CS395T: Structured Models for NLP
Lecture 15: RNNs |

Greg Durrett

Recall: Computation Graphs

- | = tf.placeholder(“x"

= tf.placeholder(“y")
= tf.placeholder(“z")
= tf.add(x, V)

= tf.multiply(a, 2)
= tf.add(b, a)

Q O 9 N K X

output = sess.run([a,c],
dict of input values)

®
v
*{?. with tf.Session() as sess:
+
.
C

» Glorot initializer: U —\/

0
fan-in + fan-out’

» Use dropout for regularization

» Think about your
optimizer: Adam
or tuned SGD
work well

6.0
5.8}

20 40 60 80 100
Epoch

(e) Generative Parsing (Training Set)

Development Perplexity

Recall: Training Tips

3
+\/fan—in + tan-out

6.0
>8] Adam (Default): 5.47+0.02 ‘
5.6} /dam: 5.35£0.01
s al ./ RMSProp: 5.28+0.00
5.2 HB: 5.13+0.011
-~ Y
AdaGrad: 5.24+0.02 5':)
>-0 20 40 60 80 100

Epoch

(f) Generative Parsing (Development Set)

Recall: Word Vectors

great

XA R xS 2 54 A8 ABSERS Lt by 28 bt o 3¢ b8 SO S Lo s 1t \J AS e 17 CEE R R

SN gy . > .] + ; . & 4
SHE S A = w " ¥] 3 r 38 5, B
BT H =+ MW S % 33 AT 4 R K R I o 4 X K AT e SUBELEERH .Q. i L
HTHESH S v T = LR = 1] H R ittt St

98 3¢ 00 33 X 2 "3 M { INSEN NN HEXR KX %

T XKW 3 L AT XA KRR

..............................
SR e R Rt = e SERES) (oNps DAt ISTIRRd LSt Shel) IO
EE T AN XKML EL LXK ™ WEEL L LXK WML WK LLLK N XN
o I WM e e M WM
¥ X% % XXX, X

XXX XX

president

dog

president

president |the said

governor

governor |the of

governor |the appointed

said sources __ 4 said
said president __ that reported

reported | sources ¢

[Finch and Chater 92, Shuetze 93, many others] b(]d IS

Recall: Word Vectors

» Predict word from context Mikolov et al. (2013)

theédog bit theéman
P _
sum, size d (ww—1, w1)

the » Maximize likelihood of gold labels (no manual labeling required!)

This Lecture

» Recurrent neural networks

» Vanishing gradient problem
» LSTMs / GRUs

» Applications / visualizations

RNN Basics

RNN Motivation

» Feedforward NNs can’t handle variable length input: each position in the
feature vector has fixed semantics

. e

the movie was great that was great |

» Instead, we need to:

1) Process each element in a uniform way

2) ...while still exploiting the context that that token occurs in

RNN Abstraction

» Cell that takes some input x, has some hidden state h, and updates that
hidden state and produces output y (all vector-valued)

outputy
previous h next h
(previous c) (next c)

Input X

RNN Uses

» Transducer: make some prediction for each element in a sequence
DT NN VBD JJ

r 1t 1t 1

the movie was great

» Acceptor/encoder: encode a sequence into a fixed-sized vector and use

that for some purpose
predict sentiment

;I—»;F»;I—»;I< translate
paraphrase/compress

the movie was great

Elman Networks

output vt ht — tanh(WX + Vht—l T bh)
PIEV » Updates hidden state based on input
hidden and current hidden state
state hp.y —— ht

Yt — tanh(Uht -+ by)

» Computes output from hidden state
Input X

» Long history! (invented in the 1980s)

Training EIman Networks

;I—»;IM—» predict sentiment

the movie was great

» Need to backpropagate through the whole network from the end

» RNN potentially needs to learn how to “remember” information for a
long time!

it was my favorite movie of 2016, though it wasn’t without problems -> +

» “Correct” parameter update is to do a better job of remembering the
sentiment of favorite

Vanishing Gradient
@ h) 6.

| L
<- tiny gradient <- small gradient <- gradient

A

tanh

%))

» Gradient diminishes going through tanh; if
not in [-2, 2], gradient is almost O

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMSs

» Desighed to fix “vanishing gradient” problem

» “Cell” ¢ in addition to hidden state h
Ct = Ct_1 ©® f —+ fU.IlC(Xt7 ht—l)

» Vector-valued forget gate f computed based on input and hidden state
f =oc(W*x, + W' h,_)

» Sigmoid: elements of fare in [0, 1]. If f =1, we simply sum up a function
of all inputs — gradient doesn’t vanish!

LSTMSs

O cj=¢j-1 Of +Hg O

f ZO'(XjWXf -T- hj_Ith)

g = ta,nh(ijxg + hj_lwhg)

1 ZU(XjWXi -1 hj_lwhi)
hij h; =tanh(c;) © o
O :O'(ijxo -+ hj_1Wh°)

» f, 1, 0 are gates that control output

» g reflects the main computation of the cell Goldberg lecture notes
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

SR

i
1
X &)

» Gradient still dlmmlshes, but in a controlled way and generally by less —
usually initialize forget gate = 1 to remember everything to start

'<- gradient —»>

A

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Understanding LSTM Parameters

O tan

» Initialize hidden layer randomly

» Need to learn how the gates work: what do
we forget/remember?

» h and x affect i and f: based on state and
input, do we remember the current state or
incorporate new input?

» g uses an arbitrary nonlinearity, this is the
“layer” of the cell

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

What do LSTMs produce?

\

ﬂ

the movie was great

» Encoding of the sentence — can pass this a decoder or make a
classification decision about the sentence

» Encoding of each word — can pass this to another layer to make a
prediction (can also pool these to get a different sentence encoding)

» LSTM can be viewed as a transformation of a sequence of vectors into
a sequence of context-dependent vectors

Multilayer Bidirectional LSTM

e e e S [

the movie was great the movie was great

» Token classification based on
concatenation of both directions’
|:| token representations

I —

» Sentence classification
based on concatenation
of both final outputs

Training LSTMSs

soogH

the movie was great

» Loss = negative log likelihood of probability of gold label (or use SVM
or other loss)

» Backpropagate through entire network

» Example: sentiment analysis

Training LSTMSs

the movie was great

» Loss = negative log likelihood of probability of gold predictions,
summed over the tags

» Loss terms filter back through network

» Example: language modeling (predict next word given context)

GRUSs

» Also solves the vanishing gradient problem, simpler than LSTM

ht — (]_ — Z) () ht—l + 7 (© fllIlC(Xt, hj—l)
7 — O'(WXt + Uht_l)

» z controls mixing of hidden state h with new input x

» Faster to train and often works better — consider using these for the
project!

Cho et al. (2014)

Applications

What can LSTMs model?

» Sentiment

» Encode one sentence, predict
» Language models

» Move left-to-right, per-token prediction
» Translation

» Encode sentence + then decode, use token predictions for attention
weights (next lecture)

Visualizing LSTMs

» Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

» Visualize activations of specific cells to see what they track

» Counter: know when to generate \n

The sole importance of the crossing of the
that it plainly and 1ndub1tably proved the
cutting off the enemy' retreat and the sou
l]ine of action--the one Kutuzov and the gen
demanded--namely, simply to follow the enem

at a continually increasing speed and Rl 1
reaching 1ts goal. It fled like a wounded a
to block its path. This was shown not so mu
made for crossing as by what took place at
broke down, unarmed soldiers, people from M
who were with the French transport, all--ca
pressed forward into boats and 1into the 1ice
surrender.

Berezina lies 1n the Tact
asiaeY of all the plans s
ndness of the only possible
eral mass of the army

y up. The French crowd fled

tsS energy was directedhoe
nimal and it was impossible
ch by the arrangements 1t

the bridges. When the bridges
oscow and women with children
e on by v1is 1nertiae-=s
-covered water and did not,

Karpathy et al. (2015)

Visualizing LSTMs

» Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

» Visualize activations of specific cells to see what they track

» Binary switch: know when to generate ”

Karpathy et al. (2015)

Visualizing LSTMs

» Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

» Visualize activations of specific cells to see what they track

» Stack: activation based on indentation

#i1ifdef CONFIG_AUDITSYSCALL
static inline 1nt@EaAUOYEE RN A SS D ESTINE CELASS S T2 =S K
{
1I'mE s
il elassesslclassl) H

for (1 = @82 1 <= AUDIT_BITNHNASKOSIZEDHAET)

iT ((maskiil] & slassesiclass]ixin

" et L

return 1;

}

Karpathy et al. (2015)

Visualizing LSTMs

» Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

» Visualize activations of specific cells to see what they track

» Uninterpretable: probably doing double-duty, or only makes sense in the
context of another activation

picl{ltr-eld_triﬂno FrEipres@intation [from WSler - spaice
buffer
{lhar Salud 1t palckDstring(lllid *Hbvufp, sEzeltHENEE", SHzemt: NHEN)

har

n))

_.ntgrtr ing Blle 1 d's |
d gth

Karpathy et al. (2015)

What can LSTMs model?

» Sentiment

» Encode one sentence, predict
» Language models

» Move left-to-right, per-token prediction
» Translation

» Encode sentence + then decode, use token predictions for attention
weights (next lecture)

» Textual entailment

» Encode two sentences, predict

Natural Language Inference

Premise Hypothesis
A boy plays in the snow entails A boy is outside
A man inspects the uniform of a figure neutral The man is sleeping
T] d
An older and younger man smiling contradicts WO MEN dre SIS an

laughing at cats playing

» Long history of this task: “Recognizing Textual Entailment” challenge in
2006 (Dagan, Glickman, Magnini)

» Early datasets: small (hundreds of pairs), very ambitious (lots of world
knowledge, temporal reasoning, etc.)

SNLI| Dataset

» Show people captions for (unseen) images and solicit entailed / neural /
contradictory statements

3-way softmax classifier

A
200d tanh layer

» >500,000 sentence pairs

» Encode each sentence and process *
200d tanh layer
100D LSTM: 78% accuracy 4
200d tanh layer
300D LSTM: 80% accuracy N |
(Bowman ot aI., 2016) 100d [}I‘CIIIISC 100d hyTpothesm
. sentence model sentence model
300D BILSTM: 83% accura Cy with premise input with hypothesis input

(Liu et al., 2016)
Bowman et al. (2015)

Aligned Inputs

A boy plays in the snow

» Two statements often have a ‘ /

natural alignment between them
A boy is outside

» Process the hypothesis with
knowledge of the premise

A\ boy\ is outside

» Seeing the alignment lets you A
make entailment judgments as
vou’'re reading the sentence

boy SNOW

Bowman et al. (2015)

Attention Mechanism

» Learned notion of alignment to some input

.,
- ..
~

“‘

L 2 - .~
“
S 4

A boy plays in the snow A boy is outside

» Compare hidden state to encoded input vectors to compute alighment,
use that to compute an input to further processing

» Attention models: 85-86% on SNLI, SOTA = 88%

Takeaways

» RNNs can transduce inputs (produce one output for each input) or
compress the whole input into a vector

» Useful for a range of tasks with sequential input: sentiment analysis,
language modeling, natural language inference, machine translation

» Next time: encoder-decoder (seq2seq) models, machine translation

» Attention: critical idea that really makes it work!

