CS388: Natural Language Processing
Lecture 1: Introduction
Greg Durrett

Administrivia

- Lecture: Tuesdays and Thursdays 9:30am - 10:50am
- Course website:
- Piazza: link on the course website
- My office hours: Wednesday 10am-noon, GDC 3.420
- TA: Jifan Chen; Office hours:
 - Monday + Tuesday, 1pm-2pm GDC 1.302

Course Requirements

- 391L Machine Learning (or equivalent)
- 311 or 311H Discrete Math for Computer Science (or equivalent)
- Python experience
- Additional prior exposure to probability, linear algebra, optimization, linguistics, and NLP useful but not required

Enrollment

- I want everyone to be able to take this class!
- Mini1 is out now (due September 11):
 - Please look at the assignment well before then
 - If this seems like it'll be challenging for you, come and talk to me (this is smaller-scale than the projects, which are smaller-scale than the final project)
What’s the goal of NLP?

- Be able to solve problems that require deep understanding of text
- Example: dialogue systems

Automatic Summarization

Google Critic Ousted From Think Tank Funded by the Tech Giant
WASHINGTON — In the hours after European antitrust regulators levied a record $2.7 billion fine against Google in late June, an influential Washington think tank learned what can happen when a tech giant that shapes public policy debates with its enormous wealth is criticized.

But not long after one of New America’s scholars posted a statement on the think tank’s website praising the European Union’s penalty against Google, Mr. Schmidt, who had been chairman of New America until 2016, communicated his displeasure with the statement to the group’s president, Anne-Marie Slaughter, according to the scholar.

Ms. Slaughter told Mr. Lynn that “the time has come for Open Markets and New America to part ways,” according to an email from Ms. Slaughter to Mr. Lynn. The email suggested that the entire Open Markets team — nearly a hundred full-time employees and unpaid fellows — would be cut from New America.

One of New America’s writers posted a statement critical of Google. Eric Schmidt, Google’s CEO, was displeased.

The writer and his team were dismissed.

Machine Translation

NLP Analysis Pipeline

- NLP is about building these pieces!
- All of these components are modeled with statistical approaches trained with machine learning
How do we represent text?

Labels
- the movie was good
- Beyoncé had one of the best videos of all time

Sequences/tags
- Tom Cruise stars in the new Mission Impossible film

Trees
- \(\lambda. \text{flight}(x) \land \text{dest}(x) = \text{Miami} \)

Text
- I eat cake with icing
- flights to Miami

How do we use these representations?

Text Analysis
- Extract syntactic features
- Tree-structured neural networks
- End-to-end models

Applications
- Tree transducers (for machine translation)

Main question: What representations do we need for language? What do we want to know about it?

Boils down to: what ambiguities do we need to resolve?

Language is Ambiguous!

- Hector Levesque (2011): “Winograd schema challenge” (named after Terry Winograd, the creator of SHRDLU)

- The city council refused the demonstrators a permit because they advocated violence they feared

- This is so complicated that it’s an AI challenge problem! (AI-complete)

- Referential/semantic ambiguity
Language is Ambiguous!

- Headlines
 - Teacher Strikes Idle Kids
 - Hospitals Sued by 7 Foot Doctors
 - Ban on Nude Dancing on Governor’s Desk
 - Iraqi Head Seeks Arms
 - Stolen Painting Found by Tree
 - Kids Make Nutritious Snacks
 - Local HS Dropouts Cut in Half
- Syntactic/semantic ambiguity: parsing needed to resolve these, but need context to figure out which parse is correct

Language is Really Ambiguous!

- There aren’t just one or two possibilities which are resolved pragmatically
 - It is really nice out
 - It’s really nice

- It is really beautiful outside
 - He makes truly beautiful
 - He makes truly boyfriend
 - It fact actually handsome

- Combinatorially many possibilities, many you won’t even register as ambiguities, but systems still have to resolve them

What do we need to understand language?

- Lots of data!

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>Cela constituerait une solution transitoire qui permettrait de conduire à terme à une charte à valeur contraignante.</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUMAN</td>
<td>That would be an interim solution which would make it possible to work towards a binding charter in the long term.</td>
</tr>
<tr>
<td>1x DATA</td>
<td>[this [constituerait] [solution] [transitoire] [which] [would] [make] [it] [possible] [to] [work] [towards] [a] [binding] [charter] [in] [the] [long] [term].</td>
</tr>
<tr>
<td>10x DATA</td>
<td>[it] [would] [be] [a] [solution] [transitional] [which] [would] [lead] [to] [a] [charter] [legally binding].</td>
</tr>
<tr>
<td>100x DATA</td>
<td>[this] [would] [be] [a] [transitional] [solution] [which] [would] [lead] [to] [a] [charter] [legally binding].</td>
</tr>
<tr>
<td>1000x DATA</td>
<td>[that would be] [a] [transitional] [solution] [which] [would] [eventually] [lead] [to] [a] [binding] [charter].</td>
</tr>
</tbody>
</table>

What do we need to understand language?

- World knowledge: have access to information beyond the training data

 - DOJ greenlights Disney - Fox merger
 - metaphor; “approves”
 - What is a green light? How do we understand what “green lighting” does?
What do we need to understand language?

- Grounding: learn what fundamental concepts actually mean in a data-driven way

Question: What object is right of O2?

What do we need to understand language?

- Linguistic structure
- ...but computers probably won’t understand language the same way humans do
- However, linguistics tells us what phenomena we need to be able to deal with and gives us hints about how language works

a. John has been having a lot of trouble arranging his vacation.

 \begin{align*}
 C_b &= \text{John} \\
 C_I &= \{\text{John}\}
 \end{align*}

b. He cannot find anyone to take over his responsibilities. (he = John)

 \begin{align*}
 C_b &= \text{John} \\
 C_I &= \{\text{John}\}
 \end{align*}

c. He called up Mike yesterday to work out a plan. (he = John)

 \begin{align*}
 C_b &= \text{John} \\
 C_I &= \{\text{John, Mike}\} \quad \text{(CONTINUE)}
 \end{align*}

d. Mike has annoyed him a lot recently.

 \begin{align*}
 C_b &= \text{John} \\
 C_I &= \{\text{Mike, John}\} \quad \text{(RETAIN)}
 \end{align*}

e. He called John at 5 AM on Friday last week. (he = Mike)

 \begin{align*}
 C_b &= \text{Mike} \\
 C_I &= \{\text{Mike, John}\} \quad \text{(SHIFT)}
 \end{align*}

Centering Theory
Grosz et al. (1995)

What techniques do we use?
(to combine data, knowledge, linguistics, etc.)
Structured Prediction

- All of these techniques are data-driven! Some data is naturally occurring, but may need to label
- Supervised techniques work well on very little data
- Even neural nets can do pretty well!

"Learning a Part-of-Speech Tagger from Two Hours of Annotation" Garrette and Balridge (2013)

Less Manual Structure?

- No grammars!

“The yield on the benchmark issue rose to 10% from 5%”

Sutskever et al. (2015), Bahdanau et al. (2014)

Less Manual Structure?

- Manually constructed grammars -> EM-induced grammars -> basic grammars + features -> ...

The yield on the benchmark issue rose to 10% from 5%

LSTM

(S (NP (NP (DT The)) (NN yield ...)

DeNero et al. (2008) Bahdanau et al. (2014)
Does manual structure have a place?

- Neural nets don’t always work out of domain!
- Coreference: rule-based systems are still about as good as deep learning out-of-domain
- LORELEI: transition point below which phrase-based systems are better
- Why is this? Inductive bias!
- Can multi-task learning help?

```
<table>
<thead>
<tr>
<th></th>
<th>CoNLL Avg. F₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newswire</td>
<td></td>
</tr>
<tr>
<td>rule-based</td>
<td>55.60</td>
</tr>
<tr>
<td>berkeley</td>
<td>61.24</td>
</tr>
<tr>
<td>cort</td>
<td>63.37</td>
</tr>
<tr>
<td>deep-coref [conll]</td>
<td>65.39</td>
</tr>
<tr>
<td>deep-coref [lea]</td>
<td>65.60</td>
</tr>
<tr>
<td>Wikipedia</td>
<td></td>
</tr>
<tr>
<td>rule-based</td>
<td>51.77</td>
</tr>
<tr>
<td>berkeley</td>
<td>51.01</td>
</tr>
<tr>
<td>cort</td>
<td>49.94</td>
</tr>
<tr>
<td>deep-coref [conll]</td>
<td>52.65</td>
</tr>
<tr>
<td>deep-coref [lea]</td>
<td>53.14</td>
</tr>
<tr>
<td>deep-coref</td>
<td>51.01</td>
</tr>
</tbody>
</table>
```

Moosavi and Strube (2017)

Maybe manual structure would help...

Where are we?

- NLP consists of: analyzing and building representations for text, solving problems involving text
- These problems are hard because language is ambiguous, requires drawing on data, knowledge, and linguistics to solve
- Knowing which techniques use requires understanding dataset size, problem complexity, and a lot of tricks!
- NLP encompasses all of these things

NLP vs. Computational Linguistics

- NLP: build systems that deal with language data
- CL: use computational tools to study language

Hamilton et al. (2016)
Course Goals

- Cover fundamental machine learning techniques used in NLP
- Understand how to look at language data and approach linguistic phenomena
- Cover modern NLP problems encountered in the literature: what are the active research topics in 2018?
- Make you a “producer” rather than a “consumer” of NLP tools
 - The four assignments should teach you what you need to know to understand nearly any system in the literature (e.g.: state-of-the-art NER system = project 1 + mini 2, basic MT system = project 2)

Assignments

- Two minis (10% each), two projects (20% each)
 - Implementation-oriented, with an open-ended component to each
 - Mini 1 (classification) is out NOW
 - ~2 weeks per assignment, 5 “slip days” for automatic extensions

Grading:

- Minis: 80% for reaching the performance threshold, 20% writeup
- Projects: 60% for reaching the performance threshold, 20% writeup, 20% extension

These projects require understanding of the concepts, ability to write performant code, and ability to think about how to debug complex systems. They are challenging, so start early!
Assignments

- Final project (40%)
- Groups of 2 preferred, 1 is possible
- (Brief!) proposal to be approved by me
- Written in the style and tone of an ACL paper

Survey

1. Fill in: I am a [CS / ____] [PhD / masters / undergrad] in year [1 2 3 4 5+]
2. Which of the following have you learned in a class?
 1. Bayes’ Rule
 2. SVMs
 3. Expectation maximization
 4. RNNs
3. Which of the following have you used?
 1. Python
 2. numpy/scipy/scikit-learn
 3. Tensorflow/(Py)Torch/Theano
4. Fill in: Assuming I can enroll, my probability of taking this class is X%
5. One interesting fact about yourself, or what you like to do in your spare time