CS395T: Structured Models for NLP
Lecture 15: RNNs |

Greg Durrett

Recall: Computation Graphs

tf.placeholder (“x”

z)

x =
y = tf.placeholder(“y”)
z = tf.placeholder(“z")
a = tf.add(x, y)

b = tf.multiply(a,

c = tf.add(b, a)

with tf.Session() as sess:

output

sess.run([a,c],

dict of input values)

» Glorot initializer:

Recall: Training Tips

6
%_\/fan—h1+—fan—out]

U

» Use dropout for regularization

» Think about your
optimizer: Adam
or tuned SGD
work well

6
_\/fan-in + fan-out’

20 80

40 60
Epoch

(e) Generative Parsing (Training Set)

1

3

6.0 6.0
5.8 > ‘

256 %58 \\\\Adam (Default): 5.47:0.02

854 B

gs 356 Adam: 5.35:0.01

352 s Lot

2s.0 £54 RMSProp: 5.28+0.00

g 8>

548 s

s gsvz HB: 5.1340.01
4.4 AdaGrad: 5.24+0.02 -

ob—— 7" " SGD:5.0940.04 |

o

20 40 60 80 1
Epoch

(f) Generative Parsing (Development Set)

Recall: Word Vectors

that the downturn was over

president |the __ of -

president |the __ said<—J
governor

governor |the __ of

governor |the __ appointed

said sources _ ¢ Sa‘;d

said president __ that reporte

reported | sources __ ¢

[Finch and Chater 92, Shuetze 93, many others]

great
good
enjoyable
dog
bad is

Recall: Word Vectors

» Predict word from context Mikolov et al. (2013

sum, size d

P(w|w_1,w41)

th_e » Maximize likelihood of gold labels (no manual labeling required!)

This Lecture
» Recurrent neural networks

» Vanishing gradient problem
» LSTMs / GRUs

» Applications / visualizations

RNN Basics

RNN Motivation

» Feedforward NNs can’t handle variable length input: each position in the
feature vector has fixed semantics

I
1 1 1 fF f 1 1

the movie was great that was great !

» Instead, we need to:

1) Process each element in a uniform way

2) ...while still exploiting the context that that token occurs in

RNN Abstraction

» Cell that takes some input x, has some hidden state h, and updates that
hidden state and produces output y (all vector-valued)

outputy
previous h next h
_ —
---------- > EEE RT3
(previous c) (next c)
input x

RNN Uses

» Transducer: make some prediction for each element in a sequence
DT NN VBD JJ

CHLH

tr 1

the movie was great

» Acceptor/encoder: encode a sequence into a fixed-sized vector and use

that for some purpose
predict sentiment

|;|—>|;|4-|;|—-|;|< translate
paraphrase/compress

the movie was great

Elman Networks

output y;

prev I

hidden

state hyy — — h
input x:

ht = tanh(Wx + Vhtfl + bh)

» Updates hidden state based on input
and current hidden state

y+ = tanh(Uh¢ + b))

» Computes output from hidden state

» Long history! (invented in the 1980s)

Training ElIman Networks

;'ﬂl;'ﬂ_.l;‘_’ predict sentiment

the movie was great
» Need to backpropagate through the whole network from the end

» RNN potentially needs to learn how to “remember” information for a
long time!
it was my favorite movie of 2016, though it wasn’t without problems -> +

» “Correct” parameter update is to do a better job of remembering the
sentiment of favorite

Vanishing Gradient
@ ®) &

h

1 1
<- tiny gradient}i« small gradient }7

A

W
(
J J

|
©

» Gradient diminishes going through tanh; if
not in [-2, 2], gradient is almost O

®

http://colah.github.io/posts/2015-08-Understanding-LSTMs

LSTMs

» Designed to fix “vanishing gradient” problem

» “Cell” cin addition to hidden state h
ci=ci_1Of +|func(xt, ht_1)|

» Vector-valued forget gate f computed based on input and hidden state
f=o(W*x, + Wh'h;)

» Sigmoid: elements of f are in [0, 1]. If f =1, we simply sum up a function
of all inputs — gradient doesn’t vanish!

LSTMs
Cj =Cj—1 of +

f =o(x;W*f + h;_; WPf)

g = tanh(x;W>8 4 h;_; W"8)
i =0 (x;W*! + h;_; W)

h; =tanh(c;) ©® 0

0 =0 (x;W*° + h;_; Wh°)

» f, i, o are gates that control output

» g reflects the main computation of the cell Goldberg lecture notes

http://colah.github.io/posts/2015-08-Understanding-LSTMs

&)

. t

’similar gradient <- F»x ________ o— > I
L

»

&) ® &)

» Gradient still diminishes, but in a controlled way and generally by less —
usually initialize forget gate = 1 to remember everything to start

http://colah.github.io/posts/2015-08-Understanding-LSTMs

Understanding LSTM Parameters

» Initialize hidden layer randomly

» Need to learn how the gates work: what do
we forget/remember?

» h and x affect i and f: based on state and
input, do we remember the current state or
incorporate new input?

» g uses an arbitrary nonlinearity, this is the
“layer” of the cell

http://colah.github.io/posts/2015-08-Understanding-LSTMs

What do LSTMs produce?
[I[I[I[RN
II::]II::] I I[|

the movie was great

» Encoding of the sentence — can pass this a decoder or make a
classification decision about the sentence

» Encoding of each word — can pass this to another layer to make a
prediction (can also pool these to get a different sentence encoding)

» LSTM can be viewed as a transformation of a sequence of vectors into
a sequence of context-dependent vectors

Multilayer Bidirectional LSTM
[I I I[| [I I I[|
[! I ! I ! Il ! | |:|‘|_|i|‘J|i|ll ! I[! |
[! I ! I ! I[!] |:|‘|_|i|‘;|i|ll ! Il ! |

the movie was great

the movie was great
» Token classification based on
concatenation of both directions’
|:| token representations
I |

» Sentence classification
based on concatenation
of both final outputs

Training LSTMs

the movie was great

» Loss = negative log likelihood of probability of gold label (or use SVM
or other loss)

» Backpropagate through entire network

» Example: sentiment analysis

Training LSTMs

I I[I[Il |
the movie was great

» Loss = negative log likelihood of probability of gold predictions,
summed over the tags

» Loss terms filter back through network

» Example: language modeling (predict next word given context)

GRUs

» Also solves the vanishing gradient problem, simpler than LSTM
h,=(1-2)®h;_1 +2z0 func(xs, h;_q)
z = O'(WXt + Uht_l)

» z controls mixing of hidden state h with new input x

» Faster to train and often works better — consider using these for the
project!

Cho et al. (2014)

Applications

What can LSTMs model?

» Sentiment

» Encode one sentence, predict
» Language models

» Move left-to-right, per-token prediction
» Translation

» Encode sentence + then decode, use token predictions for attention
weights (next lecture)

: Visualizing LSTMs

» Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

» Visualize activations of specific cells to see what they track
» Counter: know when to generate \n

The sole importance of the crossing of the Berezina lies in the fact
that it plainly and indubitably proved the fallacy of all the plans for
cutting off the enemy's retreat and the soundness of the only possible
line of action--the one Kutuzov and the general mass of the army
demanded--namely, simply to follow the enemy up. The French crowd fled
at a continually increasing speed and all its energy was directed to
reaching its goal. It fled like a wounded animal and it was impossible
to block its path. This was shown not so much by the arrangements it
made for crossing as by what took place at the bridges. When the bridges

broke down, unarmed soldiers, people from Moscow and women with children
who were with the French transport, all--carried on by vis inertiae-
pressed forward into boats and into the ice-covered water and did notT

surrender .

Karpathy et al. (2015

() Visualizing LSTMs

» Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

» Visualize activations of specific cells to see what they track
» Binary switch: know when to generate ”

oy

Karpathy et al. (2015

W) Visualizing LSTMs

» Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code
» Visualize activations of specific cells to see what they track

» Stack: activation based on indentation

#ifdef CONFIG_AUDITSYSCALL
tatic inline int audit_match_class_bits(int class, u32 *mask)

mo

for (i = i < AUDIT_BITMASK_SIZE; i++)
1)

if illskl;] & clusses[cll;s]fi
}
return 1;
}

Karpathy et al. (2015

3 Visualizing LSTMs

» Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

» Visualize activations of specific cells to see what they track

» Uninterpretable: probably doing double-duty, or only makes sense in the
context of another activation

r ‘ltif-eld_trlﬂﬂ representation firom User-space
buffer
di

lnar t pack_string(Velid *®bufp, size_ t Mremain, size_ t| Len)
I? * s t [l
(b ufp) IIECTERTSTE e nadn))
reiturn) @
f e urrently plem@n ted tring fields, PATHINAX
n e ngest 15 gth

Karpathy et al. (2015

What can LSTMs model?

» Sentiment

» Encode one sentence, predict
» Language models

» Move left-to-right, per-token prediction
» Translation

» Encode sentence + then decode, use token predictions for attention
weights (next lecture)

» Textual entailment

» Encode two sentences, predict

Natural Language Inference

Premise Hypothesis
A boy plays in the snow entails A boy is outside
A man inspects the uniform of a figure neutral The man is sleeping

Two men are smiling and

contradicts . .
laughing at cats playing

An older and younger man smiling

» Long history of this task: “Recognizing Textual Entailment” challenge in
2006 (Dagan, Glickman, Magnini)

» Early datasets: small (hundreds of pairs), very ambitious (lots of world
knowledge, temporal reasoning, etc.)

SNLI Dataset

» Show people captions for (unseen) images and solicit entailed / neural /

contradictory statements

» >500,000 sentence pairs Sy e it

4
200d tanh 1
» Encode each sentence and process L
200d tanh layer

100D LSTM: 78% accuracy

300D LSTM: 80% accuracy
(Bowman et al., 2016)

200d tanh layer

100d premise 100d hypothesis

sentence model

sentence model
with hypothesis input

with premise input

300D BiLSTM: 83% accuracy
(Liu et al., 2016)

Bowman et al. (2015)

Aligned Inputs

A boy plays in the snow

» Two statements often have a | | /

natural alighment between them
A boy is outside

At boy\ is outsiée
A boy

snow

» Process the hypothesis with
knowledge of the premise

» Seeing the alighment lets you
make entailment judgments as

you're reading the sentence
Bowman et al. (2015)

Attention Mechanism

» Learned notion of alignment to some input

Footen vovy

A boy plays in the snow is outside

» Compare hidden state to encoded input vectors to compute alignment,

use that to compute an input to further processing

» Attention models: 85-86% on SNLI, SOTA = 88%

Takeaways

» RNNs can transduce inputs (produce one output for each input) or
compress the whole input into a vector

» Useful for a range of tasks with sequential input: sentiment analysis,
language modeling, natural language inference, machine translation

» Next time: encoder-decoder (seq2seq) models, machine translation

» Attention: critical idea that really makes it work!

