
CS395T:	Structured	Models	for	NLP	
Lecture	6:	Sequence	Models	III

Greg	Durrett

Some	slides	adapted	from	Leon	Gu	(CMU),	Taylor	Berg-Kirkpatrick	(CMU)

Administrivia
‣ P1	has	been	updated,	didn’t	include	adagrad_trainer.py

Recall:	CRFs

P (y|x) = 1

Z

nY

i=2

exp(�t(yi�1, yi))
nY

i=1

exp(�e(yi, i,x))

P (y|x) / expw>

"
nX

i=2

ft(yi�1, yi) +
nX

i=1

fe(yi, i,x)

#
‣ Using	standard	feature-based	potenUals:	

‣ Gradient:	gold	features	-	expected	features	under	model

‣ Compute	max	path	with	Viterbi,	compute	feature	expectaUons	from	tag	
probabiliUes	with	forward-backward

Structured	SVM
w

>
f(x,y) =

nX

i=2

w

>
ft(yi�1, yi) +

nX

i=1

w

>
fe(xi, yi)

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj ,y
⇤
j) � w>f(xj ,y) + `(y,y⇤

j)� ⇠j

‣ Only	need	Viterbi	for	inference	here…hmm…

‣ Loss-augmented	decode	can	be	done	with	Viterbi

Viterbi	Time	Complexity

Fed	raises	interest	rates	0.5	percent

VBD
VBN
NNP

VBZ
NNS

VB
VBP
NN

VBZ
NNS CD NN

‣ n	word	sentence,	s	tags	to	consider	—	what	is	the	Ume	complexity?

ta
gs

sentence

‣ O(ns2)	—	s	is	~40	for	POS,	n	is	~20

Viterbi	Time	Complexity

‣Many	tags	are	totally	implausible

‣ Can	any	of	these	be:	
‣ Determiners?	
‣ PreposiUons?	
‣ AdjecUves?
‣ Features	quickly	eliminate	many	outcomes	from	consideraUon	—	don’t	
need	to	consider	these	going	forward

Fed	raises	interest	rates	0.5	percent

VBD
VBN
NNP

VBZ
NNS

VB
VBP
NN

VBZ
NNS CD NN

Beam	Search
‣Maintain	a	beam	of	k	plausible	states	at	the	current	Umestep

‣ Expand	all	states,	only	keep	k	top	hypotheses	at	new	Umestep

Fed

VBD

VBN

NNP

raises

+1.2

+0.9

+0.7
NN +0.3

VBZ +1.2

VBZ -2.0
NNS -1.0

Not	expanded

… VBZ

DT

NNS

+1.2

-1.0

-5.3

…

…
PRP -5.8

Not	expanded

‣ Beam	size	of	k,	Ume	complexity

-2.0

O(nks	log(k))

‣Maintain	priority	queue	
to	efficiently	add	things

How	good	is	beam	search?
‣ k=1:	greedy	search

‣ Choosing	beam	size:
‣ 2	is	usually	beker	than	1
‣ Usually	don’t	use	larger	than	50

‣ Depends	on	problem	structure

This	Lecture

‣ EM	for	learning	HMMs

‣ Unsupervised	POS	tagging

‣ Gradient-based	unsupervised	learning

‣ (briefly)	Some	wriUng	Ups

Unsupervised	Learning

a		b		a		c		c		c		c

‣ Can	we	induce	linguisUc	structure?	Thought	experiment…

‣What’s	a	two-state	HMM	that	could	produce	this?

b		a		c		c		c

a		a		b		c		c		a		a

‣What	if	I	show	you	this	sequence?

‣What	did	you	do?	Use	current	model	parameters	+	data	to	refine	
your	model.	This	is	what	EM	will	do

Part-of-Speech	InducUon
‣ Input	x = (x1, ..., xn) y = (y1, ..., yn)Output	

‣ Assume	we	don’t	have	access	to	labeled	examples	—	how	can	we	learn	
a	POS	tagger?

L(x1,...,D) =

DX

i=1

log

X

y

P (y,xi)

‣ Key	idea:	opUmize	

‣ OpUmizing	marginal	log-likelihood	with	no	labels	y:

GeneraUve	model	explains	
the	data	xP (x) =

X

y

P (y,x)

‣ non-convex	opUmizaUon	
problem

Part-of-Speech	InducUon
‣ Input	x = (x1, ..., xn) y = (y1, ..., yn)Output	

L(x1,...,D) =

DX

i=1

log

X

y

P (y,xi)

‣ OpUmizing	marginal	log-likelihood	with	no	labels	y:

‣ Can’t	use	a	discriminaUve	model;																														,	doesn’t	model	x

‣What’s	the	point	of	this?	Model	has	inducUve	bias	and	so	should	learn	
some	useful	latent	structure	y	(clustering	effect)

‣ EM	is	just	one	procedure	for	opUmizing	this	kind	of	objecUve

X

y

P (y|x) = 1

ExpectaUon	MaximizaUon

log

X

y

P (x,y|✓) ✓

= log

X

y

q(y)
P (x,y|✓)

q(y)
‣ VariaUonal	approximaUon	q	—	this	
is	a	trick	we’ll	return	to	later!

�
X

y

q(y) log
P (x,y|✓)

q(y)
‣ Jensen’s	inequality	(uses	concavity	
of	log)

= Eq(y) logP (x,y|✓) + Entropy[q(y)]

‣ Can	opUmize	this	lower-bound	on	log	likelihood	instead	of	log-likelihood

‣ CondiUon	on	parameters

Adapted	from	Leon	Gu

ExpectaUon	MaximizaUon

log

X

y

P (x,y|✓) � Eq(y) logP (x,y|✓) + Entropy[q(y)]

‣ Exact	equality:

log

X

y

P (x,y|✓) = Eq(y) logP (x,y|✓) + Entropy[q(y)] +KL(q(y)||P (y|x, ✓))

‣ KL	divergence:	asymmetric	measure	of	difference	between	two	distribuUons

KL(q(y)||p(y)) =
X

y

q(y) log
q(y)

p(y)

‣ Related	to	cross-entropy	(=	KL	+	entropy	of	q)
‣ If q(y) = P (y|x, ✓),	KL	term	is	0	so	equality	is	achieved Adapted	from	Leon	Gu

ExpectaUon	MaximizaUon

log

X

y

P (x,y|✓) � Eq(y) logP (x,y|✓) + Entropy[q(y)]

‣ If q(y) = P (y|x, ✓),	KL	term	is	0	so	equality	is	achieved

‣ ExpectaUon-maximizaUon:	alternaUng	maximizaUon	of	the	
lower	bound	over	q	and

‣ E-step:	maximize	w.r.t.	q;	that	is,	qt = P (y|x, ✓t�1)

‣M-step:	maximize	w.r.t.			;	that	is,	✓ ✓t = argmax✓Eqt logP (x,y|✓)
Adapted	from	Leon	Gu

✓
‣ Current	Umestep	=	t,	have	parameters	✓t�1

EM	for	HMMs
‣ ExpectaUon-maximizaUon:	alternaUng	maximizaUon
‣ E-step:	maximize	w.r.t.	q;	that	is,	qt = P (y|x, ✓t�1)

‣M-step:	maximize	w.r.t.			;	that	is,	✓ ✓t = argmax✓Eqt logP (x,y|✓)

‣ E-step:	for	an	HMM:	run	forward-backward	with	the	given	parameters

‣M-step:	need	to	find	parameters	to	opUmize	the	crazy	argmax	term

P (yi = s|x, ✓t�1), P (yi = s1, yi+1 = s2|x, ✓t�1)

tag	marginals	at	
each	posiUon

tag	pair	marginals	at	
each	posiUon

‣ Compute

EM	for	HMMs
‣ Recall	how	we	maximized	log	P(x,y):	read	counts	off	data

the
DT

dog
NN

count(DT,	the)	=	1	
count(DT,	dog)	=	0	
count(NN,	the)	=	0	
count(NN,	dog)	=	1

P(the|DT)	=	1	
P(dog|DT)	=	0	
P(the|NN)	=	0	
P(dog|NN)	=	1

‣ Same	procedure,	but	maximizing	P(x,y)	in	expectaUon	under	q	
means	that	q	specifies	frac.onal	counts

the dog

count(DT,	the)	=	0.9	
count(DT,	dog)	=	0.3	
count(NN,	the)	=	0.1	
count(NN,	dog)	=	0.7

P(the|DT)	=	0.75	
P(dog|DT)	=	0.25	
P(the|NN)	=	0.125	
P(dog|NN)	=	0.875

q DT:	0.9
NN:	0.1 NN:	0.7

DT:	0.3

EM	for	HMMs
‣ Same	for	transiUon	probabiliUes

the dog

q

DT—NN:	0.6
DT—DT:	0.1
NN—DT:	0.2
NN—NN:	0.1

P(DT|DT)	=	1/7	
P(NN|DT)	=	6/7	
P(DT|NN)	=	2/3	
P(NN|NN)	=	1/3

How	does	EM	learn	things?
‣ IniUalize	(M-step	0):

P(the|DT)	=	0.9	
P(dog|DT)	=	0.05	
P(marsupial|DT)	=	0.05

P(the|NN)	=	0.05	
P(dog|NN)	=	0.9	
P(marsupial|NN)	=	0.05

‣ TransiUon	probabiliUes:	uniform

the dog

DT:	0.95
NN:	0.05 NN:	0.95

DT:	0.05

the marsupial

DT:	0.95
NN:	0.05 NN:	0.5

DT:	0.5
‣ E-step	1:	(all	values	are	approximate)

‣ Emissions

‣ uniform

How	does	EM	learn	things?

the dog

DT:	0.95
NN:	0.05 NN:	0.95

DT:	0.05

the marsupial

DT:	0.95
NN:	0.05 NN:	0.5

DT:	0.5
‣ E-step	1:

‣M-step	1:

‣ TransiUon	probabiliUes	(approx):	P(NN|DT)	=	3/4,	P(DT|DT)	=	1/4
‣ Emissions	aren’t	so	different

How	does	EM	learn	things?

the dog

DT:	0.95
NN:	0.05 NN:	0.95

DT:	0.05

the marsupial

DT:	0.95
NN:	0.05 NN:	0.70

DT:	0.30
‣ E-step	2:

‣M-step	1:

‣ Emissions	aren’t	so	different

‣ TransiUon	probabiliUes	(approx):	P(NN|DT)	=	3/4,	P(DT|DT)	=	1/4

How	does	EM	learn	things?

the dog

DT:	0.95
NN:	0.05 NN:	0.95

DT:	0.05

the marsupial

DT:	0.95
NN:	0.05 NN:	0.70

DT:	0.30
‣ E-step	2:

‣M-step	2:

‣ Emission	P(marsupial|NN)	>	P(marsupial|DT)

‣ Remember	to	tag	marsupial	as	NN	in	the	future!

‣ Context	constrained	what	we	learned!	That’s	how	data	helped	us

How	does	EM	learn	things?
‣ Can	think	of	q	as	a	kind	of	“fracUonal	annotaUon”

‣ E-step:	compute	annotaUons	(posterior	under	current	model)

‣M-step:	supervised	learning	with	those	fracUonal	annotaUons

‣ IniUalize	with	some	reasonable	weights,	alternate	E	and	M	unUl	
convergence

EM’s	Lower	Bound

slide	credit:	Taylor	Berg-Kirkpatrick

L(x1,...,D; ✓)

L(x1,...,D) =

DX

i=1

log

X

y

P (y,xi)

EM’s	Lower	Bound

slide	credit:	Taylor	Berg-Kirkpatrick

L(x1,...,D; ✓)

L(x1,...,D) =

DX

i=1

log

X

y

P (y,xi)

‣ E-step:	compute	q	which	
gives	this	lower	bound‣ iniUal	theta

EM’s	Lower	Bound

slide	credit:	Taylor	Berg-Kirkpatrick

L(x1,...,D; ✓)

‣M-step:	find	
maximum	of	
lower	bound

L(x1,...,D) =

DX

i=1

log

X

y

P (y,xi)

EM’s	Lower	Bound

slide	credit:	Taylor	Berg-Kirkpatrick

L(x1,...,D; ✓)

L(x1,...,D) =

DX

i=1

log

X

y

P (y,xi)

‣ E-step	2:	re-esUmate	q

EM’s	Lower	Bound

slide	credit:	Taylor	Berg-Kirkpatrick

L(x1,...,D; ✓)

L(x1,...,D) =

DX

i=1

log

X

y

P (y,xi)

‣ E-step	2:	re-esUmate	q

EM’s	Lower	Bound

slide	credit:	Taylor	Berg-Kirkpatrick

L(x1,...,D; ✓)

L(x1,...,D) =

DX

i=1

log

X

y

P (y,xi)

EM’s	Lower	Bound

slide	credit:	Taylor	Berg-Kirkpatrick

L(x1,...,D; ✓)

L(x1,...,D) =

DX

i=1

log

X

y

P (y,xi)

EM’s	Lower	Bound

slide	credit:	Taylor	Berg-Kirkpatrick

L(x1,...,D; ✓)

L(x1,...,D) =

DX

i=1

log

X

y

P (y,xi)

Part-of-speech	InducUon

‣Merialdo	(1994):	you	have	a	whitelist	of	tags	for	each	word

‣ Learn	parameters	on	k	examples	to	start,	use	those	to	iniUalize	
EM,	run	on	1	million	words	of	unlabeled	data

‣ Tag	dicUonary	+	data	should	get	us	started	in	the	right	
direcUon…

Part-of-speech	InducUon
‣ Small	amounts	
of	data	>	large	
amounts	of	
unlabeled	data
‣ Running	EM	*hurts*	
performance	once	
you	have	labeled	
data

Merialdo	(1994)

Does	unsupervised	learning	help?
‣ SomeUmes	can	produce	good	representaUons:	Stallard	et	al.	(2012)	
shows	that	unsupervised	morphological	segmentaUon	can	work	as	
well	as	supervised	segmentaUon	for	Arabic	machine	translaUon

‣ Later	in	the	course:	word	embeddings	produced	from	“naturally	
supervised”	data

EM	with	Features
‣ Can	use	more	sophisUcated	forms	of	P(x,y)

Berg-Kirkpatrick	et	al.	(2010)

‣ Idea:	sUll	a	generaUve	model,	but	instead	of	distribuUons	being	
mulUnomials,	have	them	be	log-linear	models

P (x

i

|y
i

) =

exp(w

>
f(x

i

, y

i

))P
x

exp(w

>
f(x, y

i

))

y1 y2 yn

x1 x2 xn

…
‣ SUll	a	generaUve	model	but	local	arcs	are	
parameterized	in	a	log-linear	way

‣ Features	can	only	look	at	
current	word	and	tag!

‣ normalized	over	all	words

‣ CRFs	don’t	have	this	local	parameterizaUon

EM	with	Features

Berg-Kirkpatrick	et	al.	(2010)

EM	with	Features

Berg-Kirkpatrick	et	al.	(2010)

‣ Learning:

‣ One	approach:	can	run	gradient	to	compleUon	each	M-step	(i.e.,	fully	
fit	the	fracUonal	annotaUons	we	have)

P (x

i

|y
i

) =

exp(w

>
f(x

i

, y

i

))P
x

exp(w

>
f(x, y

i

))

‣ E-step	is	the	same
‣M-step	now	requires	gradients	(slightly	different	than	CRF	gradients	
due	to	local	normalizaUon)

EM	with	Features

Berg-Kirkpatrick	et	al.	(2010)

EM	with	Features

Berg-Kirkpatrick	et	al.	(2010)

EM	with	Features

Berg-Kirkpatrick	et	al.	(2010)

EM	with	Features

Berg-Kirkpatrick	et	al.	(2010)

EM	with	Features

Berg-Kirkpatrick	et	al.	(2010)

EM	with	Features

Berg-Kirkpatrick	et	al.	(2010)

EM	with	Features

Berg-Kirkpatrick	et	al.	(2010)

‣ Faster	approach:	ayer	the	E-step,	just	take	one	gradient	step

‣ “Direct	gradient”	on	the	marginal	log	likelihood log

X

y

P (x,y|✓)

EM	with	Features

Berg-Kirkpatrick	et	al.	(2010)

EM	with	Features

Berg-Kirkpatrick	et	al.	(2010)

EM	with	Features

Berg-Kirkpatrick	et	al.	(2010)

EM	with	Features

Berg-Kirkpatrick	et	al.	(2010)

EM	with	Features

Berg-Kirkpatrick	et	al.	(2010)

EM	with	Features

Berg-Kirkpatrick	et	al.	(2010)

EM	with	Features

Berg-Kirkpatrick	et	al.	(2010)

‣ Faster	approach:	ayer	the	E-step,	just	take	one	gradient	step

‣ “Direct	gradient”	on	the	marginal	log	likelihood log

X

y

P (x,y|✓)

‣ Looks	a	lot	like	CRF	training:	compute	marginals,	esUmate	gradient	
based	on	them

EvaluaUng	Direct	Gradient

‣ Different	setup:	don’t	assume	any	iniUalizaUon,	you	just	have	45	tags	
that	you	need	to	learn

Berg-Kirkpatrick	et	al.	(2010)

‣ “Many-to-one”	accuracy:	map	each	of	your	learned	tags	to	its	closest	
gold	tag,	evaluate	how	many	words	are	tagged	correctly

EvaluaUng	Direct	Gradient

‣ Also	strong	results	on	grammar	
inducUon,	word	alignment,	and	
morphological	segmentaUon

Takeaways

‣ EM	sort	of	works	for	POS	inducUon

‣ EM	isn’t	restricted	to	mulUnomial	distribuUons	or	ones	with	closed-
form	M-step	updates:	the	M-step	can	be	gradient	ascent

‣ A	supervised	system	on	a	likle	bit	of	labeled	data	gives	beker	POS	
accuracy,	but	unsupervised	learning	can	sUll	learn	useful	
representaUons	for	downstream	tasks	(like	machine	translaUon)

‣ “Direct	gradient”	can	work	really	well!

Next	Time

‣ ConsUtuency	parsing

‣ In	two	lectures:	dependency	parsing	(project	2)

