
CS395T:	Structured	Models	for	NLP	
Lecture	15:	RNNs	I

Greg	Durrett

Recall:	Computa@on	Graphs
x = tf.placeholder(“x”)

y = tf.placeholder(“y”)

z = tf.placeholder(“z”)

a = tf.add(x, y)

b = tf.multiply(a, z)
c = tf.add(b, a)

output = sess.run([a,c],  
 dict_of_input_values)

with tf.Session() as sess:

Recall:	Training	Tips

U

"
�
r

6

fan-in + fan-out

,+

r
6

fan-in + fan-out

#
‣ Glorot	ini@alizer:

‣ Use	dropout	for	regulariza@on

‣ Think	about	your	
op@mizer:	Adam	
or	tuned	SGD	
work	well

Recall:	Word	Vectors

good
enjoyable

bad

dog

great

is

Recall:	Word	Vectors
‣ Predict	word	from	context the	dog	bit	the	man

dog

the

+

sum,	size	d
P (w|w�1, w+1)

soPmaxMul@ply 
by	W

‣ Maximize	likelihood	of	gold	labels	(no	manual	labeling	required!)

Mikolov	et	al.	(2013)

This	Lecture

‣ Vanishing	gradient	problem

‣ Recurrent	neural	networks

‣ LSTMs	/	GRUs

‣ Applica@ons	/	visualiza@ons

RNN	Basics

RNN	Mo@va@on
‣ Feedforward	NNs	can’t	handle	variable	length	input:	each	posi@on	in	the	
feature	vector	has	fixed	seman@cs

‣ Instead,	we	need	to:
1)	Process	each	element	in	a	uniform	way

the		movie		was			great that			was			great					!

2)	…while	s@ll	exploi@ng	the	context	that	that	token	occurs	in

RNN	Abstrac@on
‣ Cell	that	takes	some	input	x,	has	some	hidden	state	h,	and	updates	that	
hidden	state	and	produces	output	y	(all	vector-valued)

previous	h next	h

(previous	c) (next	c)

input	x

output	y

RNN	Uses
‣ Transducer:	make	some	predic@on	for	each	element	in	a	sequence

‣ Acceptor/encoder:	encode	a	sequence	into	a	fixed-sized	vector	and	use	
that	for	some	purpose

the		movie		was			great

predict	sen@ment

translate

the		movie		was			great

DT						NN				VBD					JJ

paraphrase/compress

Elman	Networks

input	xt

prev	
hidden	
state	ht-1 ht

output	yt

‣ Computes	output	from	hidden	state

‣ Updates	hidden	state	based	on	input	
and	current	hidden	state

‣ Long	history!	(invented	in	the	1980s)

yt = tanh(Uht + by)

ht = tanh(Wx+ V ht�1 + bh)

Training	Elman	Networks

the		movie		was			great

predict	sen@ment

‣Need	to	backpropagate	through	the	whole	network	from	the	end

‣ RNN	poten@ally	needs	to	learn	how	to	“remember”	informa@on	for	a	
long	@me!

it	was	my	favorite	movie	of	2016,	though	it	wasn’t	without	problems	->	+

‣ “Correct”	parameter	update	is	to	do	a	beger	job	of	remembering	the	
sen@ment	of	favorite

Vanishing	Gradient

‣ Gradient	diminishes	going	through	tanh;	if	
not	in	[-2,	2],	gradient	is	almost	0

<-	gradient<-	small	gradient<-	@ny	gradient

hgp://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs
‣Designed	to	fix	“vanishing	gradient”	problem

‣ “Cell”	c	in	addi@on	to	hidden	state	h

‣ Vector-valued	forget	gate	f	computed	based	on	input	and	hidden	state

‣ Sigmoid:	elements	of	f	are	in	[0,	1].	If	f	=	1,	we	simply	sum	up	a	func@on	
of	all	inputs	—	gradient	doesn’t	vanish!

ct = ct�1 � f + func(xt,ht�1)

f = �(W xf

x

t

+Whf

h

t�1)

LSTMs

xj

f
g

i
o

hjhj-1

cj-1 cj

hgp://colah.github.io/posts/2015-08-Understanding-LSTMs/
Goldberg	lecture	notes

‣ f,	i,	o	are	gates	that	control	output
‣ g	reflects	the	main	computa@on	of	the	cell

LSTMs

‣Gradient	s@ll	diminishes,	but	in	a	controlled	way	and	generally	by	less	—	
usually	ini@alize	forget	gate	=	1	to	remember	everything	to	start

<-	gradientsimilar	gradient	<-

hgp://colah.github.io/posts/2015-08-Understanding-LSTMs/

Understanding	LSTM	Parameters

‣ Ini@alize	hidden	layer	randomly

‣Need	to	learn	how	the	gates	work:	what	do	
we	forget/remember?

xj

f
g

i
o

hjhj-1

cj-1 cj

‣ h	and	x	affect	i	and	f:	based	on	state	and	
input,	do	we	remember	the	current	state	or	
incorporate	new	input?

hgp://colah.github.io/posts/2015-08-Understanding-LSTMs/

‣ g	uses	an	arbitrary	nonlinearity,	this	is	the	
“layer”	of	the	cell

What	do	LSTMs	produce?

‣ Encoding	of	each	word	—	can	pass	this	to	another	layer	to	make	a	
predic@on	(can	also	pool	these	to	get	a	different	sentence	encoding)

=

‣ Encoding	of	the	sentence	—	can	pass	this	a	decoder	or	make	a	
classifica@on	decision	about	the	sentence

the		movie		was			great

‣ LSTM	can	be	viewed	as	a	transforma@on	of	a	sequence	of	vectors	into	
a	sequence	of	context-dependent	vectors

Mul@layer	Bidirec@onal	LSTM

‣ Sentence	classifica@on	
based	on	concatena@on	
of	both	final	outputs

‣ Token	classifica@on	based	on	
concatena@on	of	both	direc@ons’	
token	representa@ons

the		movie		was			great the		movie		was			great

Training	LSTMs

the		movie		was			great

‣ Loss	=	nega@ve	log	likelihood	of	probability	of	gold	label	(or	use	SVM	
or	other	loss)

P (y|x)

‣ Backpropagate	through	en@re	network
‣ Example:	sen@ment	analysis

Training	LSTMs

the		movie		was			great

‣ Loss	=	nega@ve	log	likelihood	of	probability	of	gold	predic@ons,	
summed	over	the	tags

‣ Loss	terms	filter	back	through	network

P (ti|x)

‣ Example:	language	modeling	(predict	next	word	given	context)

GRUs
‣ Also	solves	the	vanishing	gradient	problem,	simpler	than	LSTM

‣ z	controls	mixing	of	hidden	state	h	with	new	input	x

ht = (1� z)� ht�1 + z� func(xt,hj�1)

z = �(Wxt + Uht�1)

‣ Faster	to	train	and	oPen	works	beger	—	consider	using	these	for	the	
project!

Cho	et	al.	(2014)

Applica@ons

What	can	LSTMs	model?
‣ Sen@ment

‣ Transla@on

‣ Language	models

‣ Encode	one	sentence,	predict

‣ Move	leP-to-right,	per-token	predic@on

‣ Encode	sentence	+	then	decode,	use	token	predic@ons	for	agen@on	
weights	(next	lecture)

Visualizing	LSTMs
‣ Train	character	LSTM	language	model	(predict	next	character	based	on	
history)	over	two	datasets:	War	and	Peace	and	Linux	kernel	source	code

Karpathy	et	al.	(2015)

‣ Counter:	know	when	to	generate	\n
‣ Visualize	ac@va@ons	of	specific	cells	to	see	what	they	track

Visualizing	LSTMs

Karpathy	et	al.	(2015)

‣ Binary	switch:	know	when	to	generate	”
‣ Visualize	ac@va@ons	of	specific	cells	to	see	what	they	track

‣ Train	character	LSTM	language	model	(predict	next	character	based	on	
history)	over	two	datasets:	War	and	Peace	and	Linux	kernel	source	code

Visualizing	LSTMs

Karpathy	et	al.	(2015)

‣ Stack:	ac@va@on	based	on	indenta@on
‣ Visualize	ac@va@ons	of	specific	cells	to	see	what	they	track

‣ Train	character	LSTM	language	model	(predict	next	character	based	on	
history)	over	two	datasets:	War	and	Peace	and	Linux	kernel	source	code

Visualizing	LSTMs

Karpathy	et	al.	(2015)

‣Uninterpretable:	probably	doing	double-duty,	or	only	makes	sense	in	the	
context	of	another	ac@va@on

‣ Visualize	ac@va@ons	of	specific	cells	to	see	what	they	track

‣ Train	character	LSTM	language	model	(predict	next	character	based	on	
history)	over	two	datasets:	War	and	Peace	and	Linux	kernel	source	code

What	can	LSTMs	model?
‣ Sen@ment

‣ Transla@on

‣ Language	models

‣ Encode	one	sentence,	predict

‣ Move	leP-to-right,	per-token	predic@on

‣ Encode	sentence	+	then	decode,	use	token	predic@ons	for	agen@on	
weights	(next	lecture)

‣ Textual	entailment

‣ Encode	two	sentences,	predict

Natural	Language	Inference

A	man	inspects	the	uniform	of	a	figure The	man	is	sleeping

An	older	and	younger	man	smiling
Two	men	are	smiling	and	
laughing	at	cats	playing

A	boy	plays	in	the	snow A	boy	is	outsideentails

neutral

contradicts

‣ Long	history	of	this	task:	“Recognizing	Textual	Entailment”	challenge	in	
2006	(Dagan,	Glickman,	Magnini)

‣ Early	datasets:	small	(hundreds	of	pairs),	very	ambi@ous	(lots	of	world	
knowledge,	temporal	reasoning,	etc.)

Premise Hypothesis

SNLI	Dataset

Bowman	et	al.	(2015)

‣ Show	people	cap@ons	for	(unseen)	images	and	solicit	entailed	/	neural	/	
contradictory	statements

‣ >500,000	sentence	pairs

100D	LSTM:	78%	accuracy

300D	LSTM:	80%	accuracy 
																(Bowman	et	al.,	2016)

300D	BiLSTM:	83%	accuracy	
																(Liu	et	al.,	2016)

‣ Encode	each	sentence	and	process

Aligned	Inputs

Bowman	et	al.	(2015)

A						boy						is			outside

A						boy													snow

A	boy	plays	in	the	snow

A	boy	is	outside

‣ Seeing	the	alignment	lets	you	
make	entailment	judgments	as	
you’re	reading	the	sentence

‣ Two	statements	oPen	have	a	
natural	alignment	between	them

‣ Process	the	hypothesis	with	
knowledge	of	the	premise

Agen@on	Mechanism

A						boy						is			outside

‣ Learned	no@on	of	alignment	to	some	input

A						boy			plays				in					the			snow

‣ Compare	hidden	state	to	encoded	input	vectors	to	compute	alignment,	
use	that	to	compute	an	input	to	further	processing

‣ Agen@on	models:	85-86%	on	SNLI,	SOTA	=	88%

Takeaways
‣ RNNs	can	transduce	inputs	(produce	one	output	for	each	input)	or	
compress	the	whole	input	into	a	vector

‣ Useful	for	a	range	of	tasks	with	sequen@al	input:	sen@ment	analysis,	
language	modeling,	natural	language	inference,	machine	transla@on

‣ Next	@me:	encoder-decoder	(seq2seq)	models,	machine	transla@on

‣ Agen@on:	cri@cal	idea	that	really	makes	it	work!

