	n	matrix m	x	d	matrix

soQmaxWf
(x
)

z

nonlinearity 
(tanh,	relu,	…)

g P
(y

|x
)

P (y|x) = softmax(Wg(V f(x)))

‣ How	do	we	ini@alize	V	and	W?	What	consequences	does	this	have?

‣Why	is	it	important	to	have	small	ac@va@ons?

‣ If	cell	ac@va@ons	are	too	large	in	absolute	value,	gradients	are	small	too

‣ ReLU:	larger	dynamic	range	(all	posi@ve	numbers),	but	can	produce	
big	values,	can	break	down	if	everything	is	too	nega@ve

How	does	ini@aliza@on	affect	learning?

Ini@aliza@on
1)	Can’t	use	zeroes	for	parameters	to	produce	hidden	layers:	all	values	in	
that	hidden	layer	are	always	0	and	have	gradients	of	0,	never	change

‣ Can	do	random	uniform	/	normal	ini@aliza@on	with	appropriate	scale

U

"
�
r

6

fan-in + fan-out

,+

r
6

fan-in + fan-out

#
‣ Glorot	ini@alizer:

‣Want	variance	of	inputs	and	gradients	for	each	layer	to	be	the	same

‣ Batch	normaliza@on	(Ioffe	and	Szegedy,	2015):	periodically	shiQ+rescale	
each	layer	to	have	mean	0	and	variance	1	over	a	batch	(useful	if	net	is	deep)

2)	Ini@alize	too	large	and	cells	are	saturated

Dropout
‣ Probabilis@cally	zero	out	parts	of	the	network	during	training	to	prevent	
overfikng,	use	whole	network	at	test	@me

Srivastava	et	al.	(2014)

‣ Similar	to	benefits	of	
ensembling:	network	
needs	to	be	robust	to	
missing	signals,	so	it	
has	redundancy

‣ Form	of	stochas@c	
regulariza@on	

Dropout

‣ In	tensorflow:	implemented	as	an	addi@onal	layer	in	a	network

hidden_dropped_out = tf.nn.dropout(hidden, dropout_keep_prob)

‣ OQen	use	low	dropout	(keep	a	value	with	probability	0.8)	at	the	input	
and	moderate	dropout	(keep	with	probability	0.5)	internally	in	
feedforward	networks	(not	in	RNNs)

Op@mizer
‣ Adam	(Kingma	and	Ba,	ICLR	2015)	is	very	widely	used

‣ Adap@ve	step	size	like	Adagrad,	incorporates	momentum

Op@mizer
‣Wilson	et	al.	NIPS	2017:	adap@ve	methods	can	actually	perform	badly	at	
test	@me	(Adam	is	in	pink,	SGD	in	black)
‣ Check	dev	set	periodically,	decrease	learning	rate	if	not	making	progress

Visualiza@on	with	Tensorboard
‣ Visualize	the	computa@on	graph	and	logs	of	the	objec@ve	over	@me

Structured	Predic@on
‣ Four	elements	of	a	structured	machine	learning	method:

‣Model:	feedforward,	RNNs,	CNNs	can	be	defined	in	a	uniform	framework

‣ Objec@ve:	many	loss	func@ons	look	
similar,	just	changes	the	last	layer	of	the	
neural	network

‣ Inference:	define	the	network,	Tensorflow 
takes	care	of	it	(mostly…)

‣ Training:	lots	of	choices	for	op@miza@on/hyperparameters

Word	Representa@ons

Word	Representa@ons

‣ Con@nuous	model	<->	expects	con@nuous	seman@cs	from	input

‣ Neural	networks	work	very	well	at	con@nuous	data,	but	words	are	discrete

Word	Embeddings

Botha	et	al.	(2017)

…

Fed	raises	interest	rates	in	order	to	…

f(x)
?? em
b(raises)

‣Word	embeddings	for	each	word	form	input em
b(interest)

em
b(rates)

previous	word

curr	word

next	word

other	words,	feats,	etc.

‣ Part-of-speech	tagging	with	FFNNs

good
enjoyable

bad

dog

great

is

‣Want	a	vector	space	where	similar	words	have	similar	embeddings

the	movie	was	great

the	movie	was	good
~~

Word	Embeddings

Word	Representa@ons

‣ Con@nuous	model	<->	expects	con@nuous	seman@cs	from	input

‣ “Can	tell	a	word	by	the	company	it	keeps”	Firth	1957

‣ Neural	networks	work	very	well	at	con@nuous	data,	but	words	are	discrete

Con@nuous	Bag-of-Words
‣ Predict	word	from	context the	dog	bit	the	man

‣ Parameters:	d	x	|V|	vectors,	|V|	x	d	output	parameters	(W)

dog

the

+

sum,	size	d
P (w|w�1, w+1)

soQmaxMul@ply 
by	W

gold	=	bit

‣Maximize	likelihood	of	gold	labels	(no	manual	labeling	required!)

Mikolov	et	al.	(2013)

Skip-Gram

the	dog	bit	the	man‣ Predict	one	word	of	context	from	word

bit

soQmaxMul@ply 
by	W

gold	=	dog

‣ Parameters:	d	x	|V|	vectors,	|V|	x	d	output	parameters	(W)

Mikolov	et	al.	(2013)

‣ Another	training	example:	bit	->	the

Skip-Gram	with	Nega@ve	Sampling

the	dog	bit	the	man‣ Problem:	want	to	train	on	1B+	words, 
mul@plying	by	|V|	x	d	matrix	for	each	is	too  
expensive

‣ d	x	|V|	vectors,	d	x	|V|	context	vectors	(same	#	of	params	as	before)
Mikolov	et	al.	(2013)

(bit,	the)	=>	+1
(bit,	dog)	=>	+1

(bit,	a)	=>	-1
(bit,	fish)	=>	-1

‣ Solu@on:	take	(word,	context)	pairs	and	classify	them	as	“real”	or	not.	
Create	random	nega@ve	examples	by	sampling

words	in	similar	
contexts	select	for	
similar	c	vectors

P (pos|w, c) = ew·c

ew·c
+ 1

Regulari@es	in	Vector	Space

queen
king

woman
man

(king	-	man)	+	woman	=	queen

‣Why	would	this	be?

‣ woman	-	man	captures	the	difference	in 
the	contexts	that	these	occur	in

king	+	(woman	-	man)	=	queen

‣ Dominant	change:	more	“he”	with	man	
and	“she”	with	woman	—	similar	to	
difference	between	king	and	queen

GloVe
‣Word	co-occurrences	are	what	maber	directly

‣Weighted	least-squares	problem	to	directly	predict	word	co-occurrence	
matrix	(like	matrix	factoriza@on)

Pennington	et	al.	(2014)

Using	Word	Embeddings

‣ Approach	1:	learn	embeddings	as	parameters	from	your	data

‣ Approach	2:	ini@alize	using	GloVe/CBOW/SGNS,	keep	fixed

‣ Approach	3:	ini@alize	using	GloVe/CBOW/SGNS,	fine-tune

Indexed sentence of length sent_len, e.g.: [12, 36, 47, 8]
input_words = tf.placeholder(tf.int32, [sent_len])
encoder = tf.get_variable("embed", [voc_size, embedding_size])
embedded_input_words = tf.nn.embedding_lookup(encoder, input_words)
embedded_input_words: sent_len x embedding_size tensor

‣ Faster	because	no	need	to	update	these	parameters

‣ Typically	works	best

Takeaways
‣ Lots	to	tune	with	neural	networks

‣Word	vectors:	various	choices	of	pre-trained	vectors	work	well	as	
ini@alizers

‣ Training:	op@mizer,	ini@alizer,	regulariza@on	(dropout),	…

‣ Hyperparameters:	dimensionality	of	word	embeddings,	layers,	…

‣ Next	@me:	RNNs	/	LSTMs	/	GRUs

