CS395T: Structured Models for NLP
Lecture 6: Sequence Models Il

Greg Durrett

Some slides adapted from Leon Gu (CMU), Taylor Berg-Kirkpatrick (CMU

Administrivia

» P1 has been updated, didn’t include adagrad_trainer.py

Recall: CRFs

P(ylx) = o [T exp(@u(i-1,00)) [T exp(6e (v, 1.)

=2 =1

» Using standard feature-based potentials:

n

P(y[x) occexpw’ | Y filyio1,5i) + D feliri,%)
1=2

i=1

» Gradient: gold features - expected features under model

» Compute max path with Viterbi, compute feature expectations from tag
probabilities with forward-backward

Structured SVM

w' fxy) =Y w' fiyior,y) + Y w' felzi,y)
i=2 i=1

Minimize AH“’H% + Zfﬂ
st vj & >0 O

Vivy €Y w' f(x5,y]) = w! f(x;,y) + Uy y]) — &

» Loss-augmented decode can be done with Viterbi

» Only need Viterbi for inference here...hmm...




Viterbi Time Complexity

VBD VB

VBN VBZ VBP VBZ

NNP NNS NN  NNS CD NN
Fed raises interest rates 0.5 percent

» n word sentence, s tags to consider — what is the time complexity?

sentence

v

tags

-

»

» O(ns?) — s is ~40 for POS, n is ~20

Viterbi Time Complexity

VBD VB

VBN VBZ VBP VBZ
NNP NNS NN  NNS CD NN
Fed raises interest rates 0.5 percent

» Many tags are totally implausible
» Can any of these be:

» Determiners?

» Prepositions?

» Adjectives?

» Features quickly eliminate many outcomes from consideration — don’t
need to consider these going forward

Beam Search

» Maintain a beam of k plausible states at the current timestep

» Expand all states, only keep k top hypotheses at new timestep

VBZ 2.0/ ™\
NNS-1.0

» Maintain priority queue
to efficiently add things

VBZ +1.2

— NN +0.3 =<~ PRP -5.8 —<—

Not expanded Not expanded
Fed raises

» Beam size of k, time complexity O(nks log(k))

How good is beam search?

» k=1: greedy search

» Choosing beam size:

» 2 is usually better than 1

» Usually don’t use larger than 50

» Depends on problem structure




This Lecture
» Unsupervised POS tagging
» EM for learning HMMs
» Gradient-based unsupervised learning

» (briefly) Some writing tips

Unsupervised Learning

» Can we induce linguistic structure? Thought experiment...

abacccc
baccc

» What's a two-state HMM that could produce this?
» What if | show you this sequence?

aabccaa

» What did you do? Use current model parameters + data to refine
your model. This is what EM will do

Part-of-Speech Induction

»Input x = (z4,...,z,)  Output y = (y1,...,y5)
» Assume we don’t have access to labeled examples — how can we learn

a POS tagger?
Generative model explains

» Key idea: optimize P(X) = Z P(y, X)‘— the data x
y

» Optimizing marginal log-likelihood with no labels y:

D
L(x1,..p)=) log> Ply,x;)
=1 y

» non-convex optimization
problem

Part-of-Speech Induction

»Input x = (21, ...,z,)  Output y = (y1,...,y,)

» Optimizing marginal log-likelihood with no labels y:
D
L(x1,.p)=) log» Ply,x;)
1=1 y

» Can’t use a discriminative model; Z P(y|x) =1, doesn’t model x

Yy
» What's the point of this? Model has inductive bias and so should learn
some useful latent structure y (clustering effect)

» EM is just one procedure for optimizing this kind of objective




Expectation Maximization
logZP(X,yW)

—log )y o) 20

» Condition on parameters @

» Variational approximation g — this

q(y) is a trick we’ll return to later!
> Z q(y) log Px,yl0) Jensen’s inequality (uses concavity
5 q(y) of log)

= Eq(y) log P(x,y]0) + Entropy[q(y)]

» Can optimize this lower-bound on log likelihood instead of log-likelihood
Adapted from Leon Gu|

Expectation Maximization

log ¥ P(x,y|0) > By log P(x,y|0) + Entropy|g(y)]
Yy

» Exact equality:
log > P(x,y|0) = Eq(y) log P(x,y|0) + Entropylg(y)] + K L(q(y)||P(y[x,0))
Yy

» KL divergence: asymmetric measure of difference between two distributions
a(y)

KL(g)llp(y)) = _ aly)log

” p(y)

» Related to cross-entropy (= KL + entropy of q)

If q(y) = P(y|x,0), KLterm is 0 so equality is achieved  agapted from Leon Gu

Expectation Maximization

log ¥ P(x,y|0) > By log P(x,y|0) + Entropy[g(y)]
Yy

v If ¢(y) = P(y|x, 0), KL term is O so equality is achieved

» Expectation-maximization: alternating maximization of the
lower bound over g and §

» Current timestep = t, have parameters gt—1
» E-step: maximize w.r.t. g; that is, ¢ = P(ylx, et_l)

» M-step: maximize w.r.t.0; that is, 0 = argmax,E, log P(x, y|6)
Adapted from Leon Gu

EM for HMMs

» Expectation-maximization: alternating maximization

» E-step: maximize w.r.t. g; that is, qt = P(y]X, Qt_l)

» M-step: maximize w.rt.6; thatis, 0" = argmax,E, log P(x, y|0)
» E-step: for an HMM: run forward-backward with the given parameters
» Compute P(y; = s|x, 0!, Ply; = s1,yi41 = s2]x, Qt_l)

tag marginals at
each position

tag pair marginals at
each position

» M-step: need to find parameters to optimize the crazy argmax term




EM for HMMs EM for HMMs

» Recall how we maximized log P(x,y): read counts off data » Same for transition probabilities
count(DT, the) = 1 P(the|DT) =1 DT—NN: 0.6 P(DT|DT)=1/7
DT NN count(DT, dog) = 0 P(dog|DT) =0 q DT=DT:01 & __,  P(NN|DT)=6/7
the dog T count(NN, the) =0 T P(the|NN)=0 : NN—DT: 0.2 g P(DT|NN)=2/3
count(NN, dog) = 1 P(dog|NN) = 1 i NN—NN:01 ¢ P(NN|NN) = 1/3
the dog

» Same procedure, but maximizing P(x,y) in expectation under g
means that g specifies fractional counts

count(DT, the) = 0.9 P(the|DT) =0.75
' DT:0.9 DT:0.3 count(DT, dog) = 0.3 P(dog|DT) = 0.25
_______ N NOlNN07 count(NN, the) = 0.1 P(the|NN) = 0.125
the dog count(NN, dog) = 0.7 P(dog|NN) = 0.875
How does EM learn things? How does EM learn things?
» Initialize (M-step 0): » E-step 1:
» Emissions DT: 0.95 DT: 0.05 DT: 0.95 |DT: 0.5
P(the|DT) = 0.9 P(the|NN) =0.05 NN: 0.05 NN: 0.95 NN: 0.05|NN: 0.5
P(d0g| DT) =0.05 P(d0g| NN) =0.9 the dog the marsupia/
P(marsupial | DT) = 0.05 P(marsupial |[NN) = 0.05
» Transition probabilities: uniform » M-step 1:
» E-step 1: (all values are approximate) » Emissions aren’t so different
DT:0.95 DT: 0.05 DT: 0.95DT: 0.5 » uniform » Transition probabilities (approx): P(NN|DT) = 3/4, P(DT|DT) = 1/4
NN: 0.05 NN: 0.95 NN: 0.05/NN: 0.5
the dog the marsupial




How does EM learn things?

» E-step 2:
DT: 0.95 DT: 0.05 DT: 0.95 |DT: 0.30
NN: 0.05 NN: 0.95 NN: 0.05[NN: 0.70
the dog the marsupial
» M-step 1:

» Emissions aren’t so different
» Transition probabilities (approx): P(NN|DT) = 3/4, P(DT|DT) = 1/4

How does EM learn things?

» E-step 2:
DT: 0.95 DT: 0.05 DT: 0.95 |DT: 0.30
NN: 0.05 NN: 0.95 NN: 0.05[NN: 0.70
the dog the marsupial
» M-step 2:

» Emission P(marsupial |NN) > P(marsupial | DT)
» Remember to tag marsupial as NN in the future!

» Context constrained what we learned! That’s how data helped us

How does EM learn things?
» Can think of g as a kind of “fractional annotation”
» E-step: compute annotations (posterior under current model)

» M-step: supervised learning with those fractional annotations

» Initialize with some reasonable weights, alternate E and M until
convergence

EM’s Lower Bound

D Initialize probabilities 6
£(X1,---,D) = ZlOgZP(Yaxi) repeat
i=1 y @ Compute expected counts e
@ Fit parameters 6

L (Xl ...D; 9) until convergence

slide credit: Taylor Berg-Kirkpatrick




EM’s Lower Bound

D Initialize probabilities 0
ﬁ(xl,m,D) = ZIOgZP(Y7Xi) repeat
i=1 y @ Compute expected counts e
@ Fit parameters 6
until convergence

L(x1,.. p;0)

» E-step: compute g which
gives this lower bound

» initial theta

slide credit: Taylor Berg-Kirkpatrick

EM’s Lower Bound

D PP 1o
Initialize probabilities 8
E(Xl,‘..,D) = ZIOgZP(YaXi) repeat
i=1 y @ Compute expected counts e
@ Fit parameters 6
until convergence

L(x1,..p;0)

» M-step: find

lower bound

’
EM’s Lower Bound
D e s e
Initialize probabilities &
ﬁ(xl,...,D) = ZIOgZP(y,Xi) repeat

i=1 y @ Compute expected counts e

@ Fit parameters 6

until convergence

E(XL...,D;Q)

» E-step 2: re-estimate g

slide credit: Taylor Berg-Kirkpatrick

EM’s Lower Bound
Initialize probabilities @

D
L(x1,..0) =) log )y Ply,x) repeat
=1 y

@ Compute expected counts e

@ Fit parameters 6
until convergence

»C(XL...,D;@)

» E-step 2: re-estimate g

slide credit: Taylor Berg-Kirkpatrick

slide credit: Taylor Berg-Kirkpatrick




EM’s Lower Bound EM’s Lower Bound

Initialize probabilities 8 Initialize probabilities

D D
L(x1,.p)= ZlogZP(y,Xi) repeat L(x1,..p)= ZlogZP(y,xi) repeat
i=1 y i=1 y @ Compute expected counts e

@ Compute expected counts e
@ Fit parameters 6

@ Fit parameters 6
L (X 1,...,D; 0 ) until convergence L ( X1,..D; Q) until convergence

slide credit: Taylor Berg-Kirkpatrick

slide credit: Taylor Berg-Kirkpatrick

EM’s Lower Bound Part-of-speech Induction
D Initialize probabilities 8
L(x1,..p) = ZlogZP(y, X;) repeat » Merialdo (1994): you have a whitelist of tags for each word
i=1 y @ Compute expected counts e
.F}‘ parameters ¢ » Learn parameters on k examples to start, use those to initialize
ﬁ(X17---7D3 9) until convergence EM, run on 1 million words of unlabeled data

» Tag dictionary + data should get us started in the right
direction...

slide credit: Taylor Berg-Kirkpatrick




Part-of-speech Induction

» Small amounts
of data > large

Number of tagged sentences used for the initial model
0 100 2000 5000 10000 20000 all
Iter Correct tags (% words) after ML on 1M words amounts of

770 [ 900 |954] 92 966 969 o7g  unlabeleddata
80,5 926 |958| 96.3 96.6 96.7 2.8 Running EM *hurts*
818 930 |957| 961 9.3 964 964
830 931 |954| 958 961 92 962  Performanceonce
840 930 (952 955 958 96.0 96.0 you have labeled
8 929 |951| 954 956 958 958  gaia
853 928 |949| 952 955 956 957
858 928 |947| 951 953 955 955
861 927 |946| 950 952 954 954
863 926 |945| 949 951 953 953
866 926 |944| 948 950 952 952

SO RXNTIOUI W WN=O
o]
[
o 2]

fony

Merialdo (1994)

Does unsupervised learning help?

» Sometimes can produce good representations: Stallard et al. (2012)
shows that unsupervised morphological segmentation can work as
well as supervised segmentation for Arabic machine translation

» Later in the course: word embeddings produced from “naturally
supervised” data

EM with Features

Berg-Kirkpatrick et al. (2010)
» Can use more sophisticated forms of P(x,y)

» Idea: still a generative model, but instead of distributions being
multinomials, have them be log-linear models
eXp(’wa(% Yi))
>z exp(w’ f(z,y))

» normalized over all words

» Features can only look at
current word and tag!

@ @ - @

P(xily:) =

» Still a generative model but local arcs are
parameterized in a log-linear way

» CRFs don’t have this local parameterization

EM with Features

Key distribution: P(x|NNP) W icap +12
+ing -0.3

O.nxnp T f ew'f

0.1 John  +Cap 03

0.0 Mary +Cap 0.3
0.2 running +ing 0.1
0.0 jumping +ing 0.1

Berg-Kirkpatrick et al. (2010)




EM with Features

eXP(wa(%, Yi))

P(x;ly;) = Yooexp(w f(z,y:))

» Learning:

» E-step is the same

» M-step now requires gradients (slightly different than CRF gradients

due to local normalization)

» One approach: can run gradient to completion each M-step (i.e., fully

fit the fractional annotations we have)

Berg-Kirkpatrick et al. (2010)

EM with Features

Initialize weights w
repeat
@ Compute expected counts e
repeat
Compute £(w, e)
| Compute V£(w, e)
w « climb(w, £(w,e), V{(w,e))
until convergence
@ Transform w to 6
until convergence

EM with Features

Initialize weights w
repeat

® Compute expected counts e

repeat

Compute {(w, €)
Compute V{(w, e)

until convergence
@ Transform w to 6
until convergence

w — climb(w, 4(w,e), Vi{(w,e))

Berg-Kirkpatrick et al. (2010)

EM with Features

Initialize weights w
repeat
@ Compute expected counts e
repeat
Compute 4(w, e)
Compute V/4(w, e
L(w) pute VE(w, )
until convergence
@ Transform w to 6
until convergence

Berg-Kirkpatrick et al. (2010)

w — climb(w, {(w, e), V{(w,e))

Berg-Kirkpatrick et al. (2010)



EM with Features EM with Features

Initialize weights w Initialize weights w
repeat repeat
@ Compute expected counts e @ Compute expected counts e
repeat repeat
| Compute £(w, €) Compute £(w, e)
Compute V4(w, e Compute V{(w, e
L(W) w %lz:limb(w{l(w,)e), vi(w,e)) L (W) ' w Hpclimb(w(, Z(W?e), Vi(w,e))

until convergence
@ Transform w to 6
until convergence

until convergence
@ Transform w to 6
until convergence

Berg-Kirkpatrick et al. (2010) Berg-Kirkpatrick et al. (2010)

EM with Features EM with Features

Initialize weights w

repeat . .

@ Compute expected counts e » Faster approach: after the E-step, just take one gradient step
repeat

Compute ¢(w, e)

| Compute Ve(w, e) » “Direct gradient” on the marginal log likelihood log Z P(x,yl|0)

w « climb(w,{(w,e), Vi(w,e))

until convergence y

@ Transform w to 6
until convergence

Berg-Kirkpatrick et al. (2010) Berg-Kirkpatrick et al. (2010)




EM with Features

Initialize weights w

repeat

@ Compute expected counts e
Compute L(w)

' Compute V¢(w,e)

L(w) w  climb(w, L(w), V(w, e))
@ Transform w to 6
until convergence

Berg-Kirkpatrick et al. (2010)

EM with Features

Initialize weights w

repeat

@ Compute expected counts e
Compute L(w)

' Compute V4(w,e)
w « climb(w, L(w), V{(w, e))

@ Transform w to 6

until convergence

Berg-Kirkpatrick et al. (2010)

EM with Features

Initialize weights w
repeat
@ Compute expected counts e

£ I

Compute L(w)
Compute V{(w,e)
w «— climb(w, L(w), V4(w, e))

@ Transform w to €
until convergence

Berg-Kirkpatrick et al. (2010)

EM with Features

Initialize weights w

repeat

@ Compute expected counts e
Compute L(w)

| Compute V4(w, e)
w — climb(w, L(w), V{(w,e))

@ Transform w to 6

until convergence

Berg-Kirkpatrick et al. (2010)




EM with Features

Initialize weights w

repeat

@ Compute expected counts e
Compute L(w)

| Compute V{(w,e)
w « climb(w, L(w), V{(w,e))

@ Transform w to 6

until convergence

L(w)

Berg-Kirkpatrick et al. (2010)

EM with Features

Initialize weights w

repeat

@ Compute expected counts e
Compute L(w)

' Compute V{(w,e)
w « climb(w, L(w), V{(w,e))

@ Transform w to 6

until convergence

L(w)

Berg-Kirkpatrick et al. (2010)

EM with Features

» Faster approach: after the E-step, just take one gradient step

» “Direct gradient” on the marginal log likelihood log Z P(x,yl|0)
y

» Looks a lot like CRF training: compute marginals, estimate gradient
based on them

Berg-Kirkpatrick et al. (2010)

Evaluating Direct Gradient

» Different setup: don’t assume any initialization, you just have 45 tags
that you need to learn

» “Many-to-one” accuracy: map each of your learned tags to its closest
gold tag, evaluate how many words are tagged correctly

Berg-Kirkpatrick et al. (2010)




Evaluating Direct Gradient

Features:

Basic:
Contains-Digit:

Many-to-| Accuracy

+
5.0 Initial-Capital:
""""""" 68,11 Suffix:
HMM HMM Features HMM Features
EM EM Gradient

Contains-Hyphen:

John A NNP
+Digit A NNP
+Hyph A NNP
+Cap A NNP
+ing A NNP

» Also strong results on grammar
induction, word alignment, and
morphological segmentation

Takeaways

» EM sort of works for POS induction

» A supervised system on a little bit of labeled data gives better POS
accuracy, but unsupervised learning can still learn useful
representations for downstream tasks (like machine translation)

» EM isn’t restricted to multinomial distributions or ones with closed-
form M-step updates: the M-step can be gradient ascent

» “Direct gradient” can work really well!

Next Time

» Constituency parsing

» In two lectures: dependency parsing (project 2)




