CS395T: Structured Models for NLP
Lecture 6: Sequence Models Il

Greg Durrett

Some slides adapted from Leon Gu (CMU), Taylor Berg-Kirkpatrick (CMU)



Administrivia

» P1 has been updated, didn’t include adagrad trainer.py



Recall: CRFs
1 T T

Plylx) = - [ | exp(e(yi1. i) | | exp(de(vi, i, x))

» Using standard feature-based potentials:

P(Y‘X) X eXpr th(yi—lvyi) T Zfe(yivivx)
L1=2 1=1

» Gradient: gold features - expected features under model|

» Compute max path with Viterbi, compute feature expectations from tag
probabilities with forward-backward



Structured SVM

w' f(x,y) = Zwat(yi—layi) +- Zwae(%yi)
1=2 1—=1

Minimize Allw|[3 + ) &

ViVy € Y w' f(x5,y;) > w f(x;,y)+y,y;) =&

» Loss-augmented decode can be done with Viterbi

» Only need Viterbi for inference here...hmm...



Viterbi Time Complexity

VBD VR
VBN VBZ vBP VBZ

NNP NNS NN NNS CD NN
Fed raises interest rates 0.5 percent

» n word sentence, s tags to consider — what is the time complexity?

sentence

tags

» O(ns?) — sis ~40 for POS, n is ~20



Viterbi Time Complexity

VBD VR
VBN VBZ vBP VBZ

NNP NNS NN NNS CD NN
Fed raises interest rates 0.5 percent

» Many tags are totally implausible

» Can any of these be:
» Determiners?
» Prepositions?
» Adjectives?

» Features quickly eliminate many outcomes from consideration — don’t
need to consider these going forward



Beam Search

» Maintain a beam of k plausible states at the current timestep

» Expand all states, only keep k top hypotheses at new timestep

" NNP +0.9

LVBZ +1.2

—>

—>

Fed

» Beam size of k, time complexity O(nks log(k))

*IVBN +0.7 T—
> NN +0.3 —=<—

Not expanded

VBZ -2.0 s
| VBD +1.2 4'\“\'5.:1-0 ﬂsz by

NNS -1.0

DT -5.3

» Maintain priority queue
to efficiently add things

PRP -5.8

raises

——
Not expanded



How good is beam search?

» k=1: greedy search

» Choosing beam size:

» 2 is usually better than 1

» Usually don’t use larger than 50

» Depends on problem structure



This Lecture

» Unsupervised POS tagging

» EM for learning HMMs

» Gradient-based unsupervised learning

» (briefly) Some writing tips



Unsupervised Learning

» Can we induce linguistic structure? Thought experiment...

abacccc

baccc
» What's a two-state HMM that could produce this?

» What if | show you this sequence?
aabccaa

» What did you do? Use current model parameters + data to refine
vour model. This is what EM will do



Part-of-Speech Induction

4 |npUt X = ($1, ,CEn) OUtPUt Yy — (yb 7yn)

» Assume we don’t have access to labeled examples — how can we learn
a POS tagger?

» Key idea: optimize P

Generative model explains
Z P y> “— thedatax

» Optimizing marginal log-likelihood with no labels y:

D
£(X1,---,D) — Z log Z P(y, Xi) » hon-convex optimization

problem



Part-of-Speech Induction

4 |npUt X = ($1, ,CEn) OUtPUt Yy — (yb 7yn)

» Optimizing marginal log-likelihood with no labels y:
D
L(x1,..p)=) log) Ply,x)
1=1 Yy

» Can’t use a discriminative model; Z P(y|x) = 1, doesn’t model x

y
» What's the point of this? Model has inductive bias and so should learn

some useful latent structure y (clustering effect)

» EM is just one procedure for optimizing this kind of objective



Expectation Maximization

log Z P(x,y|6) » Condition on parameters §

log Z q(y) P(x,y|0) .Variatjional afpproximation g — this
q(y) is a trick we’ll return to later!

> Z q(y) log » Jensen’s inequality (uses concavity
q(y) of log)

4j’q(y) log P(X7 ;Y|9) T EntrOPY[Q(Y)]

» Can optimize this lower-bound on log likelihood instead of log-likelihood
Adapted from Leon Gu



Expectation Maximization

log » P(x,y(6) > Eqy(y) log P(x,y|6) + Entropy[q(y)]

» Exact equality:

log » P(x,y|0) = Ey(y) log P(x,y|0) + Entropylq(y)] + K L(q(y)||P(y|x, 6))

» KL divergence: asymmetric measure of difference between two distributions

K L(q(y)llp(y Zq ) log y;

» Related to cross- entropy (= KL + entropy of q)

» If q(y) = P(y|x,0), KL term is 0 so equality is achieved

Adapted from Leon Gu



Expectation Maximization

log » P(x,y(6) > Eqy(y) log P(x,y|6) + Entropy[q(y)]
Y

» If q(y) = P(y|x,60), KL term is 0 so equality is achieved

» Expectation-maximization: alternating maximization of the

lower bound over g and §

» Current timestep = t, have parameters §%—!

» E-step: maximize w.r.t. g; that is, qt — P(y\X, Qt_l)

» M-step: maximize w.r.t.; that is, §* = argimaxy

ot log P(x,y|0)

Adapted from Leon Gu



EM for HMMs

» Expectation-maximization: alternating maximization
» E-step: maximize w.r.t. g; that is, qt — P(y\x, Ht_l)

» M-step: maximize w.r.t.@; that is, 0" = argmaxyli « log P(x,y|6)

» E-step: for an HMM: run forward-backward with the given parameters

» Compute P(y; = s|x, Ht_l), P(y; = 81,Yi+1 = S2|X, Qt_l)

tag marginals at tag pair marginals at
each position each position

» M-step: need to find parameters to optimize the crazy argmax term



EM for HMMs

» Recall how we maximized log P(x,y): read counts off data

count(DT, the) = 1 P(the|DT) =1
DT NN count(DT, dog) =0 P(dog|DT) =0
— —
the dog count(NN, the) =0 P(the|NN) =0
count(NN, dog) =1 P(dog|NN) =1

» Same procedure, but maximizing P(xX,y) in expectation under g
means that q specifies fractional counts

count(DT, the) = 0.9 P(the |DT) = 0.75
q DT: 0.9 DT:0.3 count(DT, dog) = 0.3 P(dog|DT) = 0.25
NN: 0.1 NN:0.7: count(NN, the) = 0.1 P(the [NN) = 0.125

the dog count(NN, dog) = 0.7 P(dog|NN) = 0.875



EM for HMMs

» Same for transition probabilities

DT—NN: 0.6 P(DT|DT) = 1/7
. DT—DT:.O.l ., P(NN|DT)=6/7
: NN—DT: 0.2 i P(DT|NN) =2/3
e ANTNNEOL P(NNINN) = 1/3



How does EM learn things?

» Initialize (M-step 0):

» Emissions
P(the|DT) =0.9 P(the|NN) = 0.05
P(dog|DT) = 0.05 P(dog|NN) = 0.9

P(marsupial |DT) = 0.05 P(marsupial [NN) = 0.05
» Transition probabilities: uniform

» E-step 1: (all values are approximate)

DT: 0.95 DT: 0.05 DT: 0.95 |DT: 0.5
NN: 0.05 NN: 0.95 NN: O0.05 NN: 0.5

the dog the marsupial

» uniform



How does EM learn things?

» E-step 1:
DT: 0.95 DT: 0.05 DT: 0.95 DT: 0.5
NN: 0.05 NN: 0.95 NN: 0.05 NN: 0.5
the dog the marsupial
» M-step 1:

» Emissions aren’t so different
» Transition probabilities (approx): P(NN|DT) = 3/4, P(DT|DT) = 1/4



How does EM learn things?

» E-step 2:
DT: 0.95 DT: 0.05 DT: 0.95 |DT: 0.30
NN: 0.05 NN: 0.95 NN: 0.05/NN: 0.70
the dog the marsupial
» M-step 1:

» Emissions aren’t so different
» Transition probabilities (approx): P(NN|DT) = 3/4, P(DT|DT) = 1/4



How does EM learn things?

» E-step 2:
DT: 0.95 DT: 0.05 DT: 0.95 |DT: 0.30
NN: 0.05 NN: 0.95 NN: 0.05/NN: 0.70
the dog the marsupial
» M-step 2:

» Emission P(marsupial |[NN) > P(marsupial | DT)
» Remember to tag marsupial as NN in the future!

» Context constrained what we learned! That’s how data helped us



How does EM learn things?

» Can think of g as a kind of “fractional annotation”
» E-step: compute annotations (posterior under current model)

» M-step: supervised learning with those fractional annotations

» Initialize with some reasonable weights, alternate E and M until
convergence



EM’s Lower Bound

= Initialize probabilities 6
L(X1,...p) = ZlOgZP(y,XZ’) repeat
1=1 y ® Compute expected counts e
@ Fit parameters 6

L (Xl ....D; 9) until convergence

slide credit: Taylor Berg-Kirkpatrick




EM’s Lower Bound

= Initialize probabilities 6
ﬁ(Xl,...,D) — ZlOgZP(yvxz) repeat
i=1 y ® Compute expected counts e
@ Fit parameters 6

L (X 1,....D; 9) until convergence

» E-step: compute g which
» initial theta gives this lower bound

slide credit: Taylor Berg-Kirkpatrick




EM’s Lower Bound

D Initialize probabilities @
ﬁ(Xl,...,D) — ZlOgZP(YaXi) repeat
1=1 Yy

® Compute expected counts e
@ Fit parameters 6

L (Xl ...D; 9) until convergence

» M-step: find
aximum of
lower bound

slide credit: Taylor Berg-Kirkpatrick




EM’s Lower Bound

D Initialize probabilities @
L(X1,..p) = ZIOgZP(}’UXz’) repeat
1=1 Yy

® Compute expected counts e
@ Fit parameters @

L(Xl,,,,,p; (9) , until convergence

» E-step 2: re-estimate g

slide credit: Taylor Berg-Kirkpatrick




EM’s Lower Bound

Initialize probabilities &

D
L(Xl,...,D) — ZlogZP(y,xi) repeat
i=1 y ® Compute expected counts e
@ Fit parameters 6

L (Xl ...D; (9) until convergence

» E-step 2: re-estimate g

slide credit: Taylor Berg-Kirkpatrick




EM’s Lower Bound

D Initialize probabilities 6
L(x1,..p) = » log » Ply,x;) repeat
1=1 y

® Compute expected counts e
® Fit parameters @

L (X 1,....D5 9) until convergence

slide credit: Taylor Berg-Kirkpatrick




EM’s Lower Bound

Initialize probabilities

D
L(X1..D)= ZlOgZP(y’Xi) repeat
1=1 y

® Compute expected counts e
@ Fit parameters @

L (X 1,....D3 (9) until convergence

o4

slide credit: Taylor Berg-Kirkpatrick




EM’s Lower Bound

Inmitialize probabilities @

D
L(X1..D)= ZlogZP(y,xi) repeat
1=1 Yy

® Compute expected counts e
@ Fit parameters @

L (X 1.....D3 6’) until convergence

o

slide credit: Taylor Berg-Kirkpatrick




Part-of-speech Induction

» Merialdo (1994): you have a whitelist of tags for each word

» Learn parameters on k examples to start, use those to initialize
EM, run on 1 million words of unlabeled data

» Tag dictionary + data should get us started in the right
direction...



Number of tagged sentences used for the initial model

() 100 2000 5000 10000 20000 all

Iter Correct tags (% words) after ML on 1M words
0 770 96.2 96.6 969  97.0
1 805 926 96.3  96.6 96.7 96.8
2 818 930 96.1  96.3 96.4 96.4
3 830 931 958  96.1 96.2 96.2
4 840 93.0 955  95.8 96.0 96.0
5 848 929 954  95.6 95.8 95.8
6 853 928 952 955 95.6 95.7
/ 858 928 951 953 95.5 95.5
8 861 927 950  95.2 95.4 95.4
9 863 926 949 951 95.3 95.3
10 94.8 95.2 95.2

86.6

92.6

95.0

Part-of-speech Induction

» Small amounts
of data > large
amounts of
unlabeled data

» Running EM *hurts*
performance once
vou have labeled
data

Merialdo (1994)



Does unsupervised learning help?

» Sometimes can produce good representations: Stallard et al. (2012)
shows that unsupervised morphological segmentation can work as
well as supervised segmentation for Arabic machine translation

» Later in the course: word embeddings produced from “naturally
supervised” data



EM with Features

o Berg-Kirkpatrick et al. (2010)
» Can use more sophisticated forms of P(x,y)

» ldea: still a generative model, but instead of distributions being
multinomials, have them be log-linear models

P(x;]y:) = exp(w’ f(xi,yi)) » Features can only look at
|1 > _exp(w! f(x,y;))  current word and tag!
» normalized over all words

» Still a generative model but local arcs are @ @ @

parameterized in a log-linear way @ @ @
» CRFs don’t have this local parameterization



EM with Features

Key distribution: P(x|NNP)

OzNnp L f
0.1 John +Cap 0.3
0.0 Mary +Cap 0.3
0.2 running +ing 0.1
0.0 jumping +ing 0.1

Berg-Kirkpatrick et al. (2010)



EM with Features

oy exp(w! f(zi,yi))
P($z|yz) Zaz eXp(wa(ZE,yi))

» Learning:

» E-step is the same

» M-step now requires gradients (slightly different than CRF gradients
due to local normalization)

» One approach: can run gradient to completion each M-step (i.e., fully
fit the fractional annotations we have)

Berg-Kirkpatrick et al. (2010)



EM with Features

Initialize weights w
repeat
@ Compute expected counts e
repeat
Compute ¢(w, e)
' Compute V/(w, e)
w « climb(w, £(w,e), Vi(w, e))
until convergence
@ Transform w to @
until convergence

Berg-Kirkpatrick et al. (2010)




EM with Features

Initialize weights w

repeat

® Compute expected counts e
repeat

Compute ¢(w, e)
' Compute V{(w, e)
w « climb(w, {(w,e), V{(w,e))
until convergence
@ Transform w to 6

until convergence

Berg-Kirkpatrick et al. (2010)




EM with Features

Initialize weights w
repeat
® Compute expected counts e
repeat
Compute £(w, e)
' Compute V{(w, e)
w «— climb(w, {(w,e), Vi(w, e))
until convergence
® Transform w to 6
until convergence

Berg-Kirkpatrick et al. (2010)




EM with Features

Initialize weights w
repeat
® Compute expected counts e
repeat
Compute /(w, e)
' Compute V{(w, e)
w « climb(w, £(w,e), V{(w,e))
until convergence
® Transform w to 6
until convergence

Berg-Kirkpatrick et al. (2010)




EM with Features

Initialize weights w
repeat
® Compute expected counts e
repeat
Compute £(w, €e)
' Compute V£{(w, e)
w «— climb(w, £(w,e), Vi(w,e))
until convergence
@® Transform w to @
until convergence

Berg-Kirkpatrick et al. (2010)




EM with Features

Initialize weights w

repeat

® Compute expected counts e
repeat

Compute 4(w, e)
Compute V£(w, e)

w « climb(w, {(w,e), Vi(w,e))
until convergence
@® Transform w to 6

until convergence

Berg-Kirkpatrick et al. (2010)




EM with Features

» Faster approach: after the E-step, just take one gradient step

» “Direct gradient” on the marginal log likelihood log Z P(x,y|0)
y

Berg-Kirkpatrick et al. (2010)



EM with Features

Initialize weights w
repeat
® Compute expected counts e

Compute L(w)

Compute V£(w,e)

w « climb(w, L(w), V£(w, e))
@ Transform w to @

until convergence

Berg-Kirkpatrick et al. (2010)




EM with Features

Initialize weights w
repeat

® Compute expected counts e
Compute L(w)
Compute V£(w,e)

| w « climb(w, L(w), V4(w,e))

@® Transform w to @
until convergence

Berg-Kirkpatrick et al. (2010)




EM with Features

Initialize weights w
repeat

@ Compute expected counts e
Compute L(w)
Compute Vi(w,e)

' w « climb(w, L(w), V{(w,e))

® Transform w to @
until convergence

Berg-Kirkpatrick et al. (2010)




EM with Features

Initialize weights w
repeat

® Compute expected counts e
Compute L(w)
Compute V/(w,e)

l w «— climb(w, L(w), V(w,e))

@ Transform wto 6
until convergence

Berg-Kirkpatrick et al. (2010)




EM with Features

Initialize weights w
repeat

® Compute expected counts e

Compute L(w)

Compute V4(w,e)

w « climb(w, L(w), V¢ (w,e))
@ Transform w to 0

until convergence

Berg-Kirkpatrick et al. (2010)




EM with Features

Initialize weights w
repeat
® Compute expected counts e

Compute L(w)

Compute V{(w,e)

w « climb(w, L(w), V4(w,e))
@ Transform w to @

until convergence

Berg-Kirkpatrick et al. (2010)




EM with Features

» Faster approach: after the E-step, just take one gradient step

» “Direct gradient” on the marginal log likelihood log Z P(x,y|0)
y

» Looks a lot like CRF training: compute marginals, estimate gradient
based on them

Berg-Kirkpatrick et al. (2010)



Evaluating Direct Gradient

» Different setup: don’t assume any initialization, you just have 45 tags
that you need to learn

» “Many-to-one” accuracy: map each of your learned tags to its closest
gold tag, evaluate how many words are tagged correctly

Berg-Kirkpatrick et al. (2010)



Evaluating Direct Gradient

Features:
ManY'to' | Accuracy Basic: John A NNP
Contains-Digit: +Digit A NNP
Contains-Hyphen: Hyph A NNP
Initial-Capatal: +Cap A NNP
Suffix: +ing A NNP

» Also strong results on grammar
induction, word alignment, and
morphological segmentation

HMM HMM Features HMM Features
EM EM Gradient



Takeaways

» EM sort of works for POS induction

» A supervised system on a little bit of labeled data gives better POS
accuracy, but unsupervised learning can still learn useful
representations for downstream tasks (like machine translation)

» EM isn’t restricted to multinomial distributions or ones with closed-
form M-step updates: the M-step can be gradient ascent

» “Direct gradient” can work really well!



Next Time

» Constituency parsing

» In two lectures: dependency parsing (project 2)



