
CS395T:	Structured	Models	for	NLP	
Lecture	21:	Deep	Genera>ve	Models	I

Greg	Durrett

Administrivia
‣ Final	project	proposals	due	today

‣ Project	3	grades	back	tonight

Project	3	Results
‣ Tanya	Goyal:	82.46

‣ Su	Wang:	81.89

‣ Aditya	Gupta:	81.80

‣ Elisa	Ferracane:	81.23
‣ BiLSTM	with	hidden	state	dim	=	32,	batch	=	16,	epochs	=	10

‣ Ensemble	of	(Bi?)LSTMs,	hidden	state	dim	=	200,	different	learning	rates	
for	different	pieces	of	the	model

‣ Ensemble	of	2-layer	LSTMs	with	mean	pooling,	two-step	training	
procedure:	fine-tune	vectors,	then	fix	vectors	and	learn	LSTM

‣ 2-channel	CNN	with	100	feature	maps,	batch	=	64,	25	epochs,	L2	
regulariza>on	and	aggressive	learning	rate	decay	(0.95	per	100	epochs)

Recall:	Memory	Networks
‣Memory	networks	let	you	reference	input	in	an	a_en>on-like	way

‣Memorize	input	items	into	two	vectors:	a	key	and	a	value

Memory	layer

q

ok1
v1

k2
v2

k3
v3

ei = q · ki

↵ = softmax(e)

o =
X

i

↵ivi

‣ Keys	compute	a_en>on	weights	given	a	query,	weighted	sum	of	values	
gives	the	output

Sukhbaatar	et	al.	(2015)

Recall:	A_en>ve	Reader

Hermann	et	al.	(2015)

‣ A_en>ve	reader:	encode	
query,	encode	sentence,	
use	a_en>on	to	compute	
document	representa>on,	
make	predic>on

‣ Uses	fixed-size	
representa>ons	for	the	
final	predic>on,	mul>class	
classifica>on

Recall:	Bidirec>onal	A_en>on	Flow

Seo	et	al.	(2016)

This	Lecture
‣ Varia>onal	autoencoders	as	deep	genera>ve	models

‣ Varia>onal	autoencoders	as	autoencoders

‣ Induce	latent	structure	from	the	data	by	training	in	an	unsupervised	way

‣ Can	sample	from	them	to	produce	examples

Deep	Genera>ve	Models

Genera>ve	Models
‣ Discrete	class	bag-of-words	model:

…

z

x1 x2 x3

discrete	class:	{1,	2,	…,	n}

document	words	drawn	from	the	vocabulary

P (z)

P (x|z)
Science

too	many	drug	trials	too	few	pa9ents

P (z = Science)P (too|z = Science)P (many|z = Science) . . .

Recall:	EM	for	Genera>ve	Models

logP (x|✓) = log

X

z

P (x, z|✓)

Science

too	many	drug	trials	too	few	pa9ents

P (z = Science)P (too|z = Science)P (many|z = Science) . . .

‣ Unsupervised	learning:	find	parameters	to	maximize	marginal	likelihood

‣ EM	is	a	technique	for	doing	this	maximiza>on

Recall:	EM

‣ Varia>onal	approxima>on	q

‣ Jensen’s	inequality	(uses	concavity	
of	log)

‣ Can	op>mize	this	lower-bound	on	log	likelihood	instead	of	log-likelihood

Adapted	from	Leon	Gu

log

X

z

P (x, z|✓)

= log

X

z

q(z)
P (x, z|✓)

q(z)

�
X

z

q(z) log
P (x, z|✓)

q(z)

= Eq(z) logP (x, z|✓) + Entropy[q(z)]

Recall:	EM

‣ If ,	equality	is	achieved

‣ Expecta>on-maximiza>on:	alterna>ng	maximiza>on	of	the	
lower	bound	over	q	and

‣ E-step:	maximize	w.r.t.	q;	that	is,	

‣M-step:	maximize	w.r.t.			;	that	is,	✓

✓
‣ Current	>mestep	=	t,	have	parameters	✓t�1

log

X

z

P (x, z|✓) � Eq(z) logP (x, z|✓) + Entropy[q(z)]

q(z) = P (z|x, ✓)

qt = P (z|x, ✓t�1)

✓t = argmax✓Eqt logP (x, z|✓)

Recall:	EM

L(x1,...,D; ✓)

M-step:	find	
maximum	of	
lower	bound

L(x1,...,D) =

DX

i=1

log

X

y

P (y,xi)

E-step:	compute	
lower	bound

ini>al	
params

EM	for	Genera>ve	Models

‣What	form	does	q	take?	q	is	a	mul>nomial,	so	just	a	bunch	of	numbers

too	many	drug	trials	too	few	pa9ents

z

‣ Easy	to	compute,	easy	to	represent

✓t = argmax✓Eqt logP (x, z|✓)
‣M-step:	supervised	learning	problem	with	frac>onal	annota>on;	possible	
because	we	can	take	the	expecta>on:

q(z) = P (z|x, ✓) / P (z)
Y

i

P (xi|z)

Deep	Genera>ve	Models

…

z

x1 x2 x3

con>nuous	vector

document	words	drawn	from	the	vocabulary

P (z)

Miao	et	al.	(2015)

P (x|z) = softmax(emb(x)

>
z � b

x

)

‣ Neural	document	model:	probability	of	a	word	is	depends	on	its	dot	
product	with	the	topic	vector	z	(or	use	an	even	more	complicated	NN)

‣What	is	P(z)?	Let’s	just	say	N(0,	1)	for	now…

EM	for	Deep	Genera>ve	Models
Expecta>on-maximiza>on:	alterna>ng	maximiza>on	over	q	and

E-step:	maximize	w.r.t.	q;	that	is,	

M-step:	maximize	w.r.t.			;	that	is,	✓

✓
qt = P (z|x, ✓t�1)

✓t = argmax✓Eqt logP (x, z|✓)

P (x|z) = softmax(emb(x)

>
z � b

x

)

P (z) = N(0, 1)

‣ P(z|x)	is	now	a	complicated	distribu>on,	can’t	simply	use	it	for	q

EM	for	Deep	Genera>ve	Models
Expecta>on-maximiza>on:	alterna>ng	maximiza>on	over	q	and

E-step:	maximize	w.r.t.	q;	that	is,	

M-step:	maximize	w.r.t.			;	that	is,	✓

✓

✓t = argmax✓Eqt logP (x, z|✓)

‣ P(z|x)	is	now	a	complicated	distribu>on,	can’t	simply	use	it	for	q

‣ E-step:	choose	a	family	of	distribu>ons	q,	find	the	best	q	in	that	family

‣ Even	compu>ng	the	best	mu	and	sigma	for	an	example	is	hard!

‣M-step:	now	we	need	to	take	an	expecta>on	over	a	con>nuous	distribu>on

P (x|z) = softmax(emb(x)

>
z � b

x

)

P (z) = N(0, 1)

qt = argminqKL(q(z)kP (z|x))

q = N(µ, diag(�2))

Deep	Genera>ve	Models
‣ EM	doesn’t	seem	to	be	helping…let’s	start	over	with	the	objec>ve

log

X

z

P (x, z|✓) = log

X

z

q(z)
P (x, z|✓)

q(z)
�

X

z

q(z) log
P (x, z|✓)

q(z)

Jensen

= Eq(z|x)[� log q(z|x) + logP (x, z|✓)]

‣ Different	arrangement	of	terms:	KL	between	q	and	prior	+	condi>onal	
likelihood	term

= Eq(z|x)[logP (x|z, ✓)]�KL(q(z|x)kP (z))

Comparison	of	Objec>ves

‣ Approximate	q	with	a	separate	set	of	parameters,	op>mize	q	and	
theta	jointly	with	gradient	descent

‣ EM:	

‣ VAE:
“make	the	data	likely	under	q”  

(discrimina>ve)
“make	q	close	to	the	prior”

‣ S>ll	need	to	reckon	with	that	expecta>on	over	a	con>nuous	q(z)…

“make	the	data	likely	under	q”  
(genera>ve)

Eq(z|x)[logP (x|z, ✓)]�KL(q(z|x)kP (z))

Eq(z|x)[logP (x, z|✓)] + Entropy[q(z|x)] +KL(q(z|x)kP (z|x, ✓))

Varia>onal	Autoencoders
Eq(z|x)[logP (x|z, ✓)] + KL(q(z|x)kP (z))

x

Input

q(z|x)

x

distribu>on	over	z

Maximize	P(x|z,θ)

“inference	network”

genera>ve	model
x

z

Genera>ve	model	(test): Autoencoder	(training):

Miao	et	al.	(2015)

Training	VAEs

x

q(z|x)

x

“inference	network”

genera>ve	model

Autoencoder	(training):‣ Choose	q	to	be	Gaussian	with	
parameters	that	are	computed	from	x

Miao	et	al.	(2015)

q = N(µ(x), diag(�2(x)))

‣ mu	and	sigma	are	computed	from	one-
layer	feedforward	networks	over	x,	call	
their	parameters	

�

✓

Eq(z|x)[logP (x|z, ✓)] + KL(q(z|x)kP (z))

‣ How	to	handle	the	expecta>on?	Just	sample!

�

Training	VAEs

x

q(z|x)

x

“inference	network”

genera>ve	model

Autoencoder	(training):For	each	example	x

Compute	q	(run	forward	pass	to	
compute	mu	and	sigma)

Sample	z	~	q

For	some	number	of	samples

Compute	P(x|z)	and	compute	loss

Backpropagate	to	update	phi,	theta

�

✓

Reparameteriza>on	Trick

Kingma	and	Welling	(2013)

z

x

‣ Can’t	
backpropagate	
through	a	sampling	
opera>on

µ �

x

loss

sample

‣ Recall	that

Before:

µ �

sample

z

x

loss

*+

x

Ater:

N(µ, diag(�2)) = µ+ �N(0, I)

Training	VAEs

x

q(z|x)

x

“inference	network”

genera>ve	model

Autoencoder	(training):For	each	example	x

Compute	q	(run	forward	pass	to	
compute	mu	and	sigma)

Sample	z	~	q

For	some	number	of	samples

Compute	P(x|z)	and	compute	loss

Backpropagate	to	update	phi,	theta

�

✓

VAEs	as	Deep	Genera>ve	Models

‣We’ve	seen	a	way	to	train	this	real-valued	bag-of-words	model	in	a	fully	
unsupervised	way

…

z

x1 x2 x3

con>nuous	vector

document	words	drawn	from	the	vocabulary

P (z)

P (x|z) = softmax(emb(x)

>
z � b

x

)

‣ “Encoder	network”	looks	like	the	E-step	of	EM	(but	has	dis>nct	
parameters),	backpropagate	end-to-end	through	encoder	and	decoder

Neural	Varia>onal	Document	Model

Miao	et	al.	(2015)

‣ Train	this	genera>ve	model	on	20NewsGroups	(online	newsgroups)	and	
RCV1	(newswire)

‣ Unsupervised	learning:	how	to	evaluate?

‣ Data	likelihood	(perplexity)

‣ See	if	interes>ng	latent	structure	comes	out

Neural	Varia>onal	Document	Model

Miao	et	al.	(2015)

‣ Randomly	sample	a	dimension	of	z,	see	
what	words	score	highest	along	that	
axis,	manually	label	that	dimension

History:	Restricted	Boltzmann	Machines

‣ Contras>ve	divergence: 
given	x,	compute	P(z|x),	sample	z 
sample	x’	~	P(x|z),	sample	z’	~	P(z’|x)  
update	towards	(z,	x)	away	from	(z’,	x’)

‣ Neural	genera>ve	model	with	hidden	(boolean)	
variables	z	and	observed	variables	x

“inference	network”
“genera>ve	network”

Smolensky	(1986),	Carreira-Perpiñán	and	Hinton	(2005)

P (x, z) =

1

z

exp(x

>
Wz)

‣ “Wake”	phase:	take	data,	encode	it	“upwards”	using	
R,	train	G	in	a	supervised	way

‣ “Sleep”	phase:	generate	top-down,	train	R	in	a	
supervised	way

‣ One	layer	of	this	trained	end-to-end	looks	like	VAEs
data	->	layer1	->	data

R1 G1

Hinton	et	al.	(1995)

‣ Deep	genera>ve	model	with	genera>on	parameters	G 
and	“recogni>on”	parameters	R

History:	Wake-Sleep	Algorithm

VAEs	as	Autoencoders

Encoder-Decoder	Models

‣ Encoder-decoder	models	without	a_en>on:	compress	the	input	into	a	
single	&*#!	vector,	unfold	it	to	produce	output

the		movie		was			great

le					

<s>

film était bon [STOP]

Autoencoders

‣ Encoder-decoder	models	without	a_en>on:	compress	the	input	into	a	
single	&*#!	vector,	unfold	it	to	produce	output

the		movie		was			great

the					

<s>

movie was good [STOP]

‣ Autoencoder:	encode	input	x	into	a	vector	z,	produce	x	given	z

P (x0|x) = P (z|x)
Y

i

P (x0
i|z,x0

<i)

encoder decoder

‣What	seman>cs	do	we	want	the	
latent	space	to	have?

Autoencoders

the	movie	was	good	</s>	</s>

I	thought	the	film	was	good

the	movie	was	great	</s>	</s>

z1 z2 z3 z4 z5 z6

‣What	seman>cs	do	we	want	the	latent	space	to	have?

‣ Can	encode	a	word	into	a	single	floa>ng-point	value
‣What	seman>cs	does	the	latent	space	actually	have?

a of the in …

‣Map	a	sentence	of	length	k	into	a	k-dimensional	z

Autoencoders

the	movie	was	good	</s>	</s>

I	thought	the	film	was	good

the	movie	was	great	</s>	</s>

z1 z2 z3 z4 z5 z6

‣ Can	an	LSTM	learn	to	do	this?

‣Want	con>nuous	seman>c	structure	in	the	latent	space:	nearby	points	
should	have	similar	meaning

‣ Yes!

Autoencoders

the		movie		was			great

the					

<s>

movie was good [STOP]

‣ Inference	network	(q)	is	the	encoder	and	generator	is	the	decoder

+

Gaussian	noise	

‣ Same	computa>on	graph	as	VAE	with	reparameteriza>on,	add	KL	term	to	
make	the	objec>ve	the	same

‣ During	training,	add	Gaussian	noise	and	force	the	network	to	predict

LSTM	VAEs

‣ Train	this	up;	what	happens?

the	movie	was	good	</s>	</s>
the	movie	was	great	</s>	</s>

I	thought	the	film	was	good

Eq(z|x)[logP (x|z, ✓)] + KL(q(z|x)kP (z))

KL	Collapse

‣What	does	gradient	encourage	latent	space	to	do?

direc>on	of	be_er	likelihood	for	xprior

q

Eq(z|x)[logP (x|z, ✓)] + KL(q(z|x)kP (z))

KL	Collapse

‣What	does	gradient	encourage	latent	space	to	do?

‣ In	reality,	the	likelihood	signal	is	very	weak,	z	is	set	to	0

Eq(z|x)[logP (x|z, ✓)] + KL(q(z|x)kP (z))

prior

q

direc>on	of	be_er	likelihood	for	x

A	Tale	of	Two	Decoders

LL	=	1/3	if	input	is	ignoredLL	=	(1/3)3	if	input	is	ignored

‣ LSTM:	can	get	decent	likelihood	
ignoring	z	en>rely

‣ Suppose	vocab	is	{A,	B,	C}.	Sentences	are	either	AAA,	BBB,	or	CCC

Eq(z|x)[logP (x|z, ✓)] + KL(q(z|x)kP (z))

‣ NVDM:	using	z	can	help	a	lot

B

B

B

B

B

B B B B [STOP]

B B B<s>B B B

A	Tale	of	Two	Decoders

‣ Solu>on:	anneal	KL	
term	during	learning

Eq(z|x)[logP (x|z, ✓)] + KL(q(z|x)kP (z))

‣Model	ini>ally	uses	z	a	lot	(q	gets	far	from	the	prior),	then	as	KL	term	is	
turned	up	the	prior	balances	it	more Bowman	et	al.	(2016)

Results

‣ Doesn’t	really	improve	perplexi>es	over	RNNLM:	confirms	that	RNN	is	
pre_y	good	at	modeling	the	space

Bowman	et	al.	(2016)

‣ Train	autoencoder	on	the	Penn	Treebank	(pre_y	small	corpus	for	
language	modeling	purposes)

Results

Bowman	et	al.	(2016)

‣ Encode	sentence,	sample	from	q,	generate	from	those	samples

‣ Encode	two	samples,	generate	from	points	
interpolated	between	the	two	samples

Takeaways

‣ VAE	is	a	framework	for	training	deep	genera>ve	models

‣ Some	tricks	to	get	these	models	to	train	well

‣ Genera>ve	objec>ve	ensures	that	the	latent	space	z	has	interes>ng	and	
coherent	seman>cs;	lets	us	sample	from	z	and	generate	instances	from	
the	data	manifold

‣ VAE	can	be	seen	as	either	a	principled	varia>onal	method	mo>vated	by	a	
lower	bound	or	simply	an	ad-hoc	trick	to	make	latent	spaces	more	
con>nuous

