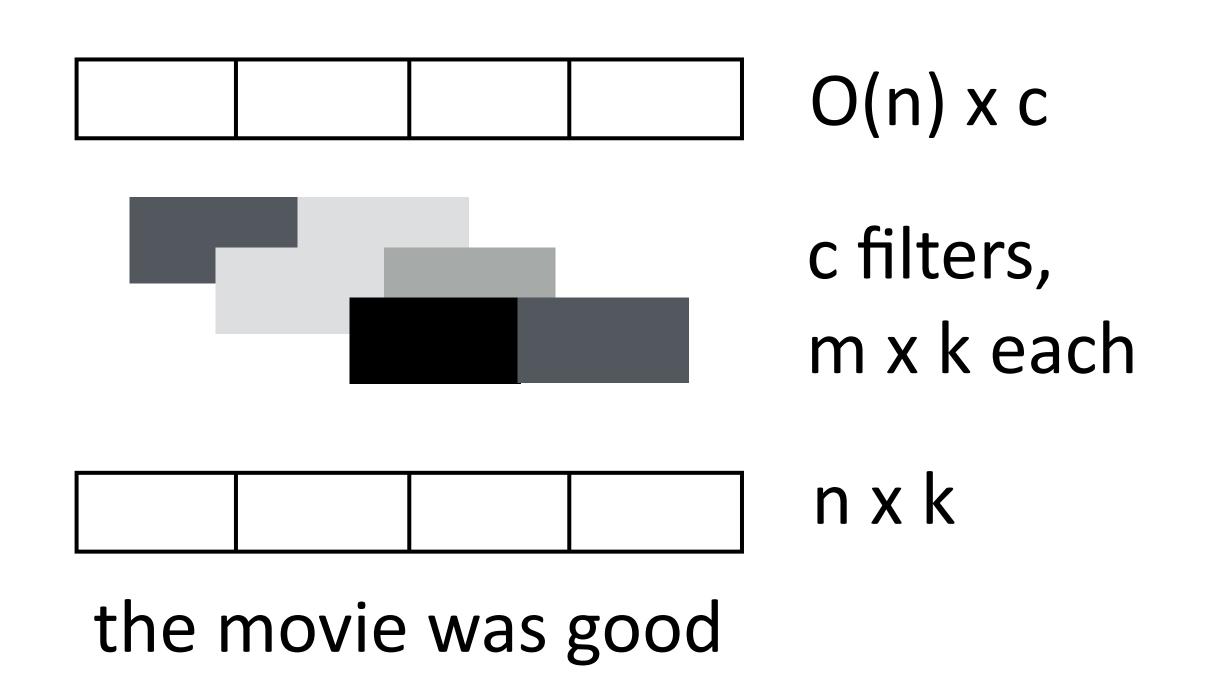
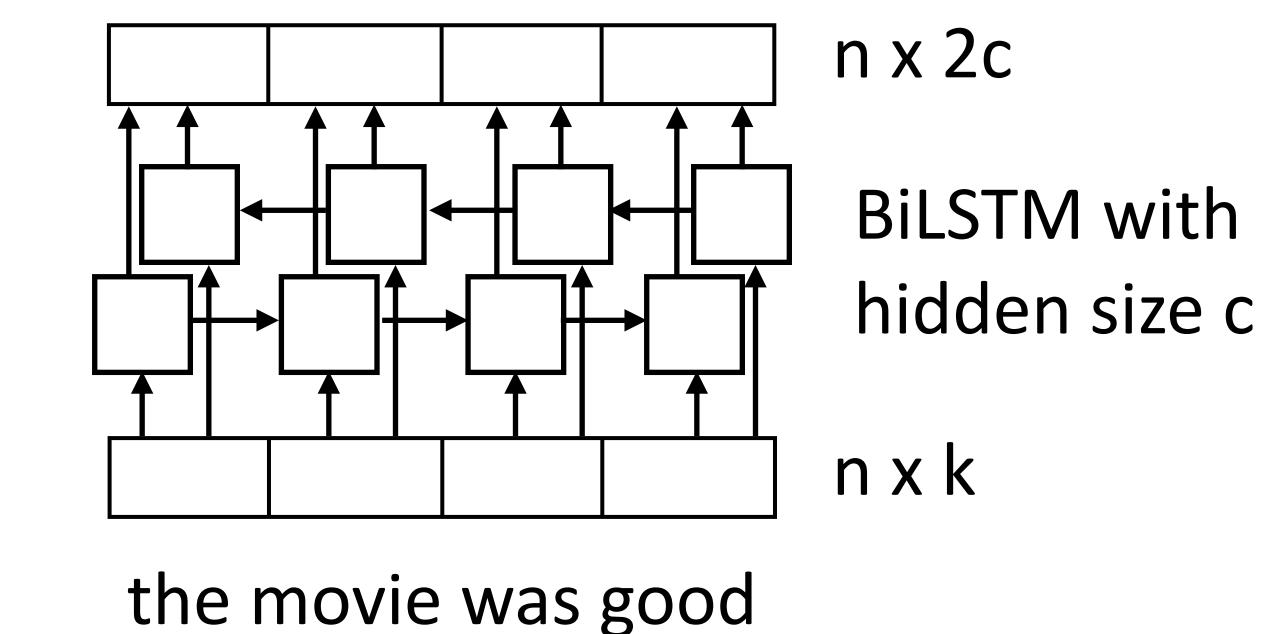
CS388: Natural Language Processing Lecture 10: Syntax I

Greg Durrett

Slides adapted from Dan Klein, UC Berkeley

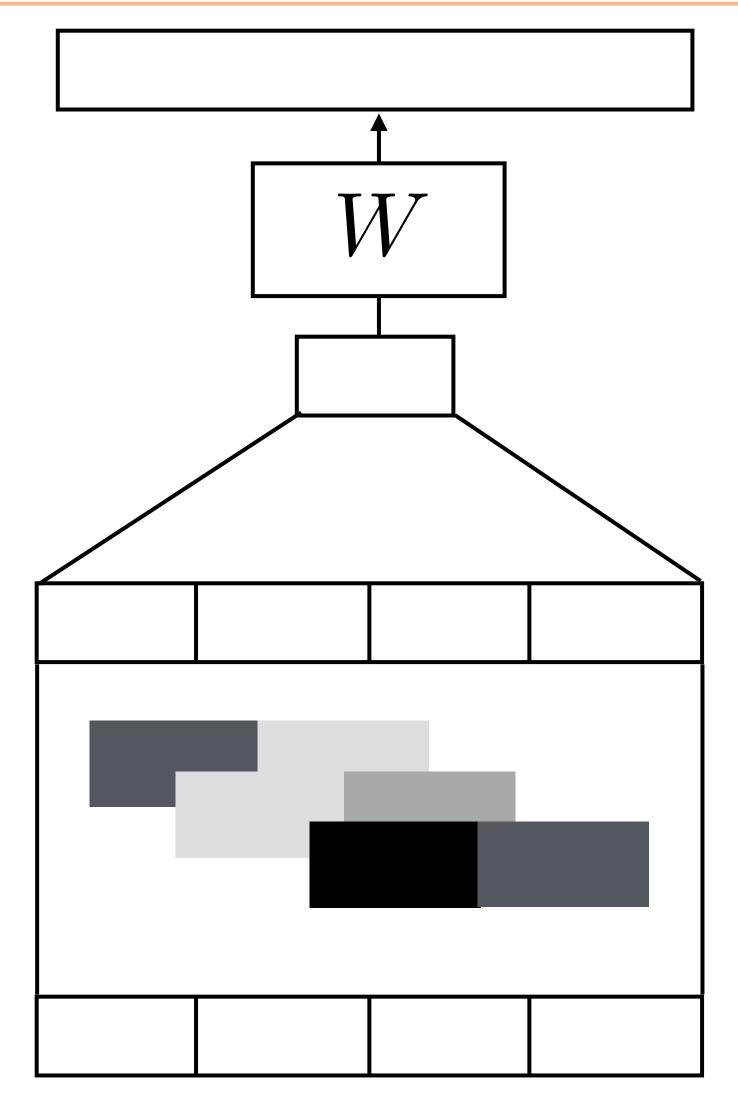
Recall: CNNs vs. LSTMs





- ▶ Both LSTMs and convolutional layers transform the input using context
- LSTM: "globally" looks at the entire sentence (but local for many problems)
- ► CNN: local depending on filter width + number of layers

Recall: CNNs



the movie was good

 $P(y|\mathbf{x})$

projection + softmax

c-dimensional vector

max pooling over the sentence

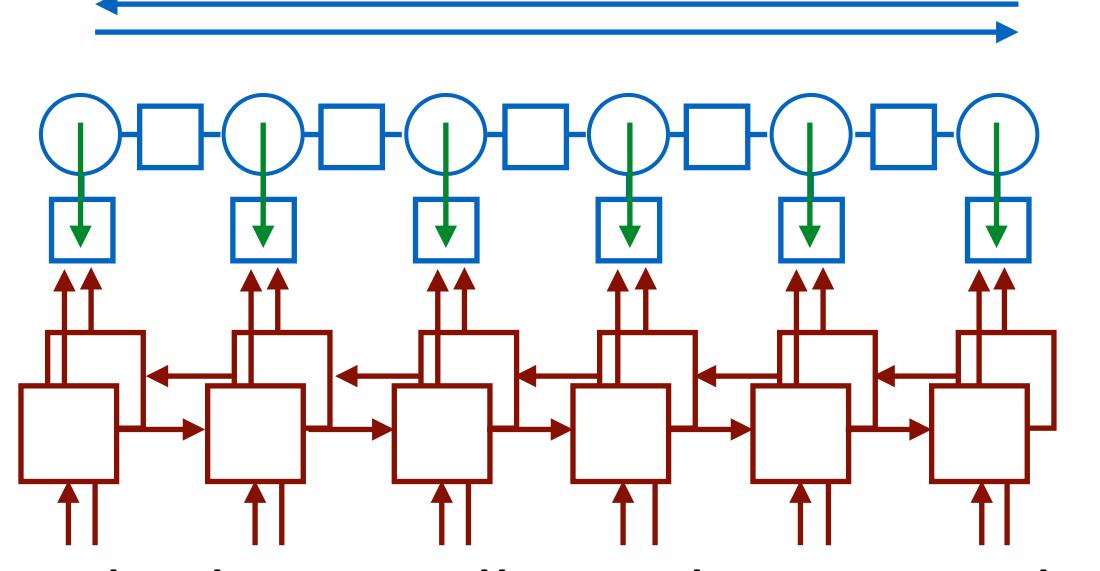
n x c

c filters, m x k each

n x k

Max pooling: return the max activation of a given filter over the entire sentence; like a logical OR (sum pooling is like logical AND)

Recall: Neural CRFs



Barack Obama will travel to Hangzhou

- 2) Run forward-backward
 - 3) Compute error signal
- 1) Compute f(x)
 - 4) Backprop (no knowledge of sequential structure required)

This Lecture

- Constituency formalism
- ▶ Context-free grammars and the CKY algorithm
- Refining grammars
- Discriminative parsers

Constituency

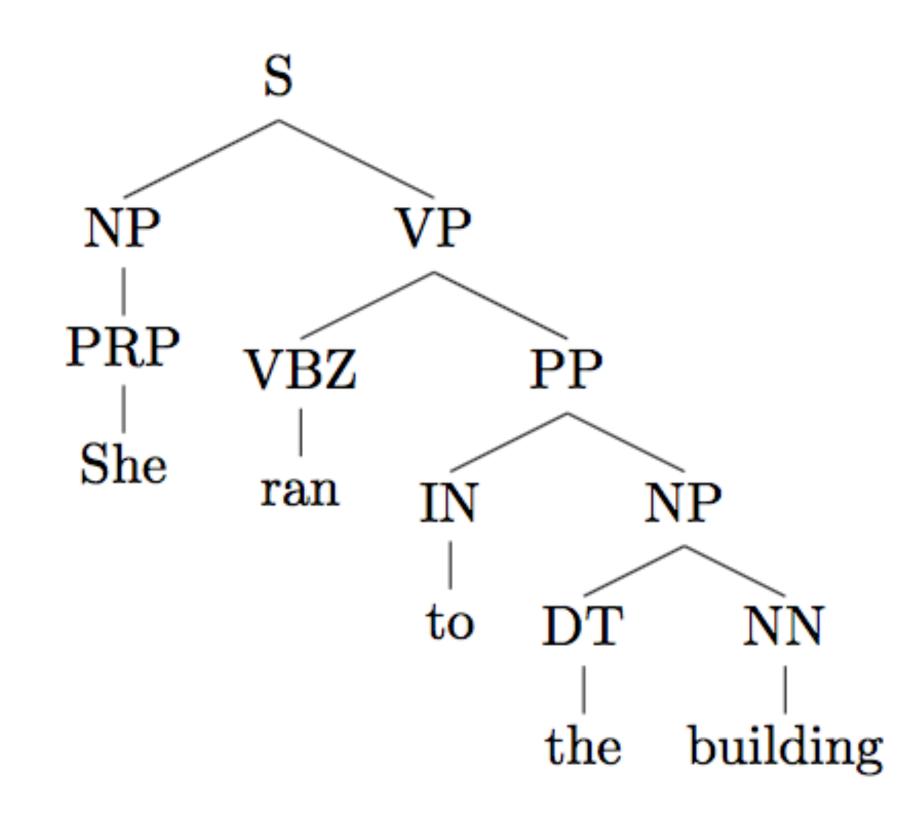
Syntax

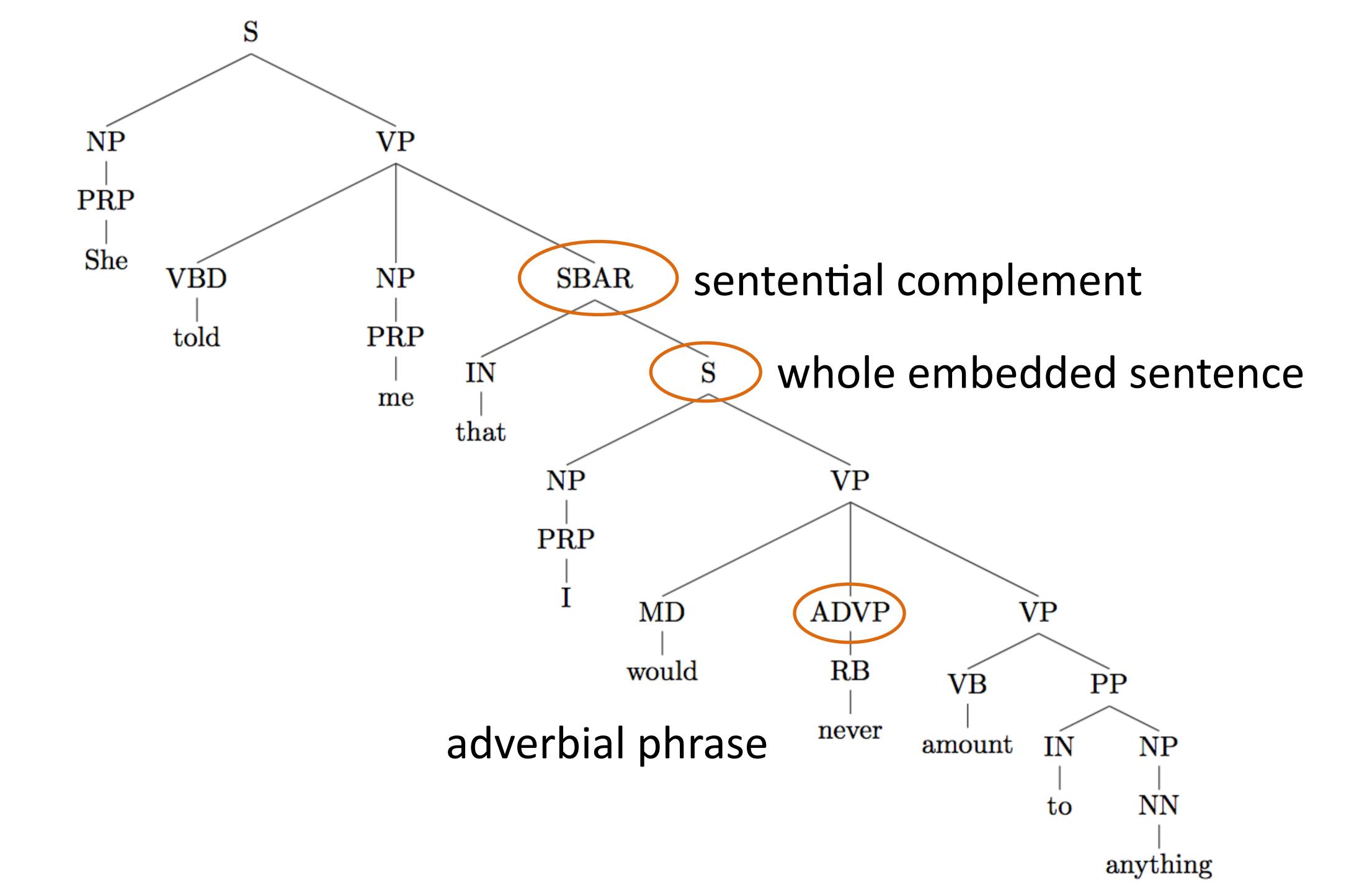
- Study of word order and how words form sentences
- Why do we care about syntax?
 - Multiple interpretations of words (noun or verb? Fed raises... example)
 - Recognize verb-argument structures (who is doing what to whom?)
 - ▶ Higher level of abstraction beyond words: some languages are SVO, some are VSO, some are SOV, parsing can canonicalize

Constituency Parsing

- Tree-structured syntactic analyses of sentences
- Common things: noun phrases,
 verb phrases, prepositional phrases
- Bottom layer is POS tags

Examples will be in English. Constituency makes sense for a lot of languages but not all





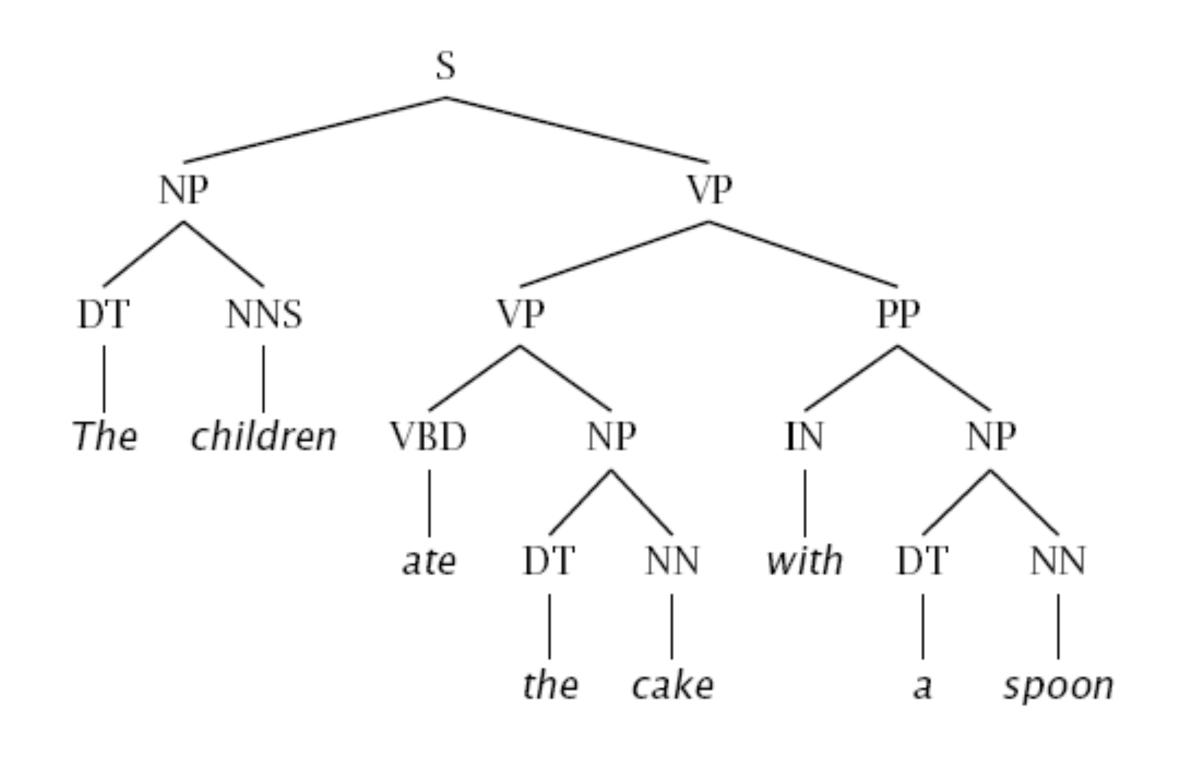
Constituency Parsing

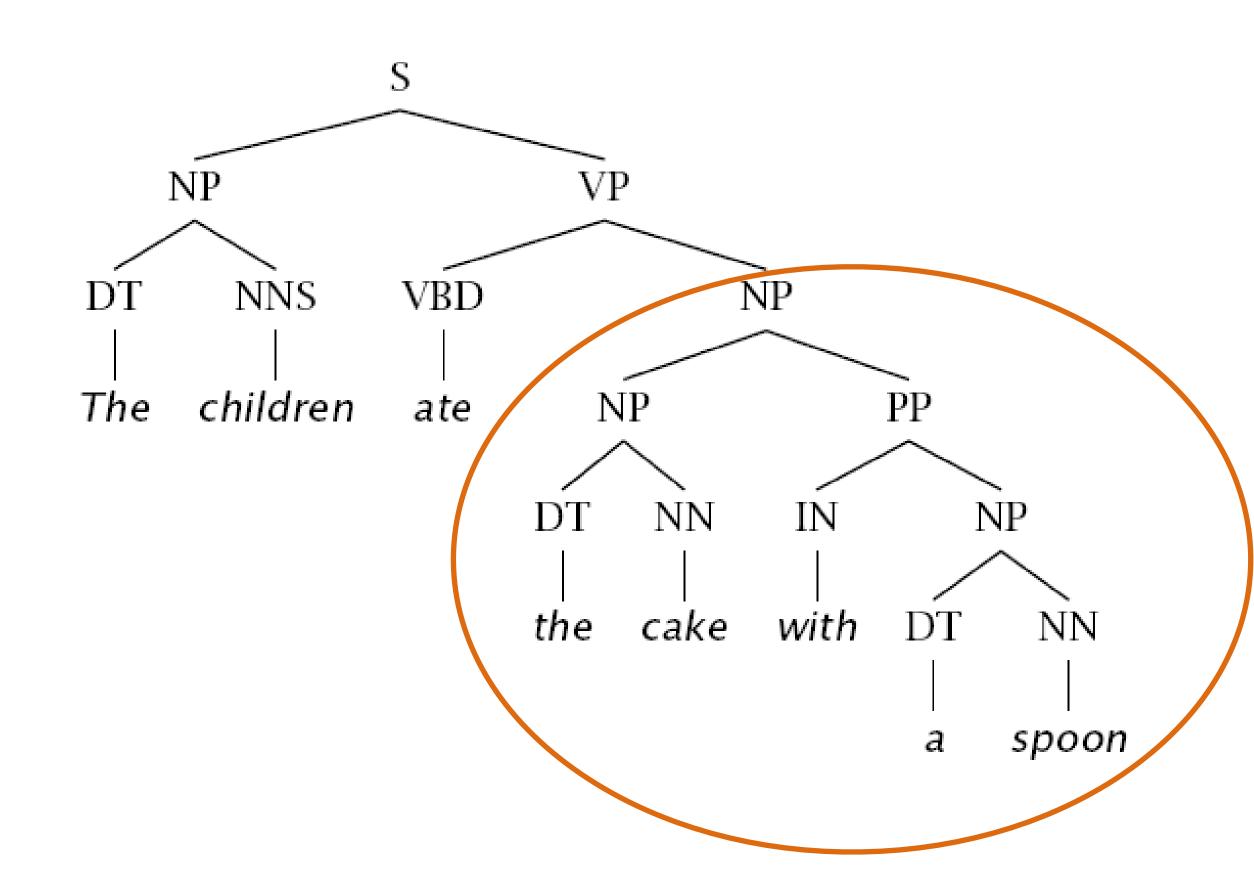
The rat the cat chased squeaked

I raced to Indianapolis, unimpeded by traffic

Challenges

PP attachment

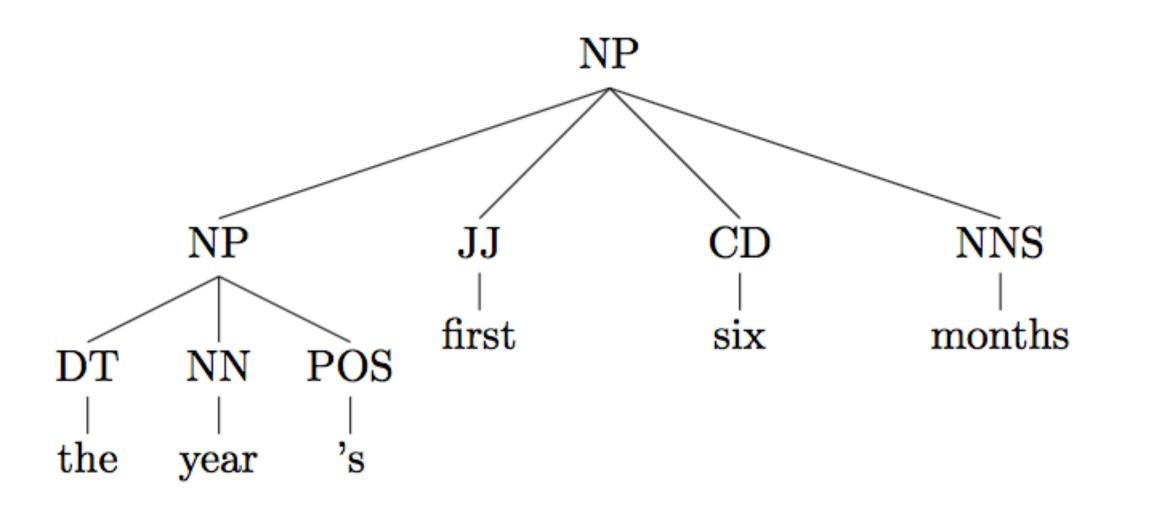


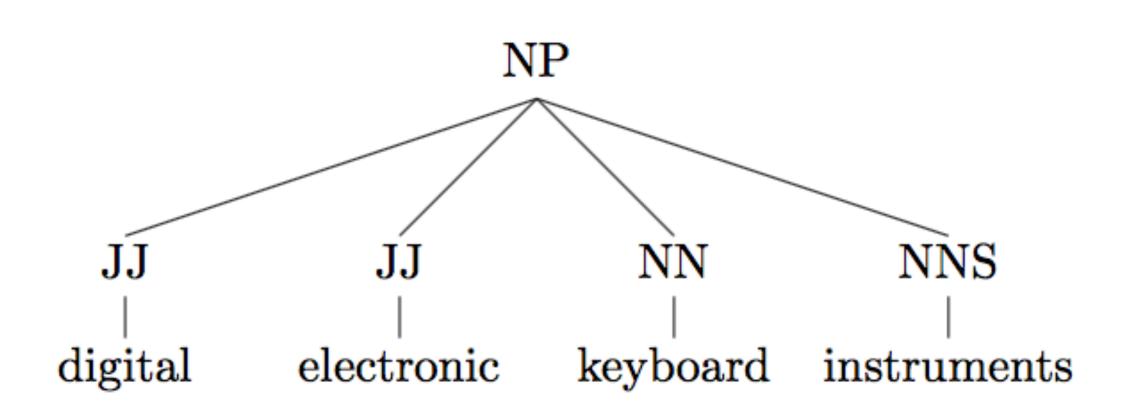


same parse as "the cake with some icing"

Challenges

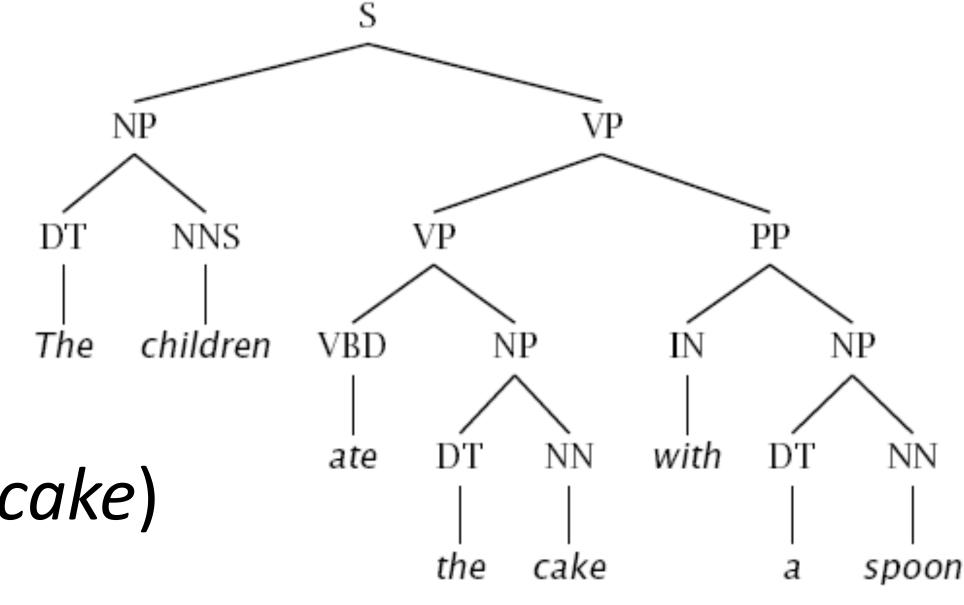
NP internal structure: tags + depth of analysis





Constituency

- How do we know what the constituents are?
- Constituency tests:
 - Substitution by proform (e.g., pronoun)
 - Clefting (It was with a spoon that...)
 - Answer ellipsis (What did they eat? *the cake*) (How? *with a spoon*)



Sometimes constituency is not clear, e.g., coordination: she went to and bought food at the store

Context-Free Grammars, CKY

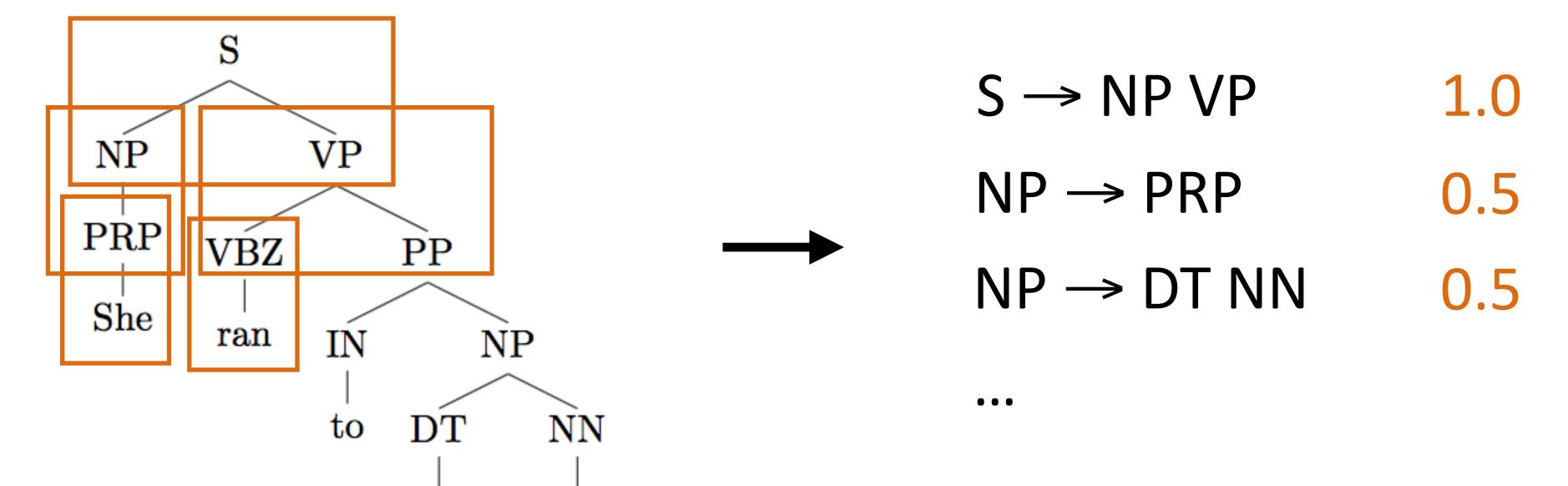
CFGs and PCFGs

Grammar (CFG)			Lexicon		
	$ROOT \rightarrow S$	1.0 NP \rightarrow NP PP	0.3	NN → interest	1.0
	S → NP VP	1.0 VP \rightarrow VBP NP	0.7	NNS → raises	1.0
	NP → DT NN	$0.2 \text{ VP} \rightarrow \text{VBP NP PP}$	0.3	VBP → interest	1.0
	NP → NN NNS	0.5 PP → IN NP	1.0	VBZ → raises	1.0

- Context-free grammar: symbols which rewrite as one or more symbols
- Lexicon consists of "preterminals" (POS tags) rewriting as terminals (words)
- ► CFG is a tuple (N, T, S, R): N = nonterminals, T = terminals, S = start symbol (generally a special ROOT symbol), R = rules
- ▶ PCFG: probabilities associated with rewrites, normalize by source symbol

Estimating PCFGs

Tree T is a series of rule applications r. $P(T) = \prod_{r \in T} P(r| \mathrm{parent}(r))$

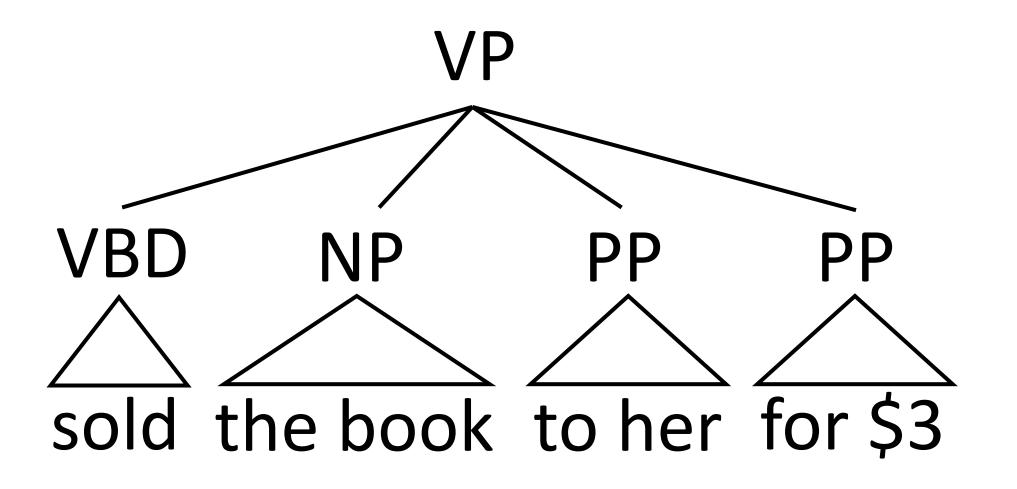


building

Maximum likelihood PCFG: count and normalize! Same as HMMs / Naive Bayes

Binarization

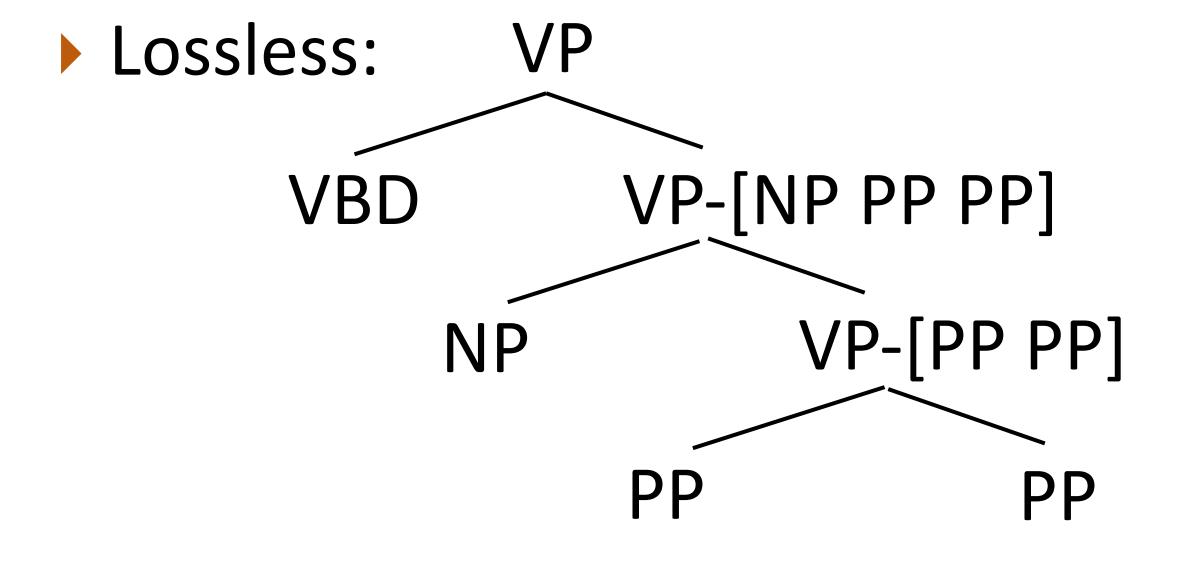
▶ To parse efficiently, we need our PCFGs to be at most binary (not CNF)

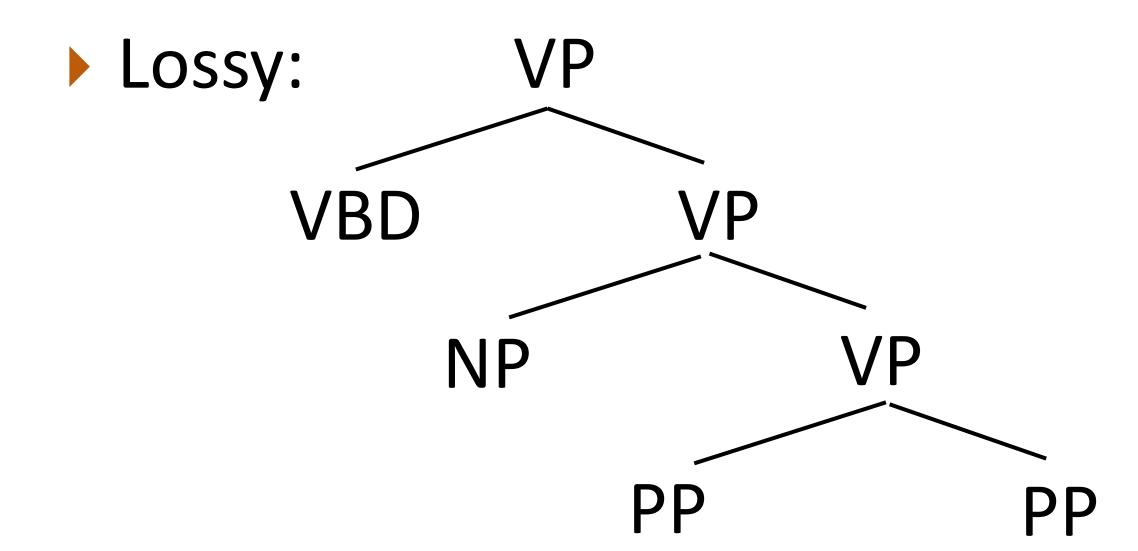


$$P(VP \rightarrow VBD NP PP PP) = 0.2$$

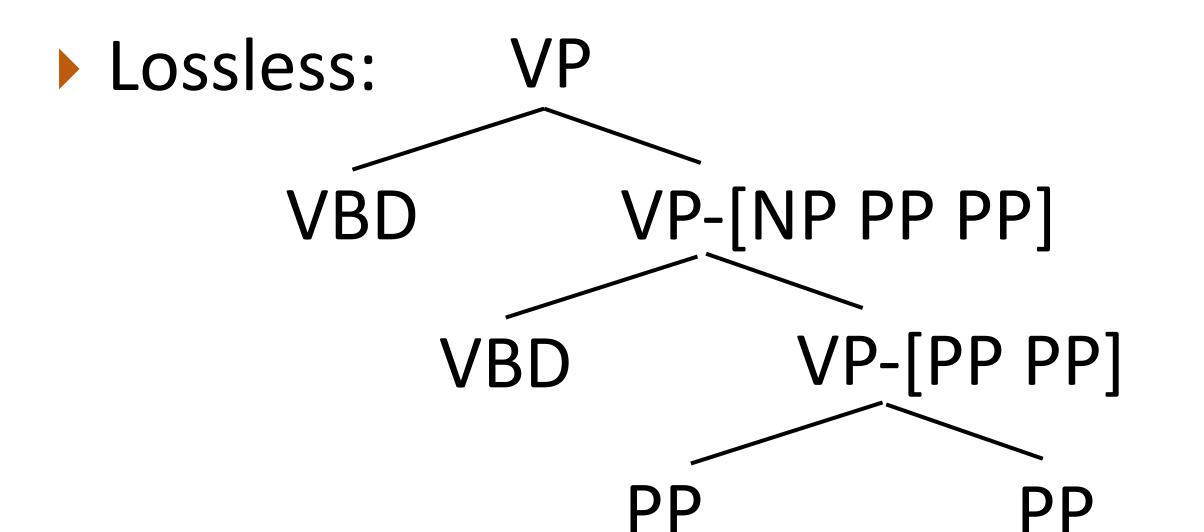
$$P(VP \rightarrow VBZ PP) = 0.1$$

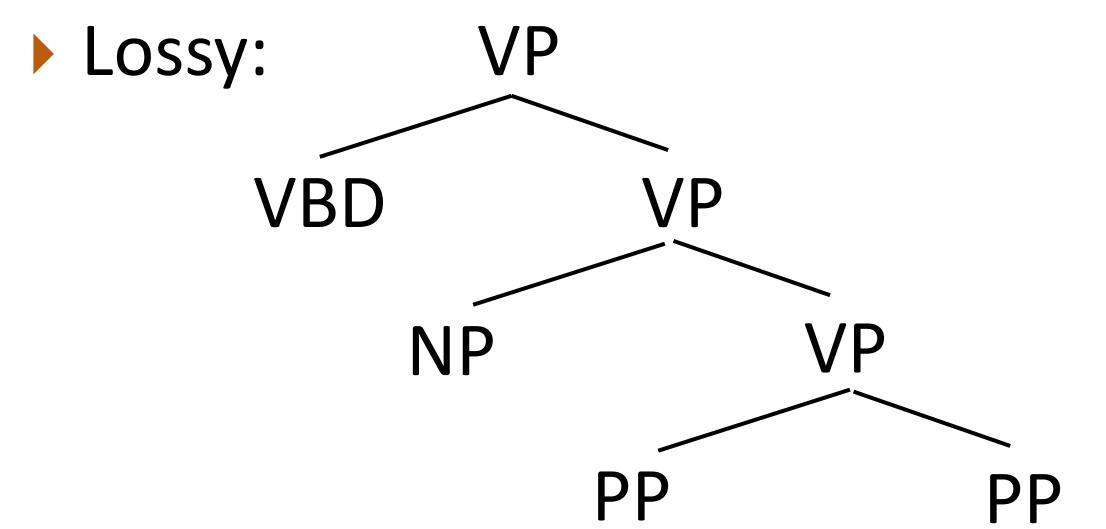
• • •





Chomsky Normal Form





$$P(VP \rightarrow VBD VP-[NP PP PP]) = 0.2$$

 $P(VP-[NP PP PP] \rightarrow NP VP-[PP PP]) = 1.0$
 $P(VP-[PP PP] \rightarrow PP PP) = 1.0$

$$P(VP \rightarrow VBD VP) = 0.2$$

$$P(VP \rightarrow NP VP) = 0.03$$

$$P(VP \rightarrow PP PP) = 0.001$$

Deterministic symbols make this the same as before Makes different independent assumptions, not the same PCFG

CKY

Find argmax P(T|x) = argmax P(T, x)

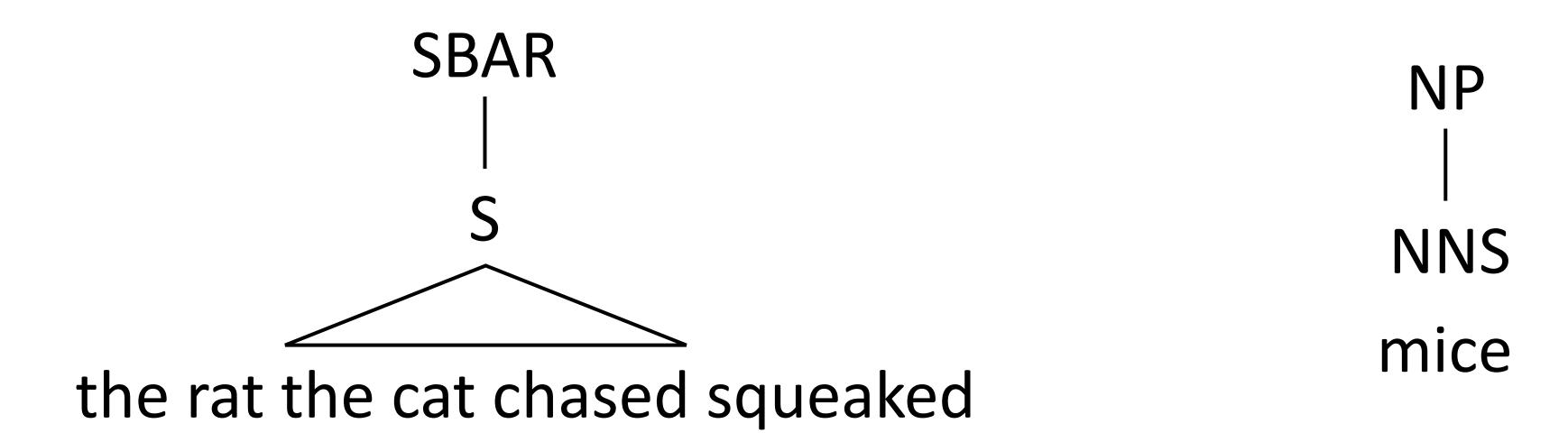
Dynamic programming: chart maintains the best way of building symbol X over span (i, j)

Loop over all split points k, apply rules X -> Y Z to build X in every possible way long report

CKY = Viterbi, also an algorithm called inside-outside = forward-backward

Cocke-Kasami-Younger

Unary Rules



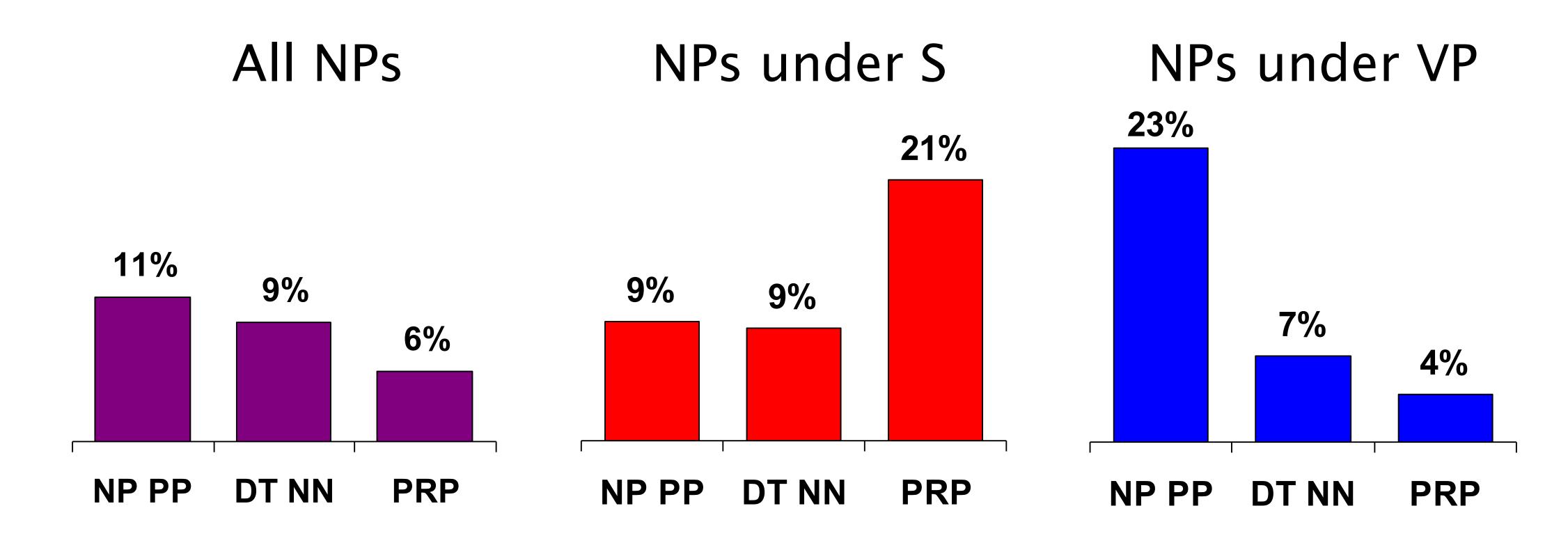
- Unary productions in treebank need to be dealt with by parsers
- ▶ Binary trees over n words have at most n-1 nodes, but you can have unlimited numbers of nodes with unaries (S \rightarrow SBAR \rightarrow NP \rightarrow S \rightarrow ...)
- In practice: enforce at most one unary over each span, modify CKY accordingly

Results

- ▶ Standard dataset for English: Penn Treebank (Marcus et al., 1993)
 - ▶ Evaluation: F1 over labeled constituents of the sentence
- ▶ Vanilla PCFG: ~75 F1
- ▶ Best PCFGs for English: ~90 F1
- SOTA: 95 F1
- Other languages: results vary widely depending on annotation + complexity of the grammar

Refining Generative Grammars

PCFG Independence Assumptions



- ▶ Language is not context-free: NPs in different contexts rewrite differently
- Can we make the grammar "less context-free"?

Rule Annotation

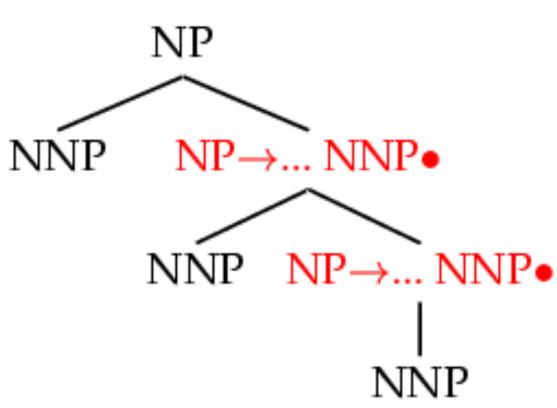
- Like a trigram HMM tagger, incorporates more context
- Vertical (parent) annotation: add the parent symbol to each node, can do grandparents too

 Horizontal annotation: remember the states of multi-arity rules during binarization

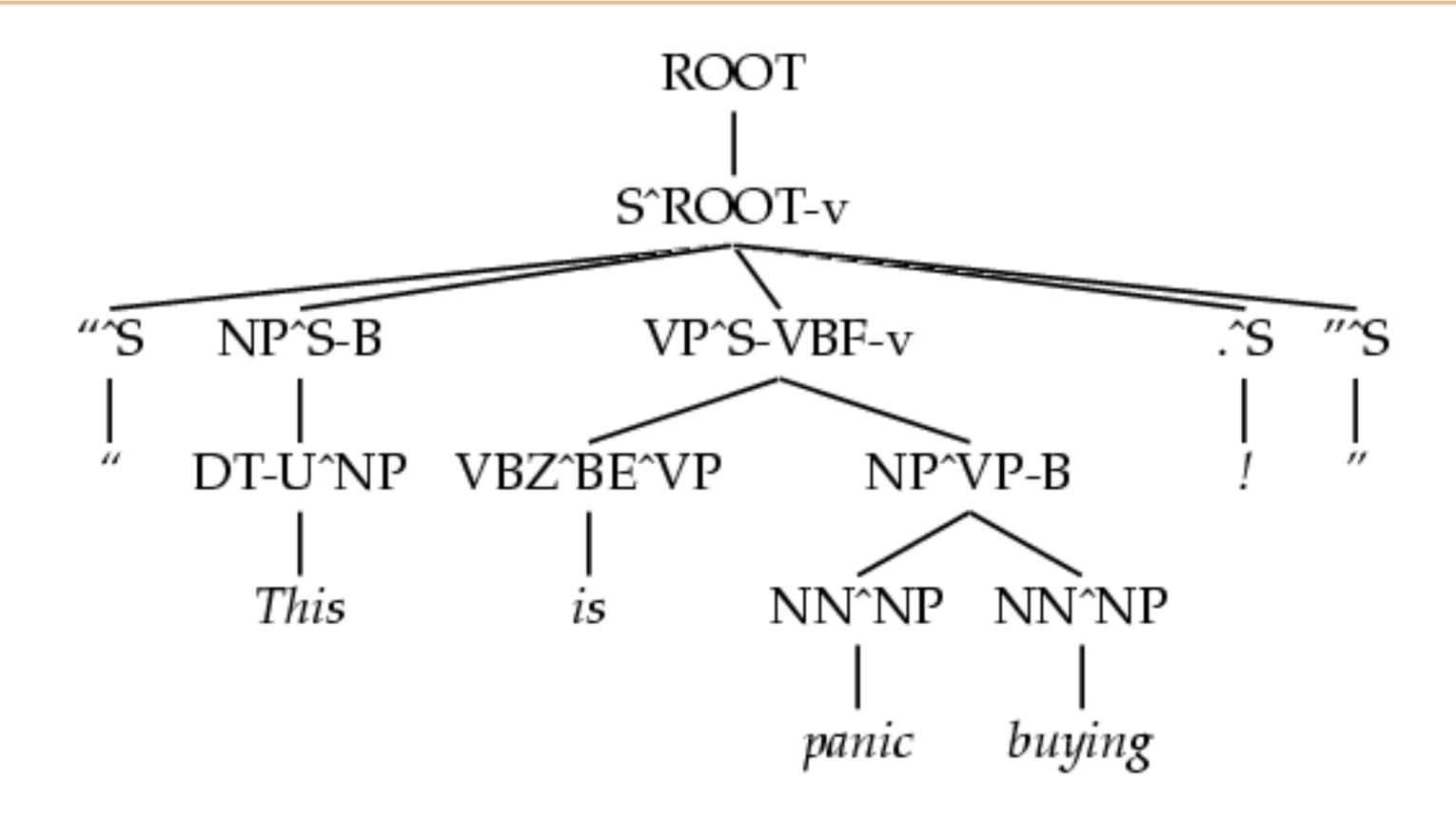
Order 2 Order 1 S^ROOT NP[^]S VP^S PRPright right He พลร พลร Order ∞ Order 1 NΡ NP

NNP NP→NNP NNP•

NNP



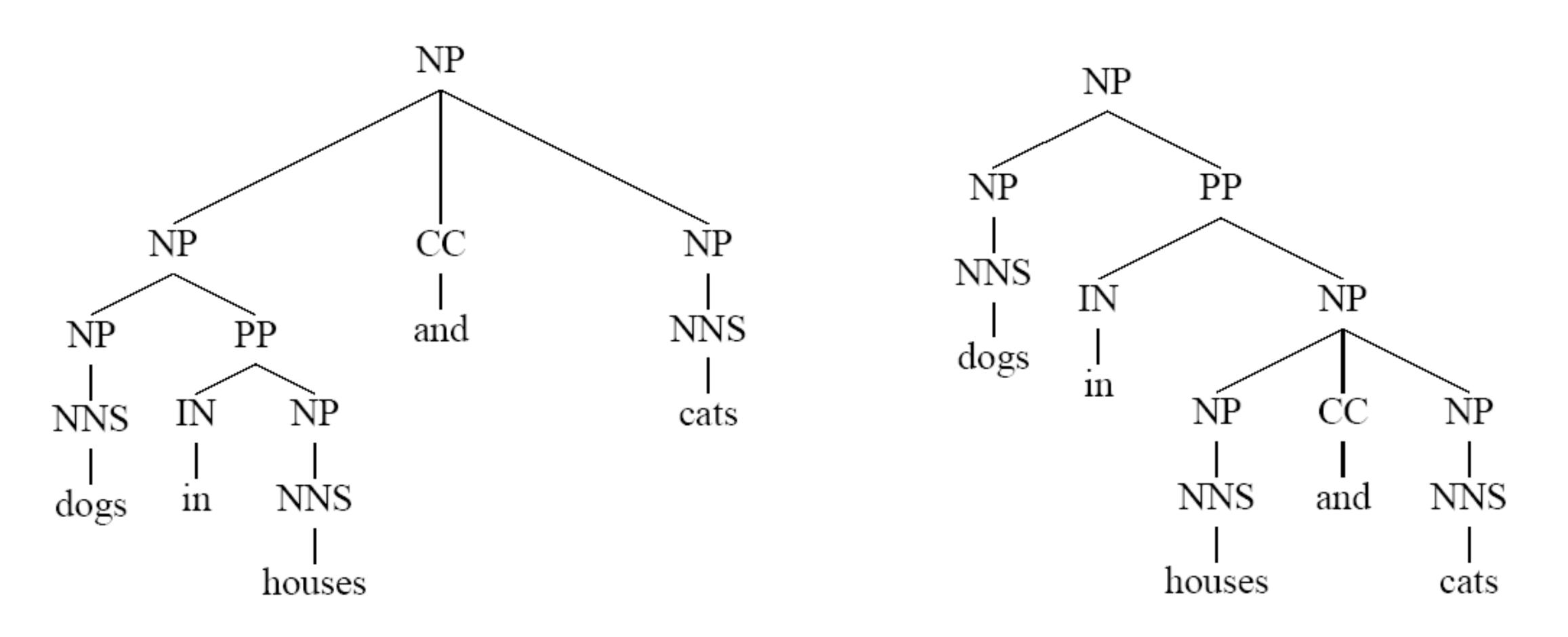
Annotated Tree



▶ 75 F1 with basic PCFG => 86.3 F1 with this highly customized PCFG (SOTA was 90 F1 at the time, but with more complex methods)

Klein and Manning (2003)

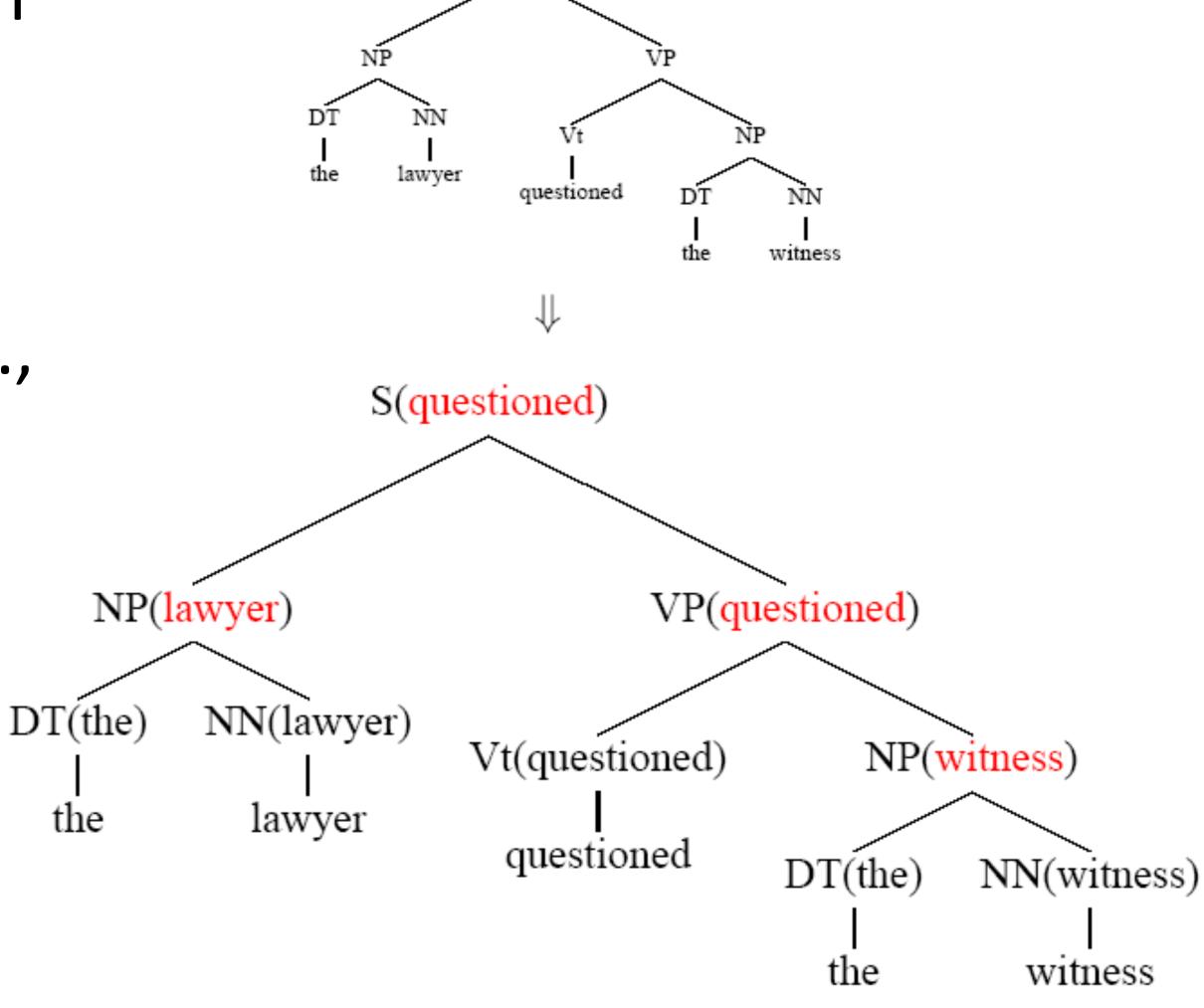
Lexicalized Parsers



Even with parent annotation, these trees have the same rules. Need to use the words

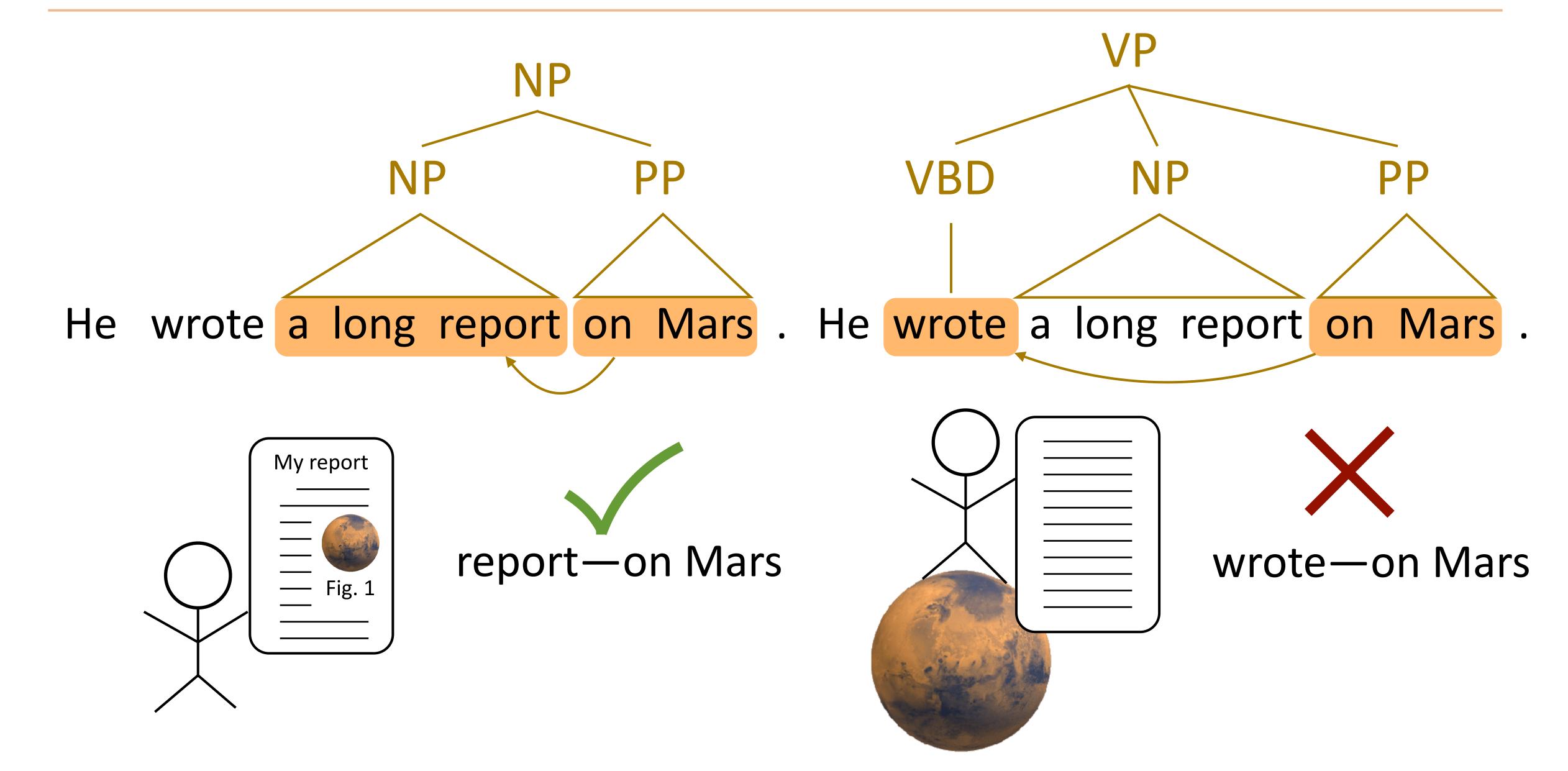
Lexicalized Parsers

- Annotate each grammar symbol with its "head word": most important word of that constituent
- Rules for identifying headwords (e.g., the last word of an NP before a preposition is typically the head)
- Collins and Charniak (late 90s):~89 F1 with these

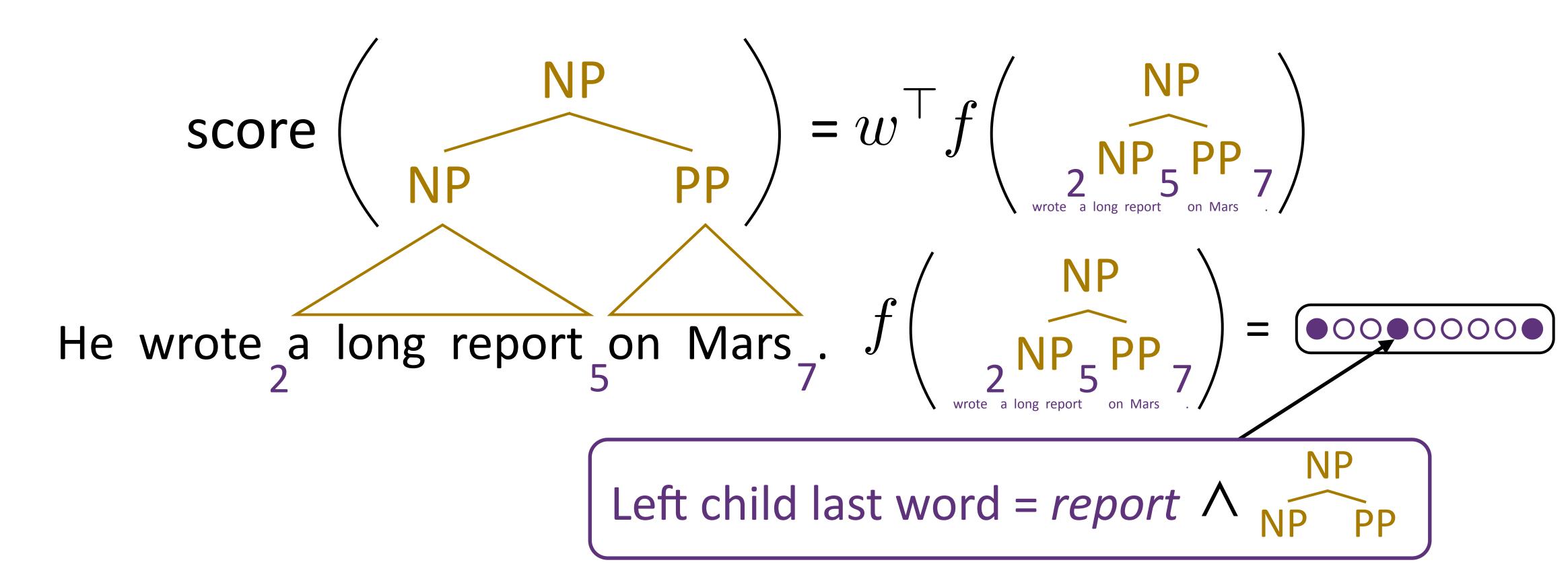


Discriminative Parsers

CRF Parsing



CRF Parsing



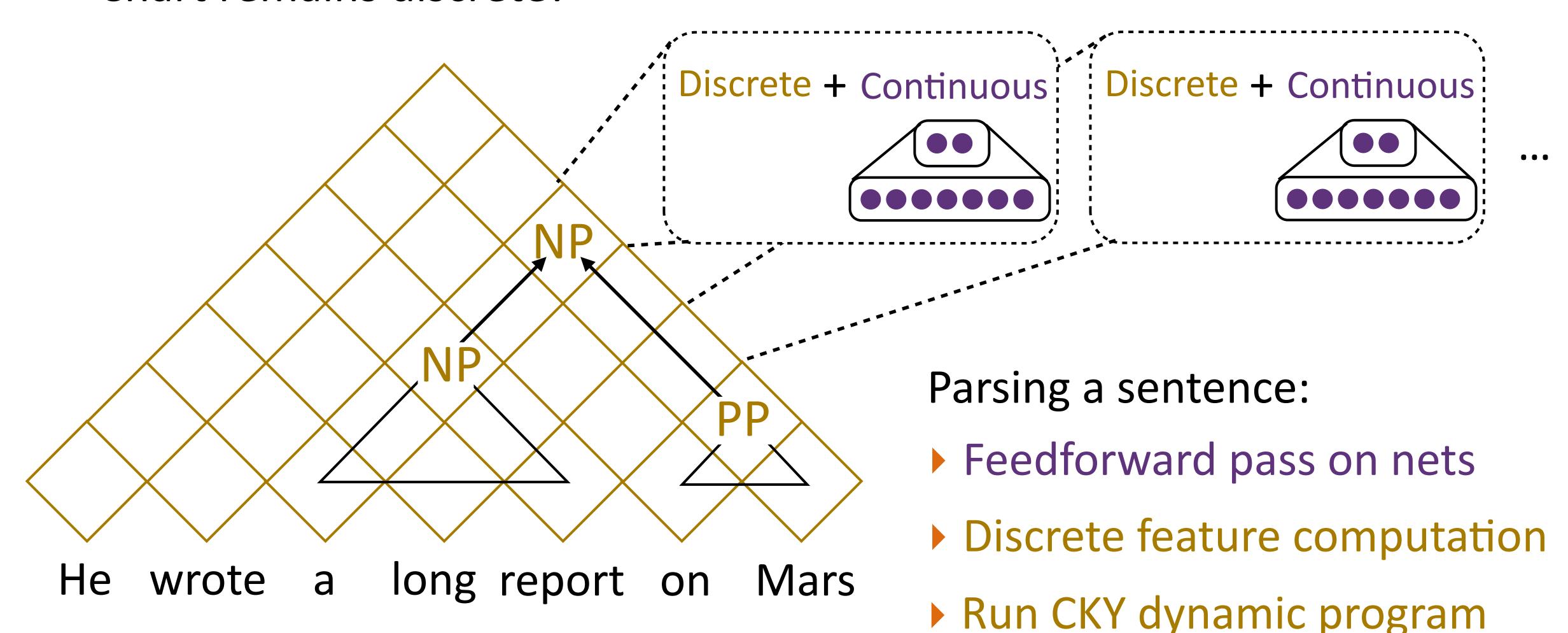
- Can learn that we report [PP], which is common due to reporting on things
- Can "neuralize" this as well like neural CRFs for NER

 Hall, Durrett, and Klein (2014)

 Durrett and Klein (2015)

Joint Discrete and Continuous Parsing

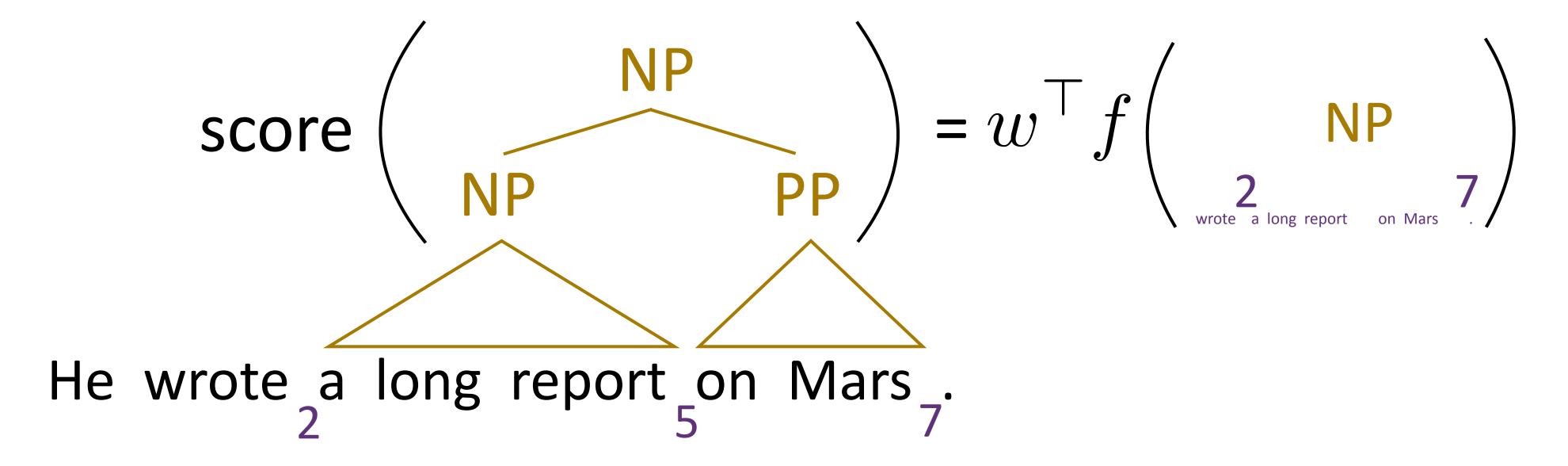
Chart remains discrete!



Durrett and Klein (ACL 2015)

Neural CRF Parsing

Simpler version: score constituents rather than rule applications



- Use BiLSTMs (Stern) or self-attention (Kitaev) to compute span embeddings
- ▶ 91-93 F1, 95 F1 with ELMo (SOTA). Great on other langs too!

Stern et al. (2017), Kitaev et al. (2018)

Takeaways

- PCFGs estimated generatively can perform well if sufficiently engineered
- Neural CRFs work well for constituency parsing
- Next time: revisit lexicalized parsing as dependency parsing

Survey

- Write one thing you like about the class
- Write one thing you don't like about the class