
CS395T:	Structured	Models	for	NLP	
Lecture	4:	Sequence	Models	I

Greg	Durrett
Parts	of	this	lecture	adapted	from	Dan	Klein,	UC	Berkeley	

and	Vivek	Srikumar,	University	of	Utah

Administrivia

‣ Project	1	out	today!

‣ This	class	will	cover	what	you	need	to	get	started	on	it,	the	next	1-2	
classes	will	cover	everything	you	need	to	complete	it

‣ Greg’s	Office	Hours	tomorrow:	9am	—	11am	(one-Yme	change)

‣ Viterbi	algorithm,	CRF	NER	system,	extension

‣ Extension	should	be	substanYal:	don’t	just	try	one	addiYonal	feature	
(try	several	features,	do	some	error	analysis,	write	some	moYvaYon)

Recall:	MulYclass	ClassificaYon
‣ LogisYc	regression:

Gradient	(unregularized):

‣ SVM:	defined	by	quadraYc	program	(minimizaYon,	so	gradients	are	flipped)
Loss-augmented	decode	

P (y|x) =
exp

�
w

>
f(x, y)

�
P

y02Y exp (w

>
f(x, y

0
))

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)� Ey[fi(xj , y)]

⇠j = max

y2Y
w

>
f(xj , y) + `(y, y

⇤
j)� w

>
f(xj , y

⇤
j)

Subgradient	(unregularized)	on	jth	example = fi(xj , ymax

)� fi(xj , y
⇤
j)

Structured	PredicYon
‣ Four	elements	of	a	structured	machine	learning	method:

‣Model:	probabilisYc,	max-margin,	deep	neural	network

‣ ObjecYve

‣ Inference:	just	maxes	and	simple	expectaYons	so	far,	but	will	get	harder

‣ Training:	gradient	descent

OpYmizaYon

‣ StochasYc	gradient	*ascent*
‣ Very	simple	to	code	up
‣ “First-order”	technique:	only	relies	on	having	gradient

‣ Newton’s	method
‣ Second-order	technique

Inverse	Hessian:	n	x	n	mat,	expensive!
‣ OpYmizes	quadraYc	instantly

‣ Quasi-Newton	methods:	L-BFGS,	etc.

‣ Approximate	inverse	Hessian	with	gradients	over	Yme

‣ Difficult	to	tune	step	size

w w + ↵g, g =
@

@w
L

w w +

✓
@2

@w2
L
◆�1

g

AdaGrad

Duchi	et	al.	(2011)

‣ OpYmized	for	problems	with	sparse	features

‣ Sparse	features	are	ohen	heterogeneous:	some	fire	on	every	example,	
some	fire	on	one	example	in	the	corpus	(but	are	sYll	valuable!)

per-parameter	learning	rate	based	
on	sum	of	previous	gradients

‣ Avoids	common	features	geing	large	values	compared	to	rare	features

‣ Other	techniques	for	opYmizing	deep	models	—	more	later!

wi wi + ↵
1q

✏+
Pt

⌧=1 g
2
⌧,i

gt,i

‣ Usually	works	out-of-the-box	with	lijle	tuning

ImplementaYon	Details
‣ SGD/AdaGrad	have	a	batch	size	parameter

‣ Shuffling:	online	methods	are	sensiYve	to	dataset	order

‣ Large	batches	(>50	examples):	can	parallelize	within	batch

‣ …but	bigger	batches	ohen	means	more	epochs	required	because	
you	make	fewer	parameter	updates

‣ Fixed	shuffle:	breaks	correlaYons	between	neighboring	sentences

‣ Per-epoch	shuffle:	lower	final	model	variance
‣ RegularizaYon:	makes	SGD	slower	to	implement	with	sparse	features

‣ Either	don’t	regularize	(might	work	bejer	than	you	think!),	or	do	it	lazily	
(see	adagrad_trainer.py	in	Project	1)

This	Lecture

‣ Sequence	modeling

‣ HMMs	for	POS	tagging

‣ Viterbi	algorithm

‣ HMM	parameter	esYmaYon

LinguisYc	Structures

‣ Language	is	tree-structured

I	ate	the	spaghei	with	chopsYcks I	ate	the	spaghei	with	meatballs

‣ Understanding	syntax	fundamentally	requires	trees	—	the	sentences	
have	the	same	shallow	analysis

I				ate		the	spaghei	with	chopsYcks I					ate		the	spaghei	with	meatballs
PRP	VBZ		DT							NN								IN								NNS		 PRP	VBZ		DT							NN								IN								NNS		

LinguisYc	Structures
‣ Language	is	sequenYally	structured:	interpreted	in	an	online	way

Tanenhaus	et	al.	(1995)

POS	Tagging

Slide	credit:	Dan	Klein

POS	Tagging

Fed	raises	interest	rates	0.5	percent

VBD
VBN
NNP

VBZ
NNS

VB
VBP
NN

VBZ
NNS CD NN

I’m	0.5%	interested	
in	the	Fed’s	raises!

I	hereby	
increase	interest	
rates	0.5%

Fed	raises	interest	rates	0.5	percent

VBD
VBN
NNP

VBZ
NNS

VB
VBP
NN

VBZ
NNS CD NN

‣ Other	paths	are	also	plausible	but	even	more	semanYcally	weird…
‣What	governs	the	correct	choice?	Word	+	context
‣Word	idenYty:	most	words	have	<=2	tags,	many	have	one	(percent,	the)	
‣ Context:	nouns	start	sentences,	nouns	follow	verbs,	etc.

What	is	this	good	for?

‣ Text-to-speech:	record,	lead

‣ Preprocessing	step	for	syntacYc	parsers

‣ Domain-independent	disambiguaYon	for	other	tasks

‣ (Very)	shallow	informaYon	extracYon

Sequence	Models

‣ Input	x = (x1, ..., xn) y = (y1, ..., yn)Output	

‣ POS	tagging:	x	is	a	sequence	of	words,	y	is	a	sequence	of	tags	(most	of	
the	Yme…)

‣ Today:	generaYve	models	P(x,	y);	discriminaYve	models	next	Yme

Hidden	Markov	Models

y = (y1, ..., yn)Output	‣ Input	x = (x1, ..., xn)

‣Model	the	sequence	of	y	as	a	Markov	process	(dynamics	model)

y1 y2

‣Markov	property:	future	is	condiYonally	independent	of	the	past	given	
the	present

‣ If	y	are	tags,	this	roughly	corresponds	to	assuming	that	the	next	tag	
only	depends	on	the	current	tag,	not	anything	before

y3 P (y3|y1, y2) = P (y3|y2)

‣ Lots	of	mathemaYcal	theory	about	how	Markov	chains	behave

Hidden	Markov	Models

‣ Input	x = (x1, ..., xn) y = (y1, ..., yn)Output	

y1 y2 yn

x1 x2 xn

…

P (y,x) = P (y1)
nY

i=2

P (yi|yi�1)
nY

i=1

P (xi|yi)

IniYal	
distribuYon

TransiYon	
probabiliYes

Emission	
probabiliYes

} }} ‣ P(x|y)	is	a	distribuYon	over	
all	words	in	the	vocabulary	
—	not	a	distribuYon	over	
features

‣MulYnomials:	tag	x	tag	
transiYons,	tag	x	word	
emissions

‣ ObservaYon	(x)	depends	
only	on	current	state	(y)

TransiYons	in	POS	Tagging

‣ Dynamics	model

Fed	raises	interest	rates	0.5	percent

VBD
VBN
NNP

VBZ
NNS

VB
VBP
NN

VBZ
NNS CD NN

‣ 																											likely	because	start	of	sentence

‣ 																																																likely	because	verb	ohen	follows	noun
‣ 																																										direct	object	follows	verb,	other	verb	rarely	
follows	past	tense	verb	(main	verbs	can	follow	modals	though!)

P (y1 = NNP)

P (y2 = VBZ|y1 = NNP)

P (y3 = NN|y2 = VBZ)

P (y1)
nY

i=2

P (yi|yi�1)

‣ Should	y	be	a	single	tag?

TransiYons	in	POS	Tagging

‣ Trigram	model:	y1	=	(<S>,	NNP),	y2	=	(NNP,	VBZ),	…

‣ P((VBZ,	NN)	|	(NNP,	VBZ))	—	more	context!	Noun-verb-noun	S-V-O

Fed	raises	interest	rates	0.5	percent
NNP VBZ NN NNS CD NN

‣ Tradeoff	between	model	capacity	and	data	size

EsYmaYng	TransiYons

‣ Similar	to	Naive	Bayes	esYmaYon:	maximum	likelihood	soluYon	=	
normalized	counts	(with	smoothing)	read	off	supervised	data

Fed	raises	interest	rates	0.5	percent
NNP VBZ NN NNS CD NN

‣ How	to	smooth?

‣ One	method:	smooth	with	unigram	distribuYon	over	tags

‣ P(tag	|	NN)	=	(0.5	</S>,	0.5	NNS)

P (tag|tag�1) = (1� �)P̂ (tag|tag�1) + �P̂ (tag)

=	empirical	distribuYon	(read	off	from	data)P̂

‣ Emissions	P(x	|	y)	capture	the	distribuYon	of	words	occurring	with	a	
given	tag

Emissions	in	POS	Tagging

‣ P(word	|	NN)	=	(0.05	person,	0.04	official,	0.03	government,	0.03	market	…)

Fed	raises	interest	rates	0.5	percent
NNP VBZ NN NNS CD NN

‣When	you	compute	the	posterior	for	a	given	word’s	tags,	the	distribuYon	
favors	tags	that	are	more	likely	to	generate	that	word

EsYmaYng	Emissions

‣ P(word	|	NN)	=	(0.5	interest,	0.5	percent)	—	hard	to	smooth!

‣ Fancy	techniques	from	language	modeling,	e.g.	look	at	type	ferYlity	
—	P(tag|word)	is	flajer	for	some	kinds	of	words	than	for	others)

Fed	raises	interest	rates	0.5	percent
NNP VBZ NN NNS CD NN

P (word|tag) = P (tag|word)P (word)

P (tag)

‣ AlternaYve:	use	Bayes’	rule

‣ Can	interpolate	with	distribuYon	looking	at	word	shape 
P(word	shape	|	tag)	(e.g.,	P(capitalized	word	of	len	>=	8	|	tag))

‣ P(word|tag)	can	be	a	log-linear	model	—	we’ll	see	this	in	a	few	lectures

Inference	in	HMMs

‣ Inference	problem:

‣ ExponenYally	many	possible	y	here!

‣ SoluYon:	dynamic	programming	(possible	because	of	Markov	structure!)

‣Many	neural	sequence	models	depend	on	enYre	previous	tag	
sequence,	need	to	use	approximaYons	like	beam	search

‣ Input	x = (x1, ..., xn) y = (y1, ..., yn)Output	

y1 y2 yn

x1 x2 xn

…
P (y,x) = P (y1)

nY

i=2

P (yi|yi�1)
nY

i=1

P (xi|yi)

argmaxyP (y|x) = argmaxy
P (y,x)

P (x)

Viterbi	Algorithm

slide	credit:	Vivek	Srikumar

Viterbi	Algorithm

slide	credit:	Vivek	Srikumar

Viterbi	Algorithm

slide	credit:	Vivek	Srikumar

Viterbi	Algorithm

slide	credit:	Vivek	Srikumar

Viterbi	Algorithm

slide	credit:	Vivek	Srikumar

Viterbi	Algorithm

slide	credit:	Vivek	Srikumar

Viterbi	Algorithm

slide	credit:	Vivek	Srikumar

Viterbi	Algorithm

slide	credit:	Vivek	Srikumar

Forward-Backward	Algorithm
‣ Compute	marginal	distribuYons

‣ Be	careful	not	to	double-count																	when	combining	these!P (x2|y2)

P (y2 = s|x) / forward2(s)backward2(s) i.e.	normalize	by	P(x)

backwardforward

forward2(s)backward2(s) = P (x, y2 = s)

‣ Replace	max	with	+	everywhere,	also	run	backward	pass
P (yi = s|x)

‣ Store	everything	as	log	probabiliYes	to	avoid	underflow

HMM	POS	Tagging

‣Most	frequent	tag:	~90%	accuracy

‣ Trigram	HMM:	~95%	accuracy	/	55%	on	unknown	words

‣ TnT	tagger	(tuned)	HMM:	96.2%	accuracy	/	86.0%	on	unknown	words

‣ LogisYc	regression	P(t|w):	93.7%	/	82.6%	(*only*	at	current	word)

Slide	credit:	Dan	Klein

‣ State-of-the-art	(BiLSTM-CRFs):	97.5%	/	89%+

Errors

official	knowledge made			up		the	story recently			sold			shares

JJ/NN							NN VBD		RP/IN	DT		NN RB				VBD/VBN	NNS

Slide	credit:	Dan	Klein	/	Toutanova	+	Manning	(2000)

Remaining	Errors

‣ Underspecified	/	unclear,	gold	standard	inconsistent	/	wrong:	58%

‣ Lexicon	gap	(word	not	seen	with	that	tag	in	training)	4.5%
‣ Unknown	word:	4.5%
‣ Could	get	right:	16%	(many	of	these	involve	parsing!)
‣ Difficult	linguisYcs:	20%

They						set							up	absurd	situa3ons,	detached	from	reality
VBD	/	VBP?	(past	or	present?)

a	$	10	million	fourth-quarter	charge	against	discon3nued	opera3ons
adjecYve	or	verbal	parYciple?	JJ	/	VBN?

Manning	2011	“Part-of-Speech	Tagging	from	97%	to	100%:	Is	It	Time	for	Some	LinguisYcs?”

Other	Languages

‣ Universal	POS	tagset	(~12	tags),	cross-lingual	model	works	as	well	as	
tuned	CRF	using	external	resources

Gillick	et	al.	2016

Next	Time

‣ CRFs:	feature-based	discriminaYve	models

‣ Structured	SVM	for	sequences

‣ NER

