
CS388:	Natural	Language	Processing	
Lecture	11:	Dependency	Parsing	I

Greg	Durrett



Administrivia
‣ Project	1	graded	by	Tuesday

‣ Survey	results:

‣ If	you	have	comments	on	the	code,	please	send	them	to	me	(either	
anonymously	or	non-anonymously)

‣ Bit	rate
‣ Clearer	slides/notaKon

‣ Some	annoyances	from	projects:	slow	debugging/training,	etc.



Recall:	ConsKtuency
‣ Tree-structured	syntacKc	analyses	of	sentences

‣ Nonterminals	(NP,	VP,	etc.)	as	well	as	POS  
tags	(boQom	layer)

‣ Structured	is	defined	by	a	CFG



Recall:	CKY

He wrote a long report on Mars

NP
PP

NP

‣ Find	argmax	P(T|x)	=	argmax	P(T,	x)

‣ Dynamic	programming:	chart	maintains	the 
best	way	of	building	symbol	X	over 
span	(i,	j)

‣ Loop	over	all	split	points	k, 
apply	rules	X	->	Y	Z	to	build  
X	in	every	possible	way

Cocke-Kasami-Younger

i jk

X

Z
Y



Outline

‣ Dependency	representaKon,	contrast	with	consKtuency

‣ ProjecKvity

‣ Graph-based	dependency	parsers

‣ DiscriminaKve	consKtuency	parsing



DiscriminaKve	Parsers



CRF	Parsing

Taskar	et	al.	(2004)	
Hall,	DurreQ,	and	Klein	(2014)  

DurreQ	and	Klein	(2015)

score

Lec	child	last	word	=	report ∧ NP PP
NP

w>f NP PP
NP

2 5 7
=

f NP PP
NP

2 5 7
He		wrote		a		long		report		on		Mars		.

PPNP

NP

=
2 5 7

wrote				a		long		report								on		Mars								.

wrote				a		long		report								on		Mars								.

‣ Can	learn	that	we	report	[PP],	which	is	common	due	to	repor'ng	on	things

‣ Can	“neuralize”	this	as	well	like	neural	CRFs	for	NER



+Discrete ConKnuous

He wrote a long report on Mars

NP
PP

NP

‣ Chart	remains	discrete!

‣ Feedforward	pass	on	nets

‣ Run	CKY	dynamic	program
‣ Discrete	feature	computaKon

+Discrete ConKnuous
…

Parsing	a	sentence:

DurreQ	and	Klein	(ACL	2015)

Joint	Discrete	and	ConKnuous	Parsing



Neural	CRF	Parsing

Stern	et	al.	(2017),	
Kitaev	et	al.	(2018)

‣ Simpler	version:	score	cons'tuents	rather	than	rule	applicaKons

score w>f=

He		wrote		a		long		report		on		Mars		.

NP

2 7

‣ Use	BiLSTMs	to	compute	embeddings	of	each	word,	embeddings	at	edge	of	
span	characterize	that	span
‣ 91-93	F1,	95	F1	with	ELMo	(SOTA).	
Great	on	other	langs	too!

He		wrote		a		long		report		on		Mars		.

BiLSTM



Dependency	RepresentaKon



Lexicalized	Parsing

S(ran)

NP(dog)

VP(ran)

PP(to)

NP(house)

DT(the) NN(house)TO(to)VBD(ran)DT(the) NN(dog)
the housetoranthe dog



Dependency	Parsing

DT NNTOVBDDT NN
the housetoranthe dog

‣ Dependency	syntax:	syntacKc	structure	is	defined	by	these	arcs	
‣ Head	(parent,	governor)	connected	to	dependent	(child,	modifier)	
‣ Each	word	has	exactly	one	parent	except	for	the	ROOT	symbol,	
dependencies	must	form	a	directed	acyclic	graph

ROOT

‣ POS	tags	same	as	before,	usually	run	a	tagger	first	as	preprocessing



Dependency	Parsing

DT

NN

TO

VBD

DT

NN

the

house

to

ran

the

dog

‣ SKll	a	noKon	of	hierarchy!	Subtrees	ocen	align	with	consKtuents



Dependency	Parsing

DT NNTOVBDDT NN
the housetoranthe dog

‣ Can	label	dependencies	according	to	syntacKc	funcKon

det

‣Major	source	of	ambiguity	is	in	the	structure,	so	we	focus	on	that	more	
(labeling	separately	with	a	classifier	works	preQy	well)

nsubj

pobj

detprep



Dependency	vs.	ConsKtuency:	PP	AQachment

‣ ConsKtuency:	several	rule	producKons	need	to	change



the	children	ate	the	cake	with	a	spoon

‣ Dependency:	one	word	(with)	assigned	a	different	parent

Dependency	vs.	ConsKtuency:	PP	AQachment

‣More	predicate-argument	focused	view	of	syntax

‣ “What’s	the	main	verb	of	the	sentence?	What	is	its	subject	and	object?”	
—	easier	to	answer	under	dependency	parsing



‣ ConsKtuency:	ternary	rule	NP	->	NP	CC	NP

Dependency	vs.	ConsKtuency:	CoordinaKon



dogs	in	houses	and	cats

‣ Dependency:	first	item	is	the	head

Dependency	vs.	ConsKtuency:	CoordinaKon

dogs	in	houses	and	cats

‣ CoordinaKon	is	decomposed	across	a	few	arcs	as	opposed	to	being	a	
single	rule	producKon	as	in	consKtuency
‣ Can	also	choose	and	to	be	the	head
‣ In	both	cases,	headword	doesn’t	really	represent	the	phrase	—	
consKtuency	representaKon	makes	more	sense

[dogs	in	houses]	and	cats dogs	in	[houses	and	cats]



Universal	Dependencies
‣ Annotate	dependencies	with	the	same	representaKon	in	many	languages

hQp://universaldependencies.org/

English

Bulgarian

Czech

Swiss



ProjecKvity

DT

NN

TO

VBD

DT

NN

the

house

to

ran

the

dog

‣ Any	subtree	is	a	conKguous	span	of	the	sentence	<->	tree	is	projec've



ProjecKvity
‣ ProjecKve	<->	no	“crossing”	arcs

dogs	in	houses	and	cats the	dog	ran	to	the	house

credit:	Language	Log

‣ Crossing	arcs:



ProjecKvity	in	other	languages

credit:	Pitler	et	al.	(2013)

‣ Swiss-German	has	famous	non-context-free	construcKons



ProjecKvity

Pitler	et	al.	(2013)

‣Many	trees	in	other	languages	are	nonprojecKve

‣ Number	of	trees	produceable	under	different	formalisms



ProjecKvity

‣Many	trees	in	other	languages	are	nonprojecKve

‣ Some	other	formalisms	(that	are	harder	to	parse	in),	most	useful	one	is	1-
Endpoint-Crossing

‣ Number	of	trees	produceable	under	different	formalisms

Pitler	et	al.	(2013)



Graph-Based	Parsing



Defining	Dependency	Graphs
‣Words	in	sentence	x,	tree	T	is	a	collecKon	of	directed	edges	(parent(i),	i)	
for	each	word	i

‣ Each	word	has	exactly	one	parent.	Edges	must	form	a	projecKve	tree

‣ Log-linear	CRF	(discriminaKve):

‣ Example	of	a	feature	=	I[head=to	&	modifier=house]	(more	in	a	few	slides)

the housetoranthe dogROOT

P (T |x) = exp

 
X

i

w>f(i, parent(i),x)

!

‣ Parsing	=	idenKfy	parent(i)	for	each	word



Generalizing	CKY

wrote a long report on Mars

4
5

4

2 5

‣ score(2,	7,	4)	=	max(score(2,	7,	4),	new	score)

‣ new	score	=	score(2,	5,	4)	+	score(5,	7,	5)	+	edge	score(4	->	5)
‣ Score	matrix	with	three	dimensions:	start,	end,	and	head,	start	<=	head	<	end

‣ Time	complexity	of	this?

‣Many	spurious	deriva'ons: 
can	build	the	same	tree	in	many 
ways…need	a	beQer	algorithm

4	=	report
5	=	on

4



Eisner’s	Algorithm:	O(n3)

DT NNTOVBDDT NN
the housetoranthe dog

ROOT

‣ Complete	items:	head	is	at	“tall	end”,	may	be	missing	children	on	tall	side
‣ Incomplete	items:	arc	from	“tall”	to	“short”	end,	word	on	short	end	may 
																																																	also	be	missing	children

‣ Cubic-Kme	algorithm

‣Maintain	two	dynamic	programming	charts	with	dimension	[n,	n,	2]:



Eisner’s	Algorithm:	O(n3)

DT NNTOVBDDT NN
the housetoranthe dog

ROOT

+

‣ Complete	item:	all	children	are	aQached,	head	is	at	the	“tall	end”
‣ Incomplete	item:	arc	from	“tall	end”	to	“short	end”,	may	sKll	expect	children

‣ Take	two	adjacent	complete	items,	add	arc	and	build	incomplete	item

= or

+ =

‣ Take	an	incomplete	item,	complete	it
(other	case	is	
symmetric)



Eisner’s	Algorithm:	O(n3)

DT NNTOVBDDT NN
the housetoranthe dog

ROOT

1)	Build	incomplete	span

2)	Promote	to	complete

3)	Build	incomplete	span

+

=

+

or

=



Eisner’s	Algorithm:	O(n3)

DT NNTOVBDDT NN
the housetoranthe dog

ROOT

+

=

+

or

=
4)	Promote	to	complete



Eisner’s	Algorithm:	O(n3)

DT NNTOVBDDT NN
the housetoranthe dog

ROOT

‣We’ve	built	lec	children	and	right	children	of	ran	as	complete	items

‣ AQaching	to	ROOT	makes	an	incomplete	item	with	lec	children,	aQaches	
with	right	children	subsequently	to	finish	the	parse



Eisner’s	Algorithm

DT NNTOVBDDT NN
the housetoranthe dog

ROOT

‣ Eisner’s	algorithm	doesn’t	have	split	point	ambiguiKes	like	CKY	does

‣ Lec	and	right	children	are	built	independently,	heads	are	edges	of	spans

‣ Charts	are	n	x	n	x	2	because	we	need	to	track	arc	direcKon	/	lec	vs	right

Eisner:

n5



Building	Systems

‣ Can	implement	decoding	and	marginal	computaKon	using	Eisner’s	
algorithm	to	max/sum	over	projecKve	trees

‣ Conceptually	the	same	as	inference/learning	for	sequenKal	CRFs	for	
NER,	can	also	use	margin-based	methods



Features	in	Graph-Based	Parsing
‣ Dynamic	program	exposes	the	parent	and	child	indices

‣McDonald	et	al.	(2005)	—	conjuncKons	of	parent	and	child	words	+	POS,	
POS	of	words	in	between,	POS	of	surrounding	words

DT NNTOVBDDT NN
the housetoranthe dog

ROOT

‣ HEAD=TO	&	MOD=NN
‣ HEAD=TO	&	MOD-1=the

‣ HEAD=TO	&	MOD=house
‣ ARC_CROSSES=DT

f(i, parent(i),x)



Higher-Order	Parsing

Koo	and	Collins	(2009)

‣ Track	addiKonal	state	during	parsing	so	
we	can	look	at	“grandparents”	(and	
siblings).	O(n4)	dynamic	program	or	
use	approximate	search

DT NNTOVBDDT NN
the housetoranthe dog

ROOT

f(i, parent(i), parent(parent(i)),x)



Biaffine	Neural	Parsing
‣ Neural	CRFs	for	dependency	parsing:	let	c	=	LSTM	embedding	of	i,	p	=	
LSTM	embedding	of	parent(i).	score(i,	parent(i),	x)	=	pTUc

Dozat	and	Manning	(2017)

(num	words	x	hidden	size) (num	words	x	
num	words)

LSTM	looks	at	words	and	POS



EvaluaKng	Dependency	Parsing
‣ UAS:	unlabeled	aQachment	score.	Accuracy	of	choosing	each	word’s	
parent	(n	decisions	per	sentence)

‣ Log-linear	CRF	parser,	decoding	with	Eisner	algorithm:	91	UAS

‣ LAS:	addiKonally	consider	label	for	each	edge

‣ Higher-order	features	from	Koo	parser:	93	UAS

‣ Best	English	results	with	neural	CRFs:	95-96	UAS



Takeaways

‣ Dependency	parsing	also	has	efficient	dynamic	programs	for	inference

‣ Dependency	formalism	provides	an	alternaKve	to	consKtuency,	
parKcularly	useful	in	how	portable	it	is	across	languages

‣ CRFs	+	neural	CRFs	(again)	work	well


