CS395T: Structured Models for NLP
Lecture 7: Parsing |

Greg Durrett

Adapted from Dan Klein — UC Berkeley

Administrivia

Project 1 due one week from today!

Recall: EM for HMMs

Maximize lower bound of log marginal likelihood:

log > P(x,y|0) > Eq(y) log P(x,y0) + Entropy[q(y)]
Yy

EM: alternating maximization

E-step: maximize w.r.t. q L(w)
¢' = P(ylx, 0"

M-step: maximize w.r.t. theta

0" = argmaxyE: log P(x,y|0)

Supervised learning from fractional annotation

Road Map

= Done: Sequences: generative, discriminative,
supervised, unsupervised

Now: trees (parsing) - a little more linguistics...

This week: constituency - lots of generative
models

Next week: dependency (Project 2) - more
discriminative models




This Lecture

Constituency formalism

(Probabilistic) Context-free Grammars

CKY

Refining grammars

Next time: finish constituency + writing tips

Syntax

Parse Trees

NP VP N
P i
o7 NN VED NP . s .
e
The move followed NP PP . VP
—
OT NN N NP VBG NP
[ e | o
a round of NP [ reflecting NP [
e e Lo
I NNs N NP DT VEG NN NP
| | [ I | [
similar increases by Il NNS a continuing decline in DT NN

| | | |
other lenders that market

The move followed a round of similar increases by other lenders,
reflecting a continuing decline in that market

Phrase Structure Parsing

Phrase structure parsing

organizes syntax into s
constituents or brackets NPy VP
—
DT NN PP risesto...

o | | —

In general, this involves The velocity IN NPy
[ ———

nested trees of the seismic waves

Linguists can, and do,
argue about details

Lots of ambiguity

Dependency (next week)
makes more sense for
some languages




Constituency Tests

= How do we know what nodes go in the tree?

= Classic constituency tests:

= Substitution by proform /\

= Clefting (/t was with a spoon...) w

= Answer ellipsis DT NNs N
(What did you eat?)

PP

The  children VBD NP IN NP

= Coordination |

ate DT NN with DT NN

the cake

= Cross-linguistic arguments, too

a  spoon

Conflicting Tests

= Constituency isn’t always clear

. . NPy
= Phonological reduction: Dmg\w

= i — | | | —
I WI” 80 I " g0 The velocity IN NPy

= lwantto go — | wanna go o‘f the seismic waves

= ale centre — au centre \/

La vélocité des ondes sismiques
= Coordination

= He went to and came from the store.

Classical NLP: Parsing

= Write symbolic or logical rules:

Grammar (CFG) Lexicon
ROOT — S NP — NP PP NN — interest
S —= NP VP VP — VBP NP NNS — raises
NP — DT NN VP — VBP NP PP VBP — interest

NP — NN NNS PP — IN NP VBZ — raises

= Use deduction systems to prove parses from words
= Minimal grammar on “Fed raises” sentence: 36 parses
= Simple 10-rule grammar: 592 parses
= Real-size grammar: many millions of parses

= This scaled very badly, didn’t yield broad-coverage tools

Ambiguities




©" Ambiguities: PP Attachment

s S

/\ /\
NP W NP Ve
DT NN 0 PP D‘T NI‘\’S “TD g
/\
‘ ‘ PN PN The children ate NP PP
The children VED NP K Np P
| [ZN DT NN N NP

ate DT NN with DT NN ‘ ‘ /\
‘ | | ‘ the cake with DT NN

the cake a  spoon ‘ ‘
a  spoon

The board approved [it\acquisitionNby Royal Trustco Ltd.]

of Toronto]
[for $27 a share]

at its monthly meeting].

: Attachments

= | cleaned the dishes in my pajamas

= | cleaned the dishes in the sink

Syntactic Ambiguities |

= Prepositional phrases:
They cooked the beans in the pot on the stove with handles.

= Particle vs. preposition:
The puppy tore up the staircase.

= Complement structures
The tourists objected to the guide that they couldn’t hear.
She knows you like the back of her hand.

= Gerund vs. participial adjective
Visiting relatives can be boring.
Changing schedules frequently confused passengers.

Syntactic Ambiguities Il

= Modifier scope within NPs
impractical design requirements
plastic cup holder

= Coordination scope:
Small rats and mice can squeeze into holes or cracks in the
wall.




: Dark Ambiguities

= Dark ambiguities: most analyses are shockingly bad
(meaning, they don’t have an interpretation you can get

your mind around) ROOT
|
S
/7\
This analysis corresponds to | Nlp /VP\ | |
the correct parse of Y DT VEZ p I

P / |
This will panic buyers ! s s Ve Np

panic NN
buying
= Unknown words and new usages

= Solution: We need probabilistic techniques handle this
uncertainty

PCFGs

Probabilistic Context-Free Grammars

= A context-free grammar is a tuple <N, T, S, R>
= N:the set of non-terminals
= Phrasal categories: S, NP, VP, ADJP, etc.
= Parts-of-speech (pre-terminals): NN, JJ, DT, VB
= T:the set of terminals (the words)
= S:the start symbol
= Often written as ROOT or TOP (not S — not all “sentences” are sentences)
= R:the set of rules
= OftheformX —Y,Y,..Y, withX,Y,EN
= Examples: S — NP VP, VP — VP CCVP
= Also called rewrites or productions

= A PCFG adds:
= Atop-down production probability per rule P(Y; Y, ... Y, | X)

: Treebank Grammars

Need a PCFG for broad coverage parsing.
Can take a grammar right off the trees (doesn’t work well):

ROOT
Sl ROOT — S 1
T S—NPVP. 1
NP VP .
N ‘ NP — PRP 1
PRP VBD ADJP .
[ VP — VBD ADJP 1
He was )i
rz;_lht .....

Maximume-likelihood estimate: get P(NP -> PRP | NP) by counting + normalizing
Better results by enriching the grammar (lexicalization, other techniques)




Chomsky Normal Form

= Chomsky normal form:
= Allrules of theformX —=YZorX —w

= In principle, this is no limitation on the space of (P)CFGs
= N-ary rules introduce new non-terminals

VP
VP
N C [VP —> VBD NP PP ]
VBD NP PP PP [vP — VBD NP ]
v

BD NP PP

= Unaries / empties are “promoted”
= NOT equivalent to this: VP

VBD NP PP PP

= |n practice: binarize the grammar, keep unaries

PP

CKY Parsing

A Recursive Parser

bestScore (X,i,3,s)
if (J = i+1)

return tagScore(X,s[i])
else

return max score (X->YZ) *
bestScore(Y,i,k,s) *

bestScore(Z,k,j,s)

= max over k and rule being applied
= Will this parser work?

A Bottom-Up Parser (CKY)

= (Can also organize things bottom-up
= Not every tag/nonterminal can be built over every span!
bestScore (s)
for (i : [0,n-1])

X
for (X : tags[s[i]]) Y Z
score[X] [i] [i+1] =

tagScore (X,s[1]) <ﬁiiiiiilliiiiz>>

for (diff : [2,n])

i k
for (i : [0,n-diff])

j =i + diff
for (X->YZ : rule)

for (k : [i+1, j-1])

score[X][i][3] =

max score[X][i][j],
score (X->YZ) *
score[Y] [i] [k] *
score[Z] [k][]]




Unary Rules

= Unary rules?

bestScore(X,i,Jj,s)
if (j = i+l)
return tagScore(X,s[i])
else
return max max score (X->YZ) *
bestScore(Y,i, k,s) *
bestScore(Z,k,j,s)
max score (X->Y) *
bestScore(Y,i,j,s)

= Problem: dynamic program is self-referential!

Unary Closure

= We need unaries to be non-cyclic
= Can address by pre-calculating the unary closure

= Rather than having zero or more unaries, always have

exactly one
VP
SBAR
VP —
— VBD NP | SBAR
VBD NP I s = !
— NP | VP
DT NN - VP
DT NN

= Alternate unary and binary layers
= Reconstruct unary chains afterwards

Alternating Layers

bestScoreB(X,1i,7j,s)
return max max score (X->YZ) *
bestScoreU(Y,i,k) *
bestScoreU(Z,k, J)

bestScoreU(X,1i,3,s)
if (3 = i+1)
return tagScore (X,s[i])
else
return max max score (X->Y) *

bestScoreB (Y, i, )

Analysis




Time: Theory

= How much time will it take to parse?

= For each diff (<=n)
= For eachi(<=n) X
= ForeachruleX—YZ /\
= For each split point k

Y Z
Do constant work AA

i k

Time: Theory

= How much time will it take to parse?

= For each diff (<= n)
= For eachi(<=n) X
= ForeachruleX—YZ /\
= For each split point k

Y Z
Do constant work AA

[ k j

= Total time: |rules|*n3

= Simple grammar takes 0.1 sec to parse a 20-word

sentence, bigger grammars can take 10+ seconds
unoptimized

Time: Practice

= Parsing with the vanilla treebank grammar:

360

~ 20K Rules
300 (not an
240 .— optimized
parser!)
120 Observed
60 exponent:
0 3.6
0 10 20 30 40 50

Sentence Length

Avg. Time (seconds)
o‘n
=]

= Why's it worse in practice?
= Longer sentences “unlock” more of the grammar
= All kinds of systems issues don’t scale

Same-Span Reachability

ADJP ADVP
FRAG INT] NP
PP PRN QP S
SBAR UCP VP

@ WHNP




Efficient CKY

= |ots of tricks to make CKY efficient

= Some of them are little engineering details:

= E.g., first choose k, then enumerate through the Y:[i,k] which are
non-zero, then loop through rules by left child.

= Optimal layout of the dynamic program depends on grammar
= Some are algorithmic improvements:
= Pruning: rule out chunks of the chart based on a simpler model

Learning PCFGs

Typical Experimental Setup

= Corpus: Penn Treebank, WS)J

Training: sections  02-21

Test: section 23

= Accuracy — F1: harmonic mean of per-node labeled
precision and recall.
= Here: also size — number of symbols in grammar.

Treebank PCFGs

[Charniak 96]

Use PCFGs for broad coverage parsing
Can take a grammar right off the trees (doesn’t work well):

ROOT
S| ROOT — S 1
T S— NP VP. 1
NP VP .
| :> NP — PRP 1
PRP VBD ADJP .
[ | VP — VBD ADJP 1
He was ]
|
right
Model F1

Baseline 72.0




X

Conditional Independence?

S
NP VP .
| — |
PRP VBD NP
| | —

She heard DT NN
| |
the noise

= Not every NP expansion can fill every NP slot
= A grammar with symbols like “NP” won’t be context-free
= Statistically, conditional independence too strong

5 Non-Independence

= |Independence assumptions are often too strong.

All NPs NPs under S NPs under VP
0,
1% 23%
0,
1% 9% 9% 9% o
. . o 7%
6% 4%
NP PP DTNN PRP NP PP DTNN PRP NP PP DTNN PRP

= Example: the expansion of an NP is highly dependent on the
parent of the NP (i.e., subjects vs. objects).

= Also: the subject and object expansions are correlated!

Grammar Refinement

the noise

= Structure Annotation [Johnson ‘98, Klein&Manning '03]
= |exicalization [Collins ’99, Charniak '00]
= Latent Variables [Matsuzaki et al. 05, Petrov et al. '06]

Structural Annotation

10



*’ The Game of Designing a Grammar

S
-
NP*S VP
| —
PRP VBD NP"VP
| — T

|
She heard DT NN
| |
the noise

= Annotation refines base treebank symbols to
improve statistical fit of the grammar
= Structural annotation

* Vertical Markovization

. Order 1 Order 2
Vertical Markov
order: rewrites S SROOT
depend on past k N W S nFS wes
ancestor nodes. o |

PRP VED ADJP . PRP VED ADVP'VP .

(cf. parent | A | | A
annotation ) He was right He  was right

79% —————————— 25000

78% i

o] P 20000

76% - S 15000 ~

;iz 1 € 10000

% @
739% 1 5000
72% -+ 0
1 2v 2 3 3 1 2v 2 3v 3

Vertical Markov Order Vertical Markov Order

Klein and Manning (2003)

: Horizontal Markovization
Order 1 Order o©
NP NP NP
NNP  NP-s... NNPe NNP NP—NNPe

NNP NNP NNP

NNP NP-s... NNPe NNP NP—NNP NNPe

NNP NNP

74% 12000
9000
6000 -

73%
2%

Symbols

71% + 3000 +
70% - 0 -
0 1 2v 2 inf 0 1 2v 2 inf
Horizontal Markov Order

Horizontal Markov Order
Klein and Manning (2003)

@ Tag Splits

Klein and Manning (2003)

* Problem: Treebank tags o~
are too coarse. TIO P
to VB SBAR
* Example: Sentential, PP, o ‘NTW /S\
and other prepositions if N|1’ VlP
are all marked IN. NN VBZ
adver|li5ing wolrks
= Partial Solution:
= Subdivide the IN tag. Annotation F1 Size
Previous 78.3 |8.0K

SPLIT-IN 80.3 |8.1K

11



A Fully Annotated (Unlex) Tree

ROOT

S"ROOT-v

“S  NP"S-B VP*S-VBE-v S S
DT-U'NP VBZ'BE'VP NP"VP-B r
This is NN"NP NN"NP

panic  buying

Some Test Set Results

Parser LP LR F1 CB 0CB

Magerman 95 [84.9 |84.6 |84.7 |1.26 |56.6

Collins 96 86.3 |85.8 [86.0 |1.14 |59.9

K+M 2003 86.9 |85.7 [86.3 |1.10 |60.3

Charniak 97 |87.4 |87.5 |87.4 |1.00 |62.1

Collins 99 88.7 |88.6 |88.6 |0.90 |67.1

= Beats “first generation” lexicalized parsers.
= Baseline: ~72

Klein and Manning (2003)

Lexicalization

The Game of Designing a Grammar

S
-
NP-she VP
I —
PRP VBD NP-noise
I | —
She heard DT NN
I I
the noise

= Annotation refines base treebank symbols to improve
statistical fit of the grammar
= Structural annotation [Johnson '98, Klein and Manning 03]
= Head lexicalization [Collins '99, Charniak '00]

12



@ Problems with PCFGs

S S
/\ T
NP p NP VP
DT NNS VP PP D‘T NTS v TD /NP\
The children ate NP PP
The children  VBD NP IN NP
| AN | AN DT NN 1IN NP

ate DT NN with DT NN ‘ ‘ ‘
‘ ‘ ‘ ‘ the cake with DT NN

(@ Problems with PCFGs

NP

/’\ NP/\PP

NP cc NP | /\
NNS

| | IN NP
NP PP and NNS dI o
| PN | 8 !

NNS IN NP cats NP cc NP
[ | | | |
dogs 1 NNS NNS and NNS

|
houses houses cats

= What’s different between basic PCFG scores here?
= What (lexical) correlations need to be scored?

the cake a  spoon | |
a spoon
= |f we do no annotation, these trees differ only in one rule:
= VP—VPPP
= NP—NPPP
= Parse will go one way or the other, regardless of words
= Lexicalization allows us to be sensitive to specific words
) . .
‘ Lexicalized Trees
= Add “head words” to
each phrasal node A
= Syntactic vs. semantic F ¥
heads P v'/\W
= Headship not in (most) & b e
treebanks I
= Usually use head rules, i
e.g.: .
. NP: S(questioned)
= Take leftmost NP
= Take rightmost N*
= Take rightmost JJ NP(lawyer) VP(questioned)
= Take right child /\ /\
= \/P: DT(the) NN(lawyer) B ~ -
« Take leftmost VB* ﬂl 1 | Vt(questioned) NP(witness)
= Take leftmost VP e awyer :
questioned >
« Take left child DT(the) NN(witness)

the witness

Lexicalized PCFGs?

= Problem: we now have to estimate probabilities like

VP(saw) -> VBD(saw) NP-C(her) NP(today)
= Never going to get these atomically off of a treebank

= Solution: break up derivation into smaller steps

1) VP (saw) 2) VP (saw)
VED (saw) VBD (saw) {wp-c( )}
3) VP (saw) 4) VP (saw)
VBD (saw) NP-C( ) NP( ) VBD (saw) NP-C(her) NP(today)

13



2 Lexical Derivation Steps

= A derivation of a local tree [Collins 99]

VP (saw)

/ Choose a head tag and word

P(child symbol | parent, head word)

VBD (saw)
VP (saw) Generate children from head
M sequentially
VBD(saw) NP-C(her) P(child tag, child head | parent, head

symbol, head word)

VP (saw)
m Finish generating the children;
each new one conditions on the

VBD (saw) NP-C(her) NP(today) .
previous ones

: Lexicalized CKY

= How big is the state space?

= Nonterminals = Num symbols x vocab size -
way too large!

= Can’t use standard CKY

@ Lexicalized CKY

= Track index h of head in DP: O(n®)
= Better algorithms next lecture!

bestScore(X,i,j,h,s)
if (3 = i+1)
return tagScore(X,s[i])

else
return

max max score(X[h]->Y[h] Z[h']) *
bestScore(Y,i,k,h,s) *
bestScore(Z,k,j,h’,s)

max score (X[h]->Y[h’] Z[h]) *

“»MbestScore(Y,i,k,h’,S) *
bestScore(Z,k,j,h,s)

k,h

G Results

= Some results
= Collins 99 — 88.6 F1 (generative lexical)

= Charniak and Johnson 05 —89.7 / 91.3 F1 (generative
lexical / reranked)

= McClosky et al 06 —92.1 F1 (gen + rerank + self-train)
= 92.1 was SOTA for around 8 years!

14



Latent Variable PCFGs

The Game of Designing a Grammar

S
P e
NP-1 VP .
| —
PRP VBD NP-2
| — T

|
She heard DT NN
I |
the noise

= Annotation refines base treebank symbols to improve
statistical fit of the grammar
= Parent annotation [Johnson '98]
= Head lexicalization [Collins 99, Charniak '00]
= Automatic clustering?

Latent Variable Grammars

Grammar G

51 Sy > NPy VP, 7

- Sy NP, VP, ?

— Sy — NPy VP; ?

NP0 VP-1 -0 S NP, VP, ?

‘ — ! S; 5 NP, VP, ?
S PRP-1 VBD-0 ADJP-0

— ! L 1 NP, VP, ?
NP VP A He was right .

NP, »PRP,  ?

[ o [ . — o iR b
PRP VBD ADJP . 50
| | T .~ o

] NP-1 VP-1 0 __Lexicon
He was right ‘ e ‘ R
PRP-0 VBD-0 ADJP-1 . PRP; — She ?

| | _

He was right VBDy —was  ?

VBD; »was ?
VBD; »was 7
Parse Tree T o
Sentence qp Derivations ¢ : T Parameters @

Learning Latent Annotations

EM algorithm: Forward
= Brackets are known / \
= Base categories are known @

= Only induce subcategories

(%)

S ] @
- N
NP[X,] VP[X,] [X7]
| : /4\ |7 ‘ @
PRP[X3] VBD[X5] ADJP[X¢]
| | P
He was right

He
Just like Forward-Backward for HMMs.

Learn label refinements, base labels are known!

Backward

15



Refinement of the DT tag

¥

DT
the (0.50)
a (0.24)
The (0.08)

X A

a (0?61)

the (0.80) this (0.39) some (0.20)
the (0.19) The (0.15) that (0.28) all (0.19)
an (0.11) a (0.01) That (0.11) those (0.12)
DT-1 DT-2 DT-3 DT-4

Hierarchical refinement

[ the (0.50) |

Loa2dy
| The (0.08) |
“the (0.58) | [ that (0.15) |
a(025) | this (0.14) 1
| The (0.09) | | some (0.11) |
a(0.61) the (0.80) this (0.39) some (0.20)
the (0.19) | | The (0.15) that (0.28) all (0.19)
an (0.11) a (0.01) That (0.11) those (0.12)

2 Hierarchical Estimation Results

©
S

@
<3

@
>

@
=

o
)

4

@
S

/

Parsing accuracy (F1)

-
@

~
o

~
N

/
/
[

o
<)

T
300

T
500

T
700

11

Total Number of gramma| Flat Training

Model F1
87.3
Hierarchical Training | 88.4

Refinement of the, tag

= Splitting all categories equally is wasteful:

, (1.00)

s (]4()7())

(1.00)

~1.00) | [ (1.00)

~(L.00)

~1.00)
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Adaptive Splitting

= Want to split complex categories more

= |dea: split everything, roll back splits which were
least useful

Mhe (054) |

a (0.25)
L The (0.09) |

a (0.61) i";ﬁ;»'(’o'.é{}é B

the (0.19) | The (0.15) |

an (0.11) [ a00n
the (0.96) | [The (0.93)
a(0.01) A (0.02)
The (0.01) | | No (0.01)

Adaptive Splitting Results

": / /"A \

’ /
‘ -~
Model

40

35

30

25

20

Number of Phrasal Subcategories

B Tt ] = P
o o o [ = o o [ ) O o =
2R ¢°3%252822x093222c8%c¢ge23>*a9hk
a Q& T o 5 o I F1 2582 %ag o 4
< < 0 = = o L % 2 < x
s =

F1
Previous 88.4
Total Number of grammar symbols
With 50% Merging |89.5
Number of Lexical Subcategories
70
60 {1
50 =
40
30
20
10
o ] L] ““‘UDDDDDBDDDDDDDDDDDPPpPPpPPPPpP
$722588288 8850858 pLOFeghRe Uhg £EP 5 T FRa”
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Learned Splits

= Proper Nouns (NNP):

Learned Splits

» Proper Nouns (NNP):

NNP-14 Oct. Nov. Sept.
NNP-12 John Robert James
NNP-2 J. E. L.
NNP-1 Bush Noriega Peters
NNP-15 New San Wall
NNP-3 York Francisco  Street
= Personal pronouns (PRP):

PRP-0 It He I
PRP-1 it he they
PRP-2 it them him

NNP-14 Oct. Nov. Sept.

NNP-12 John Robert James

NNP-2 J. E. L.

NNP-1 Bush Noriega Peters

NNP-15 New San Wall

NNP-3 York Francisco  Street

Learned Splits
= Cardinal Numbers (CD):

CD-7 one two Three
CD-4 1989 1990 1988
CD-11 million billion trillion
CD-0 1 50 100
CD-3 1 30 31
CD-9 78 58 34

Hierarchical Pruning

coarse:
split in two: - [orOre e [prepeq]ve2 | .

split in four:

splitin eight: ... [.. [..

18



Bracket Posteriors Speedup

= 100x speedup if you use the full coarse-to-fine
hierarchy vs. just parsing with the finest grammar

= Parse the test set in 15 minutes — 2 sentences/
second

S§CEBLELBRSIIELEFE0RST BRESLE TS
58 TSECEESSTEIRRTEULE0NE g55 TE %O
e 15 I °F AL L
= o £- %
Final Results (Accuracy)
<40 words all
F1 F1
m |Charniak&Johnson ‘05 (generative) 90.1 89.6
=z
® Split / Merge 90.6 90.1
o Dubey ‘05 76.3 -
m
A Split / Merge 80.8 80.1
2 Chiang et al. ‘02 80.0 76.6
=z Split / Merge 86.3 83.4
Ensemble of split-merge parsers = best cross-lingual parser for ~7 years!




