CS395T: Structured Models for NLP
Lecture 9: Trees 3

Greg Durrett

Administrivia
» Project 1 due at *5pm™* today

» Project 2 will be out by tonight. Due October 17

» Shift-reduce parser: greedy model, beam search model, extension

Recall: Dependencies

» Dependency syntax: syntactic structure is defined by dependencies
» Head (parent, governor) connected to dependent (child, modifier)
» Each word has exactly one parent except for the ROOT symbol
» Dependencies must form a directed acyclic graph

<7 N

DT NN VBD TO DT NN
the dog ran to the house

ROOT

Recall: Projectivity

» Projective <-> no “crossing” arcs

K_/\\/\ Ve YavVaYdaY

dogs in houses and cats the dog ran to the house

» Crossing arcs: PUNC

ROOT
NP

NMOD
root A hearing is scheduled on the issue today
» Today: algorithms for projective parsing

credit: Language Log

This Lecture

» Graph-based dependency parsing

» Dynamic programs for exact inference — look a lot like sequential CRFs

» Transition-based (shift-reduce) dependency parsing

» Approximate, greedy inference — fast, but a little bit weird!

Graph-based Dependency Parsing

» How did we parse lexicalized trees? T

DT NN \/\w

.) A~

i
» Normal CKY is too slow: grammar is o
too large if it includes words _
S(questioned)
NP(lawyer) VP(questioned)

DT(the) NN(lawyer) -
Vt(questioned) NP(witness)

the lawyer L
questioned DT(the) NN(witness)
| |

the witness

Graph-based Dependency Parsing

» Naive algorithm: O(n>) X[h]

» Combine spans like CKY and look at their heads

» Five indices to loop over

» Features can look at spans and heads

[h k h’ j
» Can be applied to dependency parses as well! Builds projective trees

» What do our scores look like? For now, assume features on edge (head,
child) pair with some weights

Why is this inefficient?
» Lots of spurious ambiguity — many ways to derive the right parses

» Can split at either point and we can build up subtrees

i h k h
DT NN VBD TO DT NN

the dog ‘“ ran ' to the house

Eisner’s Algorithm: O(n3)

» Cubic-time algorithm like CKY

» Maintain two charts with dimension [n, n, 2]:
» Complete items: all children are attached, head is at the “tall end”

» Incomplete items: arc from “tall” to “short” end, word on short end has
parent but maybe not all of its children

the dog ran to the house

Eisner’s Algorithm: O(n3)

» Complete item: all children are attached, head is at the “tall end”

» Incomplete item: arc from “tall end” to “short end”, may still expect children

» Take two adjacent complete items, add arc and build incomplete item

>~] -

(other case is

- symmetric)
ROOT DT NN VBD TO DT NN
the dog ran to the house

Eisner’s Algorithm: O(n3)

_—

3) Build incomplete span

2) Promote to complete B

1) Build incomplete span

DT NN VBD TO
the dog ran to the house

ROOT

Eisner’s Algorithm: O(n3)

|+ g=
4) Promote to complete
ROOT DT NN VBD TO DT NN
the dog ran to the house

Eisner’s Algorithm: O(n3)

» Attaching to ROOT makes an incomplete item with left children, attaches
with right children subsequently to finish the parse

Eisner’s Algorithm

» Eisner’s algorithm doesn’t have split point ambiguities like this
» Left and right children are built independently, heads are edges of spans

» Charts are n x n x 2 because we need to track arc direction / left vs right

Eisner:

ROOT rooT DT NN . VBD TO DT NN
the dog ran to the house the dog " ran ' to the house
MST Parser Building Systems

» View dependency parsing as finding a maximum direct spanning tree —
space of all spanning trees, so we find nonprojective trees too!

» Chu-Liu-Edmonds algorithm to find the best MST in O(n?)

» This only computes maxes, but there is an algorithm for summing over
all trees as well (matrix-tree theorem)

» Ironically, the software artifact called MST Parser has an implementation
of Eisner’s algorithm, which is what most people use

McDonald et al. (2005)

» Can implement Viterbi decoding and marginal computation using
Eisner’s algorithm or MST to max/sum over projective/nonprojective
trees

» Same concept as sequential CRFs for NER, can also use margin-based
methods — you know how to implement these!

» Features are over dependency edges

Features in Graph-Based Parsing

» Dynamic program exposes the parent and child indices

TN

DT NN VBD TO DT NN
the dog ran to the house

ROOT

» McDonald et al. (2005) — conjunctions of parent and child words + POS,
POS of words in between, POS of surrounding words. ~91 UAS
» HEAD=TO & MOD=NN » HEAD=TO & MOD=house
» HEAD=TO & MOD-1=the » HEAD=TO & MOD=DT

» Lei et al. (2014) — ways of learning conjunctions of these

Features in Graph-Based Parsing

A~ N

DT NN VBD TO DT NN
the dog ran to the house

ROOT

» Ideally would use features on more arcs
» Grandparents: ran -> to -> house

» Siblings: dog <- ran -> to

Higher-Order Parsing

» Terry Koo (2010)

» Track additional state during parsing so we can look at grandparents and
siblings, O(n%)

» Additional indicator features based g h e g h m h m e
on this information, ~93 UAS (u
- i
from 91 UAS) ¢ h m h s m
» Turns out you can just use beam © Iﬁ = [ﬁ + @
search and forget this crazy hos om bt s hosom

dynamic program... @ @ = AN+ @

Shift-Reduce Parsing

Shift-Reduce Parsing

» Similar to deterministic parsers for compilers
» Also called transition-based parsing

» Atree is built from a sequence of incremental decisions moving
left to right through the sentence

» Stack containing partially-built tree, buffer containing rest of
sentence

» Shifts consume the buffer, reduces build a tree on the stack

Shift-Reduce Parsing

ROOT
K‘\//\/—\
| ate some spaghetti bolognese
» Initial state: Stack: [ROOT] Buffer: [l ate some spaghetti bolognese]
» Shift: top of buffer -> top of stack
» Shift 1: Stack: [ROOT I] Buffer: [ate some spaghetti bolognese]

» Shift 2: Stack: [ROOT | ate] Buffer: [some spaghetti bolognese]

Shift-Reduce Parsing

ROOT

| ate some spaghetti bolognese
» State: Stack: [ROOT | ate] Buffer: [some spaghetti bolognese]
» Left-arc (reduce operation): Let g denote the stack

» “Pop two elements, add an arc, put them back on the stack”
| olw_s, w_1| —>|J|w_1|, w_g isnow a child of w_;

» State: Stack: [ROOT ate] Buffer: [some spaghetti bolognese]
v

Arc-Standard Parsing

ROOT

| ate some spaghetti bolognese

» Start: stack contains [ROOT], buffer contains [I ate some spaghetti bolognese

» Arc-standard system: three operations
» Shift: top of buffer -> top of stack

» Left-Arc: |0\w_2, w_1|—>|a\w_1[w_2 is now a child of w_1

» Right-Arc |0|w_2, w_1| —>|U”w_2| , W—_1is now a child of wW_2

» End: stack contains [ROOT], buffer is empty []
» Must take 2n steps for n words (n shifts, n LA/RA)

Arc-Standard Parsing

ROOT

| ate some spaghetti bolognese

S top of buffer -> top of stack
LA pop two, left arc between them
RA pop two, right arc between them

Arc-Standard Parsing

ROOT S
A/A/\/\

| ate some spaghetti bolognese

top of buffer -> top of stack

LA pop two, left arc between them
RA pop two, right arc between them

[ROOT] E [l ate some spaghetti bolognese] : et bol |
ROOT at some spaghetti bolognese
[ROOT] [I some spaghetti bolognese] [a¢e]
[ROOT | ate]] [some spaghetti bolognese] I
[ROOT ate] [some spaghetti bolognese] [ROOT aice some spaghetti] [bolognese]
T | |
» Could do the left arc later! But no reason to wait [ROOT aie spagreth] [bolognese]
» Can’t attach ROOT <- ate yet even though this is a correct dependency! | some
Arc-Standard Parsing Other Systems

ROOT

| ate some spaghetti bolognese

[ROOQT ate spaghetti bolognese]
\ '
I some

[ROOQT ate spaghetti]
\ | 2N
I some bolognese
[ROOT ateL E
v hetti
spaghet

Ly
some bolognese

(l

(]

(l

S top of buffer -> top of stack
LA pop two, left arc between them
RA pop two, right arc between them

» Stack consists of all words that are
still waiting for right children, end
with a bunch of right-arc ops

Final state:

[ROOT] [1
= ate

¥ Tpaghetti
Iy ™

some bolognese

» Arc-eager (Nivre, 2004): lets you add right arcs sooner and keeps
items on stack, separate reduce action that clears out the stack

» Arc-swift (Qi and Manning, 2017): explicitly choose a parent from
what’s on the stack

» Many ways to decompose these, which one works best depends on
the language and features

Building Shift-Reduce Parsers

[ROOT] [I ate some spaghetti bolognese]

» How do we make the right decision in this case?

» Only one legal move (shift)

[ROOT ate some spaghetti] [bolognese]
¥

I
» How do we make the right decision in this case? (all three actions legal)
» Correct action is left-arc

» Multi-way classification problem: shift, left-arc, or right-arc?

Features for Shift-Reduce Parsing

[ROOT ate some spaghetti] [bolognese]
¥

I
» Features to know this should left-arc?

» One of the harder feature design tasks!

» In this case: the stack tag sequence VBD - DT - NN is pretty informative
— looks like a verb taking a direct object which has a determiner in it

» Things to look at: top words/POS of buffer, top words/POS of stack,
leftmost and rightmost children of top items on the stack

Training a Greedy Model

[ROOT ate some spaghetti] [bolognese]
¥

» The algorithm we’ve developed so far is an oracle, tells us the
correct state transition sequence for each tree

» Use our oracle to extract parser states + correct decisions

» Train a classifier to predict the right decision using these as training data
» Problem: no look ahead
» No lookahead

» Training data is extracted assuming everything is correct

Dynamic Oracle

[ROOT ate some spaghetti] [bolognese]
¥

» Extract training data based on the oracle but also an execution trace
of a trained parser

» Need a dynamic oracle to determine what’s the optimal thing to do even
if mistakes have already been made (so we know how to supervise it)

» We'll see similar ideas in neural net contexts as well

Goldberg and Nivre (2012)

Speed Tradeoffs

Dev Test Speed
UAS LAS| UAS LAS| (sent/s)
Unoptimized SR standard 89.9 88.7| 89.7 88.3 51

eager 90.3 89.2| 89.9 88.6 63
Malt:sp 90.0 88.8|89.9 88.5| 560
Malt:eager | 90.1 88.9| 90.1 88.7| 535
Graph-based MSTParser | 92.1 90.8 | 92.0 90.5 12
Neural S-R { Our parser | 92.2 91.0| 92.0 90.7| 1013

Parser

Optimized S-R

» Optimized constituency parsers are ~5 sentences/sec

» Using S-R used to mean taking a performance hit compared to
graph-based, that’s no longer true Chen and Manning (2014)

Global Decoding

[ROOT ate some spaghetti] [bolognese]
¥

» Try to find the highest-scoring sequence of decisions

» Global search problem, requires approximate search

Global Decoding
/2SN

| gave him dinner

[ROOT gave him] [dinner]
¥

» Correct: Right-arc, Shift, Right-arc, Right-arc

[ROOT gave] [dinner]
¥
I him
[ROOT gave dinner] [] [ROOT gave] [
™ WNT—
| him | him dinner

Global Decoding: A Cartoon

RSN

[ROOT gave him] [dinner]
| gave him dinner ¥
I
LA
» Both wrong! Also
[ROOT gave him dinner] [] both probably
S f RA low scoring!
RA » Correct, high

[dinner]

[ROOT ng\e] scoring option

I him

Global Decoding: A Cartoon
ROOT
AA_\ [ROOT gfve him] [dinner]

| gave him dinner
|

» Lookahead can help us avoid getting stuck in bad spots
» Global model: maximize sum of scores over all decisions
» Similar to how Viterbi works: we maintain uncertainty over the current

state so that if another one looks more optimal going forward, we can
use that one

Recap

» Eisner’s algorithm for graph-based parsing
» Arc-standard system for transition-based parsing

» Run a classifier and do it greedily for now, we’ll see global systems next
time

