CS395T: Structured Models for NLP
Lecture 7: Parsing |

Greg Durrett

Adapted from Dan Klein — UC Berkeley



Administrivia

Project 1 due one week from today!



Recall: EM for HMMs

Maximize lower bound of log marginal likelihood:

log ) P(x,y]0) > Eqyy) log P(x,y]0) + Entropy[g(y)
Yy

EM: alternating maximization

E-step: maximize w.r.t. g L(w)
¢ = P(y|x,0" ")

M-step: maximize w.r.t. theta

0" = argmax,E,: log P(x,y|6)

Supervised learning from fractional annotation



Road Map

Done: Sequences: generative, discriminative,
supervised, unsupervised

Now: trees (parsing) — a little more linguistics...

This week: constituency - lots of generative
models

Next week: dependency (Project 2) — more
discriminative models



This Lecture

Constituency formalism

(Probabilistic) Context-free Grammars

CKY

Refining grammars

Next time: finish constituency + writing tips



Syntax



Parse Trees

ROOT
|
S
NP VP
ﬁ
DT NN VBD NP , S
| | | —— T —— |
The move followed NP PP , VP
DT NN IN NP VBG NP
| | | T —— | e T —
a round of NP PP reflecting NP PP
1 NNS IN NP DT VBG NN IN NP
| | | T | | | |
similar increases by JJ NNS a continuing decline in DT NN
| | | |
other lenders that market

The move followed a round of similar increases by other lenders,
reflecting a continuing decline in that market



Phrase Structure Parsing

Phrase structure parsing

organizes syntax into S
. /\
constituents or brackets NPqg VP
— T —
DT NN PP rises to . ..
In general, this involves The velocity IN NPy
|
nested trees of the seismic waves

Linguists can, and do,
argue about details

Lots of ambiguity

Dependency (next week)
makes more sense for
some languages



Constituency Tests

= How do we know what nodes go in the tree?

= (Classic constituency tests:

= Substitution by proform /\
= Clefting (/t was with a spoon...)
/\ /\

= Answer ellipsis

(What did you eat?) \ | /\ /\

The children VBD

= Coordination | /\ y /\

ate DT NN with DT NN

the cake a spoon

" Cross-linguistic arguments, too



Conflicting Tests

= Constituency isn’t always clear

. by NI):g
= Phonological reduction: 5T NN PP
. ) | | — T
= | will go —> "Il g0 The velocity IN NPpi
= | want to go — | wanna go olf the seismic waves
= ale centre — au centre \/

La vélocité des ondes sismiques
= Coordination

= He went to and came from the store.



Classical NLP: Parsing

= Write symbolic or logical rules:

Grammar (CFG) Lexicon
ROOT — S NP — NP PP NN — interest
S —= NPVP VP — VBP NP NNS — raises
NP — DT NN VP — VBP NP PP VBP — interest
NP — NN NNS PP — IN NP VBZ — raises

= Use deduction systems to prove parses from words
= Minimal grammar on “Fed raises” sentence: 36 parses
= Simple 10-rule grammar: 592 parses
= Real-size grammar: many millions of parses

= This scaled very badly, didn’t yield broad-coverage tools



Ambiguities



S
/\
NP VP
/\
D'I'/\NNS VP PP
Tf‘)e chiILren VBD NP IN NP

N L AN

ate DT NN with DT NN

the cake a spoon

The board approved [it

© Ambiguities: PP Attachment

S

/\

NP VP

N T~

DT NNS VBD NP

| | | T

The children ate NP PP

N
DT NN IN NP
| | N

the cake with DT NN

a spoon

acquisitionNby Royal Trustco Ltd.]

of Toronto]

[for $27 a share]

at its monthly meeting].



Attachments

" | cleaned the dishes in my pajamas

= | cleaned the dishes in the sink



Syntactic Ambiguities |

Prepositional phrases:
They cooked the beans in the pot on the stove with handles.

Particle vs. preposition:
The puppy tore up the staircase.

Complement structures
The tourists objected to the guide that they couldn’t hear.
She knows you like the back of her hand.

Gerund vs. participial adjective
Visiting relatives can be boring.
Changing schedules frequently confused passengers.



Syntactic Ambiguities |

= Modifier scope within NPs
impractical design requirements
plastic cup holder

= Coordination scope:
Small rats and mice can squeeze into holes or cracks in the

wall.



Dark Ambiguities

" Dark ambiguities: most analyses are shockingly bad
(meaning, they don’t have an interpretation you can get

your mind around) ROOT
|
S
This analysis corresponds to | I\F /\P\ | |
the correct parse of " DT VB7 vp ;o
L - . . | 7 | | /\
This will panic buyers ! e & Ve NP
| |
panic ~ NN
buying

= Unknown words and new usages

= Solution: We need probabilistic techniques handle this
uncertainty



PCFGs



Probabilistic Context-Free Grammars

" A context-free grammaris a tuple<N, T, S, R>

= N :the set of non-terminals
= Phrasal categories: S, NP, VP, ADJP, etc.
= Parts-of-speech (pre-terminals): NN, JJ, DT, VB
= T:the set of terminals (the words)
= S:the start symbol
= Often written as ROOT or TOP (not S — not all “sentences” are sentences)
" R:the set of rules
= OftheformX—=Y, Y, .. Y, withX,Y,EN
= Examples:S— NP VP, VP — VP CCVP
= Also called rewrites or productions

= A PCFG adds:
= A top-down production probability per rule P(Y, Y, ... Y, | X)



Treebank Grammars

= Need a PCFG for broad coverage parsing.
= (Can take a grammar right off the trees (doesn’t work well):

ROOT
SI) ROOT — S ]
T S — NP VP. 1
NP VP .
CX ‘ NP - PRP 1
PRP VBD ADJP .
| | VP — VBD ADJP 1
He  was 1]
riglht .....

= Maximum-likelihood estimate: get P(NP -> PRP | NP) by counting + normalizing
= Better results by enriching the grammar (lexicalization, other techniques)



Chomsky Normal Form

= Chomsky normal form:
= AllrulesoftheformX—=YZorX —=w

= |n principle, this is no limitation on the space of (P)CFGs
= N-ary rules introduce new non-terminals

VP
VP
e t [VP — VBD NP PP ¢]
VBD NP PP PP VP — VBD NP ]
VBD NP PP PP
= Unaries / empties are “promoted”
= NOT equivalent to this: VP
VP
VP
/\
VBD NP PP PP

= |n practice: binarize the grammar, keep unaries



CKY Parsing



A Recursive Parser

bestScore(X,1i,73,s)
if (j = i+1)
return tagScore(X,s[1i])
else
return max score (X->YZ) *
bestScore(Y,1,k,s) *

bestScore(Z,k,j,s)

= max over k and rule being applied
= Will this parser work?



A Bottom-Up Parser (CKY)

= Can also organize things bottom-up
= Not every tag/nonterminal can be built over every span!

bestScore (s) X
for (i : [0,n-1]) 7\
for (X : tags[s[il]]) Y Z

score[X] [i] [i+1] = /\/\
tagScore (X,s[1])

for (diff : [2,n])
for (1 : [0,n-diff])
J =1 + diff
for (X->YZ : rule)
for (k : [i+1, j-11])
score[X][1][]J] = max score[X][1][]],
score (X->YZ) *
score[Y] [1] [k] *
score[Z] [k] []]

i Kk



Unary Rules

= Unary rules?

bestScore(X,1,7],s)
if (J = 1+1)
return tagScore(X,s[1])
else
return max max score (X->YZ) *
bestScore(Y,i,k,s) *
bestScore(Z,k,j,s)
max score (X->Y) *

bestScore(Y,1i,J,s)

" Problem: dynamic program is self-referential!



Unary Closure

= \WWe need unaries to be non-cyclic
= Can address by pre-calculating the unary closure
= Rather than having zero or more unaries, always have

exactly one
VP
SBAR
VP —
VBD NP D | S — |
— NP | VP
DT NN — VP
DT NN

= Alternate unary and binary layers
= Reconstruct unary chains afterwards



Alternating Layers

bestScoreB (X,1i,]j, s)
return max max score (X->YZ) *
bestScoreU(Y,i,k) *
bestScoreU(Z,k, j)

bestScoreU(X,1i,j, s)
if (3 i+l)

return tagScore(X,s[i])

else
return max max score (X->Y) *
bestScoreB(Y,1i, )



Analysis



Time: Theory

" How much time will it take to parse?

" For each diff (<=n)
" Foreachi(<=n)

= ForeachruleX—YZ /\
Y Z

= For each split point k
Do constant work /\ /\

X

i K



Time: Theory

" How much time will it take to parse?

" For each diff (<=n)
" Foreachi(<=n)

= ForeachruleX—YZ /\
Y Z

= For each split point k
Do constant work /\ /\

X

i Kk
* Total time: |rules|*n3
= Simple grammar takes 0.1 sec to parse a 20-word

sentence, bigger grammars can take 10+ seconds
unoptimized



Time: Practice

Parsing with the vanilla treebank grammar:

360

~ 20K Rules

(not an

/ optimized

180 parser!)

300

N
N
o

120 | Observed
exponent:

: 3.6
0 10 20 30 40 50
Sentence Length

Avg. Time (seconds)

2}
o

Why’s it worse in practice?
* Longer sentences “unlock” more of the grammar
= All kinds of systems issues don’t scale



Same-Span Reachability

ADIP ADVP
FRAG INTJ NP
PP PRN QP S
SBAR UCP VP
WHNP

SBARQ D
CWHADVE




Efficient CKY

= | ots of tricks to make CKY efficient

= Some of them are little engineering details:

= E.g., first choose k, then enumerate through the Y:[i,k] which are
non-zero, then loop through rules by left child.

= Optimal layout of the dynamic program depends on grammar

= Some are algorithmic improvements:

= Pruning: rule out chunks of the chart based on a simpler model



Learning PCFGs



Typical Experimental Setup

= Corpus: Penn Treebank, WSJ

Training: sections  02-21

Test: section 23

= Accuracy — F1: harmonic mean of per-node labeled
precision and recall.

" Here: also size — number of symbols in grammar.



Treebank PCFGs

= Use PCFGs for broad coverage parsing

[Charniak 96]

= Can take a grammar right off the trees (doesn’t work well):

ROOT
S|) ROOT — S 1
e S — NP VP. ]
NP VP .
| N > NP — PRP 1
PRP VBD ADJP .
| | VP — VBD ADJP 1
He  was J]
|
right
Model F1

Baseline 72.0




Conditional Independence?

S
NP VP
I —
PRP VBD NP
I | — T

She heard DT NN

the noise

= Not every NP expansion can fill every NP slot
= A grammar with symbols like “NP” won’t be context-free
= Statistically, conditional independence too strong



Non-Independence

" |[ndependence assumptions are often too strong.

All NPs NPs under S NPs under VP
23%

21%

11%
° 9%

.. 6%

NPPP DTNN PRP NPPP DTNN PRP NPPP DTNN PRP

4%

= Example: the expansion of an NP is highly dependent on the
parent of the NP (i.e., subjects vs. objects).

= Also: the subject and object expansions are correlated!



Grammar Refinement

PRP VBD NP-Abkse
She heard DT NN
| |
the noise

= Structure Annotation [Johnson ’98, Klein&Manning '03]
= Lexicalization [Collins 99, Charniak "00]
= |atent Variables [Matsuzaki et al. 05, Petrov et al. '06]



Structural Annotation



The Game of Designing a Grammar

S
B
NP”S VP
I —
PRP VBD NP"VP
I I — T

She heard DT NN
| |
the noise

" Annotation refines base treebank symbols to
improve statistical fit of the grammar

= Structural annotation



Vertical Markovization

, Order 1 Order 2
Vertical Markov
order: rewrites /SR,OOT\
depend on past k I
ancestor nodes. | /\ | | /\ |
PRP VBD ADJP . PRP VBD ADVP'VP .
(cf. parent | A | | A
annotation ) He was right He  was right
79% 25000
78%
7% @ 20000
76% - _8 15000
;Z‘Zo . £ 10000
% - (7p)
73% - 5000 7
72% - 0 -
1 2V 2 3v 3 1 2V 2 3v 3
Vertical Markov Order Vertical Markov Order

Klein and Manning (2003)



AN

Horizontal Markovization

Order 1 Order ©©
P NP
NP /N\ /\
T~ NNP NP NNPe
NNP NNP NNP NP Fii:i;fﬁii’ o~
NNP NP-... NNPe NNP NP—NNP NNPe
DHLP NNP
74% 12000
73% 9000

72%

1% A

70% -

0 1 2v 2 inf

Horizontal Markov Order

Symbols

6000
o _aih
0 —_-I I I I
0 1 2v 2 inf

Horizontal Markov Order
Klein and Manning (2003)



Tag Splits

" Problem: Treebank tags

are too coarse.

= Example: Sentential, PP,
and other prepositions

are all marked IN.

= Partial Solution:
= Subdivide the IN tag.

Klein and Manning (2003)

VP

N

VP

/\

VB SBAR

| T T~

see.  IN'SNT S

I N

if NP VP

NN VBZ

advertisin g works

Annotation F1 Size

Previous 78.3 8.0K

SPLIT-IN 80.3 |8.1K




“" A Fully Annotated (Unlex) Tree

ROOT
|
S"ROOT-v
— O\
“§  NP"S-B VP’S-VBE-v S S
| T T~ |
“ DT-UNP VBZBE'VP NP*VP-B [
| N
This is NN*NP NN"NP

panic ~ buying



Some Test Set Results

Parser LP LR F1 CB 0 CB

Magerman 95 |[84.9 |(84.6 [84.7 |1.26 |56.6

Collins 96 86.3 |85.8 |[86.0 |1.14 |59.9

K+M 2003 86.9 |85.7 |(86.3 |1.10 |60.3

Charniak 97 |87.4 |87.5 |87.4 |1.00 |62.1

Collins 99 88.7 |88.6 [88.6 [0.90 |(67.1

= Beats “first generation” lexicalized parsers.
= Baseline: ~72

Klein and Manning (2003)



Lexicalization



The Game of Designing a Grammar

PRP VBD NP-noise
| | _
She heard DT NN
| |
the noise

= Annotation refines base treebank symbols to improve
statistical fit of the grammar
= Structural annotation [Johnson '98, Klein and Manning 03]
= Head lexicalization [Collins 99, Charniak '00]



Problems with PCFGs

S S
/\ /\
NP VP NP VP
/\ /\ /\ ,/\
DT~ NNS VP pp D‘T N‘NS “TD /N_P\\
‘ | /\ /\ The children ate NP PP
The children VBD NP IN NP /\
| AN | N DT NN IN NP
ate DT NN with DT NN ‘ ‘ | /\
| | ’ ’ the cake with DT NN
the cake a spoon ‘ ‘

a spoon

= |f we do no annotation, these trees differ only in one rule:
= VP —VPPP
= NP—> NPPP

= Parse will go one way or the other, regardless of words
= Lexicalization allows us to be sensitive to specific words



Problems with PCFGs

ﬂ\ S

NNS /\

IN NP
NP PP and NNS d| | |
| TN | 08 n
NNS IN NP cats NP CC NP
| | | | |
dolgs m  NNS NNS and NNS
I | |
houses houses cats

= \What's different between basic PCFG scores here?
= What (lexical) correlations need to be scored?



Lexicalized Trees

Add “head words” to
each phrasal node

= Syntactic vs. semantic
heads

= Headship not in (most)
treebanks

= Usually use head rules,
e.g..
= NP:
= Take leftmost NP
= Take rightmost N*
= Take rightmost JJ
= Take right child

= Take leftmost VB*
= Take leftmost VP
= Take left child

S

TN

NP VP
DT/\\NN Vt/\NP
tllxe Iav.'lyer I /\
questioned DT NN
[ L
the witness
Y
S(questioned)
NP(lawyer) VP(questioned)
DT(the) NN(lawyer) /\
| | Vt(questioned) NP(witness)
the lawyer |
questioned

DT(the) NN(witness)
| |

the witness



Lexicalized PCFGs?
= Problem: we now have to estimate probabilities like

VP(saw) -> VBD(saw) NP-C(her) NP(today)

= Never going to get these atomically off of a treebank

= Solution: break up derivation into smaller steps

1) VP (saw) 2) VP (saw)
VBD (saw) VBD (saw) {Np-c( )}
3) VP (saw) 4) VP(saw)

v v

VBD (saw) NP-C( ) NP ( ) VBD (saw) NP-C(her) NP(today)



Lexical Derivation Steps

= A derivation of a local tree [Collins 99]

VP (saw)

/

VBD (saw)

VP (saw)

o

VBD (saw) NP-C(her)

VP (saw)

N

VBD (saw) NP-C(her) NP (today)

Choose a head tag and word
P(child symbol | parent, head word)

Generate children from head
sequentially

P(child tag, child head | parent, head
symbol, head word)

Finish generating the children;
each new one conditions on the
previous ones



Lexicalized CKY

" How big is the state space?

" Nonterminals = Num symbols x vocab size -
way too large!

= Can’t use standard CKY



': Lexicalized CKY

» Track index h of head in DP: O(n®)
= Better algorithms next lecture!

Y[h] Z[h'
bestScore (X,i,j,h,s) /////A\\\///ii\\\
if (J = i+1) :
) | i h  k h
return tagScore(X,s[1i])
else
return

maﬁmggﬁmscore(X[h]—>Y[h] Z[h"]) *
bestScore(Y,i,k,h,s) *
bestScore(Z,k,j,h’ ,s)

k,hr,rllxa__:fyzscore(X[h]—>Y[h’] Z[h]) *

bestScore(Y¥,i,k,h’ ,s) *
bestScore(Z,k,j,h,s)



Results

= Some results
= Collins 99 — 88.6 F1 (generative lexical)

= Charniak and Johnson 05 —-89.7 / 91.3 F1 (generative
lexical / reranked)

* McClosky et al 06 —92.1 F1 (gen + rerank + self-train)
= 92.1 was SOTA for around 8 years!



Latent Variable PCFGs



The Game of Designing a Grammar

S
B
NP-1 VP
| ——
PRP VBD NP-2
| I — T

She heard DT NN
| |
the noise

= Annotation refines base treebank symbols to improve
statistical fit of the grammar
= Parent annotation [Johnson '98]
= Head lexicalization [Collins 99, Charniak "00]
= Automatic clustering?



© Latent Variable Grammars

S-1
- N T
NP-0 VP-1 -0
\ — T |
S PRP-1 VBD-0 ADJP-0
___—— N I I T
NP VP i He was  right
I /\ I EER
PRP VBD ADJP . 50
| | — -\
He was right NP-1 VP-1 0
l — |
PRP-0 VBD-0 ADJP-1
| [ _

He was right

Parse Tree T
Sentence qp Derivations ¢ : T’

Grammar G
Sg — NPO VPO
SO — NP1 VPO
Sg — NP() VP1
So — NP, VP,
Sl — NPO VP()

N N N N N

Sl — NPI VP]_ ?

NPO — PRP()
NPy — PRP;

-~ N

Lexicon
PRP; — She ?
PRP; — She ?

VBD,; — was ?
VBD,; — was ?
VBD,; — was ?

Para méters ()



Learning Latent Annotations

Forward

—

EM algorithm:
» Brackets are known
» Base categories are known
* Only induce subcategories

S[X1]
-
NP[X5] VP[X4] [ X7]
| i /4\ |7 ‘
PRP[X3] VBD[X5] ADJP[ X4] .
I I —
He was right

Just like Forward-Backward for HMMs.
Learn label refinements, base labels are known! Backward



Refinement of the DT tag

DT

the (0.50)
a (0.24)
The (0.08)

a (0.61) the (0.80) this (0.39) some (0.20)
the (0.19) The (0.15) that (0.28) all (0.19)
an (0.11) a (0.01) That (0.11) those (0.12)

DT-1 DT-2 DT-3 DT-4




Hierarchical refinement

P N~
N X
the (O 1\
LEANC LS (AR
. AN v 8BS S
TS W
N w dwi XS
- e e
R ({ NN
e §
N .-’b

the (0.549)

N
- some (011

15)

N\

14
A

\
N
\}

a (061)
the (0.19)
an (0.11)

the (0.80)
The (0.15)
a (0.01)

this (0.39)
that (0.28)
That (0.11)

some (0.20)
all (0.19)
those (0.12)




Parsing accuracy (F1)

©
(@)

oo
o

(@)
»

oo
B

(0]
N

(@)
o

~
o

~
(o))

~
N

Hierarchical Estimation Results

v
' ' ' ' Model F1
100 300 500 700 900 11 —
Total Number of gramma| Flat Training 87.3
Hierarchical Training |88.4




Refinement of the , tag

» Splitting all categories equally is wasteful:

, (1.00)

, (1.00) , (1.00)

, (1.00) , (1.00) , (1.00) , (1.00)




Adaptive Splitting

= \Want to split complex categories more

" |dea: split everything, roll back splits which were

least useful

%,...N»..<\.A,..W..;._....,.u...,,,“.... RS

tha 7O S/
e LD

@'} 25)

%”Ea:} (0 3%

2060

the (0.19)
an (0.11)

——

o S N
the (
SRR ‘

(0.80)
The {i% 15)

s\\\§\

5 (0.96)
2 (0.01)
The (0.01)

The (0.93)
A (0.02)

No (0.01)




Adaptive Splitting Results

—
84 —
y/

/

80 // /
8
/ / ——5 s Higrarchical Trainin P
76 —
100 300 500 700 900

F1

Previous

88.4

With 50% Merging

89.5




1571
100d
X
dravHM
o4y
oudvds
rLNI
dAQVHM
don
OVN
ovdd
drfNOD
0S
ddHM
1dd
ANIS
XN
Ndd
dNHM

dO
dvds

drav

Number of Phrasal Subcategories

dAQv

dd
dA

dN




Number of Lexical Subcategories

70

S
dd
NAS

HN

| OL
Say
M4

-gdy-
1am
$dM
X3

-gy T
UM
1ad
SOd
dM
yay
an
| $ddd
did
srr
ure
[ 20
SdNN
[ 1a
[ dan
| zan
[ NI
ek
[ aan
| an
| 98/
[ ay
[ NEA
| NN
[ SNN
[ rr
dNN

:‘7 HII_III_III_IJ_' |_|IDIDID'DIDIDIDIDIDIDIDIDI':"DI‘:' i e s B s B s B s B B s



Learned Splits

= Proper Nouns (NNP):

NNP-14 Oct. Nov. Sept.
NNP-12 John Robert James
NNP-2 J. E. L.
NNP-1 Bush Noriega Peters
NNP-15 New San Wall
NNP-3 York Francisco  Street




Learned Splits

= Proper Nouns (NNP):

NNP-14 Oct. Nov. Sept.
NNP-12 John Robert James
NNP-2 J. E. L.
NNP-1 Bush Noriega Peters
NNP-15 New San Wall
NNP-3 York Francisco  Street

= Personal pronouns (PRP):

PRP-0 It He I
PRP-1 it he they
PRP-2 it them him




Learned Splits

= Cardinal Numbers (CD):

CD-7
CD-4
CD-11
CD-0
CD-3
CD-9

one two Three
1989 1990 1988
million billion trillion
1 50 100
1 30 31
/8 58 34




Hierarchical Pruning

coarse: MNP wP | ..

splitineight: ... | ... [... ||| [ || || ||| [ ]




Bracket Posteriors

220%0%%
(ERARAK
0202020220 % %%
02020205 % %% %%, %
0002020205020 %%:%%, %
020202020 %% %% % %%,
0302620562 %%% % %% %%,
0202026762 %6%6%0% %% % % %%, 4%
002020202020 %0%2 96%%:%:%% %% %
03020207020 200 %0 %%, %%%%% %% %%
07020%0%0% %% %0%% %, %%% %% %% %
020202050 %%6%%2 " %%, %
0202020205020 %%, %% %%, %%%2%%%2%. %
02020 %% % %% 1020,0%0%% % % % %2 %
Po0L9000000000000000000,  420000202030000000020 0208
0,0 70303030300000%0%0 30303030, 205030203 %0%0%0202 20303 %9
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(XS

&
(R
0
%
, 400003030302,
(RS % %
1020702020%0%6%%6%6%6%6 %0, ¢ %0 %0 %%, %%% o 20
2000303030303 2020207 2020%020% 303030 % 2020202 902030303
OL02030307020303030507 (93030500 103050 Q0308% (930302 03
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* "’

0% %
0%° %6%%%"% % %
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to
the

and
government

Means

Committee

introduced
how

the

new

s&l

Ways
that
would
restrict
bailout
agency
can
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capital
creating
another
potential

T 0
€3
S E
-

= O
£ E

legislation
obstacle



Speedup

= 100x speedup if you use the full coarse-to-fine
hierarchy vs. just parsing with the finest grammar

= Parse the test set in 15 minutes — 2 sentences/
second



Final Results (Accuracy)

< 40 words all
F1 F1
m | Charniak&Johnson ‘05 (generative) 90.1 89.6
Z
@ Split / Merge 90.6 90.1
Gn?l Dubey ‘05 76.3 -
A Split / Merge 80.8 80.1
o Chiang et al. ‘02 80.0 76.6
T
Z Split / Merge 86.3 83.4

Ensemble of split-merge parsers = best cross-lingual parser for ~7 years!



