CS395T: Structured Models for NLP Lecture 15: RNNs I

Greg Durrett

RNN Basics

RNN Abstraction

▶ Cell that takes some input **x**, has some hidden state **h**, and updates that hidden state and produces output **y** (all vector-valued)

RNN Uses

▶ Transducer: make some prediction for each element in a sequence

▶ Acceptor/encoder: encode a sequence into a fixed-sized vector and use that for some purpose

Elman Networks

$$\mathbf{h}_t = \tanh(W\mathbf{x} + V\mathbf{h}_{t-1} + \mathbf{b}_h)$$

 Updates hidden state based on input and current hidden state

$$\mathbf{y}_t = \tanh(U\mathbf{h_t} + \mathbf{b}_y)$$

▶ Computes output from hidden state

▶ Long history! (invented in the 1980s)

Training Elman Networks

- Need to backpropagate through the whole network from the end
- RNN potentially needs to learn how to "remember" information for a long time!

it was my favorite movie of 2016, though it wasn't without problems -> +

• "Correct" parameter update is to do a better job of remembering the sentiment of *favorite*

LSTMs

- ▶ Designed to fix "vanishing gradient" problem
- "Cell" c in addition to hidden state h

$$\mathbf{c}_t = \mathbf{c}_{t-1} \odot \mathbf{f} + \operatorname{func}(\mathbf{x}_t, \mathbf{h}_{t-1})$$

▶ Vector-valued forget gate **f** computed based on input and hidden state

$$\mathbf{f} = \sigma(W^{xf}\mathbf{x}_t + W^{hf}\mathbf{h}_{t-1})$$

▶ Sigmoid: elements of f are in [0, 1]. If f = 1, we simply sum up a function of all inputs — gradient doesn't vanish!

▶ Gradient still diminishes, but in a controlled way and generally by less — usually initialize forget gate = 1 to remember everything to start

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Understanding LSTM Parameters

h and x affect i and f: based on state and input, do we remember the current state or incorporate new input?

• g uses an arbitrary nonlinearity, this is the "layer" of the cell

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

What do LSTMs produce?

the movie was great

- ▶ Encoding of the sentence can pass this a decoder or make a classification decision about the sentence
- ▶ Encoding of each word can pass this to another layer to make a prediction (can also pool these to get a different sentence encoding)
- ▶ LSTM can be viewed as a transformation of a sequence of vectors into a sequence of context-dependent vectors

Training LSTMs

- Loss = negative log likelihood of probability of gold label (or use SVM or other loss)
- ▶ Backpropagate through entire network
- ▶ Example: sentiment analysis

Training LSTMs

- ▶ Loss = negative log likelihood of probability of gold predictions, summed over the tags
- ▶ Loss terms filter back through network
- ▶ Example: language modeling (predict next word given context)

GRUs

▶ Also solves the vanishing gradient problem, simpler than LSTM

$$\mathbf{h}_t = (\mathbf{1} - \mathbf{z}) \odot \mathbf{h}_{t-1} + \mathbf{z} \odot \text{func}(\mathbf{x}_t, \mathbf{h}_{j-1})$$
$$\mathbf{z} = \sigma(W\mathbf{x}_t + U\mathbf{h}_{t-1})$$

- > z controls mixing of hidden state h with new input x
- ▶ Faster to train and often works better consider using these for the project!

Cho et al. (2014)

What can LSTMs model?

- ▶ Sentiment
- ▶ Encode one sentence, predict
- ▶ Language models
- ▶ Move left-to-right, per-token prediction
- ▶ Translation
- ▶ Encode sentence + then decode, use token predictions for attention weights (next lecture)

Visualizing LSTMs

- ▶ Train *character* LSTM language model (predict next character based on history) over two datasets: War and Peace and Linux kernel source code
- ▶ Visualize activations of specific cells to see what they track
- ▶ Counter: know when to generate \n

Karpathy et al. (2015

Visualizing LSTMs

- ▶ Train *character* LSTM language model (predict next character based on history) over two datasets: War and Peace and Linux kernel source code
- ▶ Visualize activations of specific cells to see what they track
- ▶ Binary switch: know when to generate "

Karpathy et al. (2015

Visualizing LSTMs

- ▶ Train character LSTM language model (predict next character based on history) over two datasets: War and Peace and Linux kernel source code
- ▶ Visualize activations of specific cells to see what they track
- ▶ Stack: activation based on indentation

#ifdef CONFIG_AUDITSYSCALL
static inline int audit_match_class_bits(int class, u32 *mask)
int i;
if (classes[class]) {
 for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
 if (mask[i] & classes[class][i])
 return 0;
}
return 1;
}</pre>

Karpathy et al. (2015)

Visualizing LSTMs

- ▶ Train *character* LSTM language model (predict next character based on history) over two datasets: War and Peace and Linux kernel source code
- Visualize activations of specific cells to see what they track
- Uninterpretable: probably doing double-duty, or only makes sense in the context of another activation

Karpathy et al. (2015)

What can LSTMs model?

- ▶ Sentiment
- ▶ Encode one sentence, predict
- ▶ Language models
- ▶ Move left-to-right, per-token prediction
- ▶ Translation
- ► Encode sentence + then decode, use token predictions for attention weights (next lecture)
- ▶ Textual entailment
- ▶ Encode two sentences, predict

Natural Language Inference

Premise Hypothesis

A boy plays in the snow entails A boy is outside

A man inspects the uniform of a figure neutral The man is sleeping

An older and younger man smiling contradicts Two men are smiling and laughing at cats playing

- ▶ Long history of this task: "Recognizing Textual Entailment" challenge in 2006 (Dagan, Glickman, Magnini)
- ▶ Early datasets: small (hundreds of pairs), very ambitious (lots of world knowledge, temporal reasoning, etc.)

SNLI Dataset

- ▶ Show people captions for (unseen) images and solicit entailed / neural / contradictory statements
- >500,000 sentence pairs
- ▶ Encode each sentence and process

100D LSTM: 78% accuracy

300D LSTM: 80% accuracy (Bowman et al., 2016)

300D BiLSTM: 83% accuracy (Liu et al., 2016)

Bowman et al. (2015)

Aligned Inputs

- Two statements often have a natural alignment between them
- Process the hypothesis with knowledge of the premise
- Seeing the alignment lets you make entailment judgments as you're reading the sentence

Bowman et al. (2015)

Attention Mechanism

▶ *Learned* notion of alignment to some input

- ▶ Compare hidden state to encoded input vectors to compute alignment, use that to compute an input to further processing
- ▶ Attention models: 85-86% on SNLI, SOTA = 88%

Takeaways

- ▶ RNNs can transduce inputs (produce one output for each input) or compress the whole input into a vector
- ▶ Useful for a range of tasks with sequential input: sentiment analysis, language modeling, natural language inference, machine translation
- Next time: encoder-decoder (seq2seq) models, machine translation
- ▶ Attention: critical idea that really makes it work!