Recall: Dependencies

- Dependency syntax: syntactic structure is defined by dependencies
 - Head (parent, governor) connected to dependent (child, modifier)
 - Each word has exactly one parent except for the ROOT symbol
 - Dependencies must form a directed acyclic graph

Recall: Projectivity

- Projective <- no “crossing” arcs
- Crossing arcs:
 - dogs in houses and cats
 - the dog ran to the house

Recall: Eisner’s Algorithm

- Left and right children are built independently, heads are edges of spans
- Complete item: all children are attached, head is at the “tall end”
- Incomplete item: arc from “tall end” to “short end”, may still expect children
This Lecture

- Transition-based (shift-reduce) dependency parsing
- Approximate, greedy inference — fast, but a little bit weird!

Shift-Reduce Parsing

- Similar to deterministic parsers for compilers
 - Also called transition-based parsing
- A tree is built from a sequence of incremental decisions moving left to right through the sentence
- Stack containing partially-built tree, buffer containing rest of sentence
- Shifts consume the buffer, reduces build a tree on the stack

Example:

- Initial state: Stack: [ROOT] Buffer: [I ate some spaghetti bolognese]
- Shift: top of buffer -> top of stack
 - Shift 1: Stack: [ROOT I] Buffer: [ate some spaghetti bolognese]
 - Shift 2: Stack: [ROOT I ate] Buffer: [some spaghetti bolognese]
Shift-Reduce Parsing

ROOT
I ate some spaghetti bolognese

- State: Stack: [ROOT I ate] Buffer: [some spaghetti bolognese]
- Left-arc (reduce): Let σ denote the stack, $\sigma|_{w_{-1}}$ stack ending in w_{-1}

 "Pop two elements, add an arc, put them back on the stack"

 $\sigma|_{w_{-2}, w_{-1}} \rightarrow \sigma|_{w_{-1}}, \ w_{-2} \text{ is now a child of } \ w_{-1}$

- State: Stack: [ROOT ate] Buffer: [some spaghetti bolognese]

Arc-Standard Parsing

ROOT
I ate some spaghetti bolognese

- Start: stack contains [ROOT], buffer contains [I ate some spaghetti bolognese]
- Arc-standard system: three operations

 - Shift: top of buffer -> top of stack
 - Left-Arc: $\sigma|_{w_{-2}, w_{-1}} \rightarrow \sigma|_{w_{-1}}, \ w_{-2} \text{ is now a child of } \ w_{-1}$
 - Right-Arc: $\sigma|_{w_{-2}, w_{-1}} \rightarrow \sigma|_{w_{-2}}, \ w_{-1} \text{ is now a child of } \ w_{-2}$

- End: stack contains [ROOT], buffer is empty []
- How many transitions do we need if we have n words in a sentence?
Arc-Standard Parsing

Stack consists of all words that are still waiting for right children, end with a bunch of right-arc ops

Final state:

- **S** top of buffer -> top of stack
- **LA** pop two, left arc between them
- **RA** pop two, right arc between them

Other Systems

- **Arc-eager** (Nivre, 2004): lets you add right arcs sooner and keeps items on stack, separate reduce action that clears out the stack
- **Arc-swi** (Qi and Manning, 2017): explicitly choose a parent from what’s on the stack
- Many ways to decompose these, which one works best depends on the language and features (nonprojective variants too!)

Building Shift-Reduce Parsers

- [ROOT] [I ate some spaghetti bolognese]
- How do we make the right decision in this case?
- Only one legal move (shift)

- [ROOT ate some spaghetti] [bolognese]
- How do we make the right decision in this case? (all three actions legal)
- Multi-way classification problem: shift, left-arc, or right-arc?

\[
\arg\max_{a \in \{S,LA RA\}} w^T f(\text{stack}, \text{buffer}, a)
\]

Features for Shift-Reduce Parsing

- [ROOT ate some spaghetti] [bolognese]
- Features to know this should left-arc?
- One of the harder feature design tasks!
- In this case: the stack tag sequence VBD - DT - NN is pretty informative — looks like a verb taking a direct object which has a determiner in it
- Things to look at: top words/POS of buffer, top words/POS of stack, leftmost and rightmost children of top items on the stack
Training a Greedy Model

- \[
\arg\max_{y \in \{S,L,R\}} w^T f(y, \text{stack, buffer})
\]
- Can turn a tree into a decision sequence by building an oracle
- Train a classifier to predict the right decision using these as training data
- Training data assumes you made correct decisions up to this point and teaches you to make the correct decision, but what if you screwed up…

Greedy training

- Greedy: 2n local training examples
- Non-gold states unobserved during training: consider making bad decisions but don’t condition on bad decisions

Speed Tradeoffs

<table>
<thead>
<tr>
<th>Parser</th>
<th>Dev UAS</th>
<th>Dev LAS</th>
<th>Test UAS</th>
<th>Test LAS</th>
<th>Speed (sent/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unoptimized S-R</td>
<td>standard: 89.9 88.7</td>
<td>89.7 88.3</td>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>eager</td>
<td>90.3 89.2</td>
<td>89.9 88.6</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Optimized S-R</td>
<td>Malt:sp</td>
<td>90.0 88.8</td>
<td>89.9 88.5</td>
<td>560</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Malt:eager</td>
<td>90.1 88.9</td>
<td>90.1 88.7</td>
<td>535</td>
<td></td>
</tr>
<tr>
<td>Graph-based</td>
<td>MSTParser</td>
<td>92.1 90.8</td>
<td>92.0 90.5</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Neural S-R</td>
<td>Our parser</td>
<td>92.2 91.0</td>
<td>92.0 90.5</td>
<td>1013</td>
<td></td>
</tr>
</tbody>
</table>

- Many early-2000s constituency parsers were ~5 sentences/sec
- Using S-R used to mean taking a performance hit compared to graph-based, that’s no longer true

Global Decoding

Chen and Manning (2014)
Global Decoding

- Is it a problem that we make decisions greedily?
- Correct: Right-arc, Shift, Right-arc, Right-arc

Correct: Right-arc, Shit, Right-arc, Right-arc

Global Decoding: A Cartoon

- Both wrong! Also both probably low scoring!

- Correct, high scoring option

Global Decoding: A Cartoon

- Lookahead can help us avoid getting stuck in bad spots
- Global model: maximize sum of scores over all decisions
- Similar to how Viterbi works: we maintain uncertainty over the current state so that if another one looks more optimal going forward, we can use that one

Global Shift-Reduce Parsing

- Greedy: repeatedly execute
 \[a_{\text{best}} \leftarrow \arg \max_{a} w^T f(s, a) \]
 \[s \leftarrow a_{\text{best}}(s) \]

- Global:
 \[\arg \max_{s, a} w^T f(s, a) = \sum_{i=1}^{2n} w^T f(s_i, a_i) \]
 \[s_{i+1} = a_i(s_i) \]

- Can we do search exactly?
 - How many states are there?
- No! Use beam search
Beam Search

- Maintain a beam of k plausible states at the current timestep, expand each and only keep top k best new ones.
- Example: POS

How good is beam search?

- $k=1$: greedy search
- Choosing beam size:
 - 2 is usually better than 1
 - Usually don’t use larger than 50
 - Depends on problem structure

Global Shift-Reduce Parsing

- Beam search gave us the lookahead to make the right decision

Global Training

- If using global inference, should train the parser in a global fashion as well: use structured perceptron / structured SVM
- Model treats an entire derivation as something to featurize
- No algorithm like Viterbi for doing efficient parsing, so use beam search
State-of-the-art Parsers

2005: Eisner algorithm graph-based parser was SOTA (~91 UAS)

2010: Koo’s 3rd-order parser was SOTA for graph-based (~93 UAS)

2012: Maltparser was SOTA was for transition-based (~90 UAS)

2014: Chen and Manning got 92 UAS with transition-based neural model

2016: Improvements to Chen and Manning

State-of-the-art Parsers

2005: Eisner algorithm graph-based parser was SOTA (~91 UAS)

2010: Koo’s 3rd-order parser was SOTA for graph-based (~93 UAS)

2012: Maltparser was SOTA was for transition-based (~90 UAS)

2014: Chen and Manning got 92 UAS with transition-based neural model

2016: Improvements to Chen and Manning

Parsey McParseFace (a.k.a. SyntaxNet)

- Close to state-of-the-art, released by Google publicly
- 94.61 UAS on the Penn Treebank using a global transition-based system with early updating (compared to 95.8 for Dozat, 93.7 for Koo in 2009)
- Additional data harvested via “tri-training”, form of self-training
- Feedforward neural nets looking at words and POS associated with
- Words at the top of the stack
- Those words’ children
- Words in the buffer
- Feature set pioneered by Chen and Manning (2014), Google fine-tuned it

Andor et al. (2016)
Stack LSTMs

- Use LSTMs over stack, buffer, past action sequence. Trained greedily
- Slightly less good than Parsey

Recap

- Shift-reduce parsing can work nearly as well as graph-based
- Arc-standard system for transition-based parsing
- Purely greedy or more “global” approaches
- Next time: semantic parsing