CS388: Natural Language Processing
Lecture 13: Semantics |

Greg Durrett

Slides adapted from Dan Klein, UC Berkeley

Administrivia

» Mini 2 due *today* at 5pm

Recall: Dependencies

» Dependency syntax: syntactic structure is defined by dependencies
» Head (parent, governor) connected to dependent (child, modifier)
» Each word has exactly one parent except for the ROOT symbol
» Dependencies must form a directed acyclic graph

7 N

ROOT DT NN VBD TO DT NN
the dog ran to the house

Recall: Shift-Reduce Parsing

ROOT
A/A/\/\
| ate some spaghetti bolognese

» State: Stack: [ROOT | ate] Buffer: [some spaghetti bolognese]
» Left-arc (reduce operation): Let g denote the stack

» “Pop two elements, add an arc, put them back on the stack”
| olw_s, w_1| —>|a|w_1|, w_g is now a child of w_q

» State: Stack: [ROOT ate] Buffer: [some spaghetti bolognese]
¥




Where are we now?
» Early in the class: sentences are just sequences of words
» Now we can understand them in terms of tree structures as well
» Why is this useful? What does this allow us to do?

» We're going to see how parsing can be a stepping stone towards more
formal representations of language meaning

Today

» First-order logic

» Compositional semantics with first-order logic
» CCG parsing for database queries

» Lambda-DCS for question answering

First-Order Logic

First-order Logic

» Powerful logic formalism including things like entities, relations, and
guantifications

» Propositions: let a = It is day, b = It is night
»a Vv b=eitheraistrueorbistrue, a=>-b=aimplies notb
» More complex statements: “Lady Gaga sings”
» sings is a predicate (with one argument), function f: entity => true/false

» sings(Lady Gaga) = true or false, have to execute this against some
database (called a world)

» [[sings]] = denotation, set of entities which sing (sort of like executing
this predicate on the world — we’ll come back to this)




Quantification

» Universal quantification: “forall” operator
» Vx sings(x) v dances(x) => performs(x)
“Everyone who sings or dances performs”
» Existential quantification: “there exists” operator
» 3x sings(x) “Someone sings”

» Source of ambiguity! “Everyone is friends with someone”
» vx 3y friend(x,y)
» 3y vx friend(x,y)

Logic in NLP

» Question answering:
Who are all the American singers named Amy?
Ax. nationality(x,USA) A sings(x) A firstName(x,Amy)

» Function that maps from x to true/false, like filter. Execute this
on the world to answer the question

» Lambda calculus: powerful system for expressing these functions
» Information extraction: Lady Gaga and Eminem are both musicians
musician(Lady Gaga) A musician(Eminem)
» Can now do reasoning. Maybe know: Vvx musician(x) => performer(x)

Then: performer(Lady Gaga) A performer(Eminem)

Compositional Semantics with First-
Order Logic

Truth-Conditional Semantics

S
/\ Id Name Alias Birthdate Sings?

VP e470 Stefani Germanotta Lady Gaga 3/28/1986 T
/NP\ | e728 Marshall Mathers Eminem 10/17/1972 T

NNP NNP  VBP

. » Database containing entities, predicates, etc.
Lady Gaga sings

» Truth-conditional semantics: sentence expresses something about the
world which is either true or false

» Denotation: evaluation of some expression against this database

» [[Lady Gaga]] = e470 » [[sings(e470)]] = True

denotation of this string is an entity denotation of this expression is T/F




Parses to Logical Forms

sings(e470)

S function application: apply this to e470
ID

e470 NP VP Ay. sings(y)

PN |
NNP NNP vBP
Lady Gaga sings A\y. sings(y)
takes one argument (y, the entity) and
returns a logical form sings(y)

» We can use the syntactic parse as a bridge to the lambda-calculus
representation, build up a logical form compositionally

Parses to Logical Forms

sings(e470) A dances(e470)

//é\\\\\‘\\\
e470 NP VP Ay. sings(y) A dances(y)
/\ /I\
NNP  NNP VP CC VP
Lady Gaga | and |
VBP VBP
sings dances

Ay. sings(y) Ay. dances(y)

» General rules:  VP:Ay.a(y) A b(y) ->VP: Ay. a(y) CCVP: Ay. b(y)
S: f(x) -> NP: x VP: f

Parses to Logical Forms

born(e470,3/28/1986)
S

T

e470 NP VP Ay. born(y, 3/28/1986)
AN VP Ay. born(y, 3/28/1986)
NNP NNP VBD —~
Lady Gaga Was NP

born March 28, 1986

Ax.A\y. born(y,x) 3/28/1986
» Function takes two arguments: first x (date), then y (entity)
» How to handle tense: should we indicate that this happened in the past?

Tricky things

» Adverbs/temporality: Lady Gaga sang well yesterday
sings(Lady Gaga, time=yesterday, manner=well)
» “Neo-Davidsonian” view of events: things with many properties:
Je. type(e,sing) A agent(e,e470) A manner(e,well) A time(e,..
» Quantification: Everyone is friends with someone
Jy vx friend(x,y)
(one friend)

vx 3y friend(x,y)
(different friends)

» Same syntactic parse for both! So syntax doesn't resolve all ambiguities

» Indefinite: Amy ate a waffle Jw. waffle(w) A ate(Amy,w)
» Generic: Cats eat mice (all cats eat mice? most cats? some cats?)




QA from Parsing

SBARQ Ax. born(e470,x)
— T » Execute this function

WHADVP sQ against a knowledge base
| — N to answer the question
WRB VBD NP VP
When was .7\ |

NNP NNP VBN
Lady Gaga born

» Tricky to parse due to wh-movement...would be easier if we said
Lady Gaga was born when

Semantic Parsing

» For question answering, syntactic parsing doesn’t tell you everything you
want to know, but indicates the right structure

» Solution: semantic parsing: many forms of this task depending on
semantic formalisms

» Two today: CCG (looks like what we’ve been doing) and lambda-DCS

CCG Parsing

Combinatory Categorial Grammar
» Steedman+Szabolcsi 1980s: formalism bridging syntax and semantics
» Parallel derivations of syntactic parse and lambda calculus expression

» Syntactic categories (for this lecture): S, NP,
“slash” categories

S
» S\NP: “if | combine with an NP on my sings(e728)
left side, | form a sentence” — verb
NP S\NP
» When you apply this, there has to be a e728 Ay. sings(y)
parallel instance of function Eminem sings

application on the semantics side




Combinatory Categorial Grammar

» Steedman+Szabolcsi 1980s: formalism bridging syntax and semantics
» Syntactic categories (for this lecture): S, NP, “slash” categories
» S\NP: “if | combine with an NP on my left side, | form a sentence” — verb
» (S\NP)/NP: “I need an NP on my right and then on my left” — verb
with a direct object S
borders (e101,e89)

S S\NP
sings(e728) Ay borders(y,e89)
NP S\NP NP (S\NP)/NP NP
e728 Ay. sings(y) €101 |[Ax.\y borders(y,x)|| €89
Eminem sings Oklahoma borders Texas

CCG Parsing

What states border Texas
(S/(S\NP))/N N (S\NP)/NP NP
AAgAz.f(x) A g(z) | Ax.state(z) Ax.Ay.borders(y,x) texas
S/(S\NP) (S\NP) il

Ag.Az.state(x) A g(x) Ay.borders(y, texas)

Az.state(x) A borders(x, texas)

» “What” is a very complex type: needs a noun and needs a S\NP to
form a sentence. S\NP is basically a verb phrase (border Texas)

» Lexicon is highly ambiguous — all the challenge of CCG parsing is in
picking the right lexicon entries Zettlemoyer and Collins (2005)

CCG Parsing

Show me flights to Prague
S/N N (N\N) /NP NP
AF. £ Ax.flight(x) Ay.Af.Ax.f(y)Ato(x,y) PRG

N\N
Af.Ax. f (x) rto(x,PRG)

N
Ax.flight (x) Ato (x,PRG)

S
Ax.flight (x) Anto(x,PRG)
» “to” needs an NP (destination) and N (parent)

Slide credit: Dan Klein

Building CCG Parsers

» Model: log-linear model over T
P(d|x) oc expw T, T
derivations with features on rules: (dl) P (Tezd ut )>

S
f sings(e728)

NP S\NP . '
f f _ ]
< e728 > < Ay. sings(y) > Indicator(S\NP -> sings)

Eminem sings

> = Indicator(S -> NP S\NP)

» Can parse with a variant of CKY
Zettlemoyer and Collins (2005)




Building CCG Parsers

» Training data looks like pairs of sentences and logical forms

What states border Texas Ax. state(x) A borders(x, e89)

» Problem: we don’t know the derivation

» Texas corresponds to NP | €89 in the logical form (easy to figure out)

» What corresponds to (S/(S\NP))/N | Af . Ag.Ax. f(x) A g(x)

» How do we infer that without being told it?

Zettlemoyer and Collins (2005)

Lexicon

» GENLEX: takes sentence S and logical form L. Break up logical form
into chunks C(L), assume any substring of S might map to any chunk
What states border Texas Ax. state(x) A borders(x, e89)

» Chunks inferred from the logic form based on rules:
» NP: 89 » (S\NP)/NP: Ax. Ay. borders(x,y)

» Any substring can parse to any of these in the lexicon
» Texas -> NP: e89 is correct
» border Texas -> NP: e89

» What states border Texas -> NP: e89
Zettlemoyer and Collins (2005)

GENLEX

Rules Categories produced from logical form

Input Trigger [ Output Category | arg max(Az.state(z) A borders(x, texas), Az.size(x))
constant ¢ NP:c NP :texas
arity one predicate p; N : Az.p.(z) N : Az.state(z)
arity one predicate p; S\NP : xz.p;(z) S\NP : Az.state(z)
arity two predicate pp (S\NP)/NP : dz.\y.p2(y,z) (S\NP)/NP : dz.)\y.borders(y, «)
arity two predicate p2 (S\NP)/NP : Az.)\y.p2(z,y) (S\NP)/NP : Az.)\y.borders(z, y)
arity one predicate p1 N/N : Ag.Az.p1(z) A g(z) N/N : Ag.\z.state(z) A g(z)
literal with arity two predicate p2

and constant second argument ¢ N/N : Ag.2z.pa(z, ¢) A g(z) N/N : Ag.\z.borders(z, texas) A g(x)

arity two predicate p2 (N\N)/NP : dz. g Ay.p2(z, y) A g(z) (N\N)/NP : xg.dz.My.borders(z,y) A g(z)

an arg max / min with second . . .
arity one function £ NP/N : Ag. argmax / min(g, Az.f(z)) NP/N : Ag.arg max(g, Azx.size(z))

an arity one
numeric-ranged function f

S/NP : Xz.f(z) S/NP : Az.size(z)

» Very complex and hand-engineered way of taking lambda calculus
expressions and “backsolving” for the derivation

Zettlemoyer and Collins (2005)

Learning
» Iterative procedure like the EM algorithm: estimate “best” parses that
derive each logical form, retrain the parser using these parses with

supervised learning

» We'll talk about a simpler form of this in a few slides

Zettlemoyer and Collins (2005)




Applications
» GeoQuery: answering questions about states (~80% accuracy)
» Jobs: answering questions about job postings (~80% accuracy)
» ATIS: flight search

» Can do well on all of these tasks if you handcraft systems and use
plenty of training data: these domains aren’t that rich

» What about broader QA?

Lambda-DCS

Lambda-DCS

» Dependency-based compositional semantics — original version was
less powerful than lambda calculus, lambda-DCS is as powerful

» Designed in the context of building a QA system from Freebase

» Freebase: set of entities and relations

Bob Cooper .
\ Washington
PlaceOfBirth ~

\

March 15, 1961

1
DateOfBirth
1

Alice Smith —
» [[PlaceOfBirth]] = set of pairs of (person, location)

CapitalOf
/
PlaceOfBirth— Seattle

Liang et al. (2011), Liang (2013)

Lambda-DCS

Lambda-DCS Lambda calculus
Seattle Ax. x = Seattle
PlaceOfBirth Ax.A\y. PlaceOfBirth(x,y)
PlaceOfBirth.Seattle Ax. PlaceOfBirth(x,Seattle)

» Looks like a tree fragment over Freebase

299 —PlaceOfBirth ™ Seattle

Profession.Scientist A Ax. Profession(x,Scientist)
PlaceOfBirth.Seattle A PlaceOfBirth(x,Seattle)

Liang et al. (2011), Liang (2013)




Lambda-DCS

Bob Cooper
March 15, 1961 \ Washington

. PlaceOfBirth -

DateOfBirth \ CapitalOf
1 —

. . irth— Seattle

Alice Smith ___PlaceOfBirth
. — Profession™ 2?7
Scientist

___Profession ™ PlaceOfBirth

~ Seattle

Scientist

Profession.Scientist A

list of scientists born in Seattle PlaceOfBirth.Seattle

» Execute this fragment against Freebase, returns Alice Smith (and
others)

Liang et al. (2011), Liang (2013)

Parsing into Lambda-DCS

» Derivation d on sentence x: Type.Location[1PeopleBornHere.BarackObama

B 7,,,,,:;;f;:intersectiop —_—
» No more eXp“Cit SyntaX Type.Location was PeopleBornH?rfe .BarackObama ?

. . . ‘ lexicon o
in these derivations
. . where BarackObama  PeopleBornHere
like we had in CCG . .

‘ lexicon ‘ lexicon

Obama born

» Building the lexicon: more sophisticated process than GENLEX, but can

handle thousands of predicates
P(d|z) oc expw " (Z f(r,x))

red

» Log-linear model with features on rules:

» Similar to CRF parsers
Berant et al. (2013)

Parsing with Lambda-DCS

» Learn just from question-answer pairs: maximize the likelihood of the
right denotation y with the derivation d marginalized out

o) =3 1lg Y pild| ).

1=1 dED(-T) : IId-z]],czyi sum over derivations d such that the
For each example: denotation of d on knowledge base K is y;

Run beam search to get a set of derivations
Let d = highest-scoring derivation in the beam
Let d* = highest-scoring derivation in the beam with correct denotation
Do a structured perceptron update towards d* away from d
Berant et al. (2013)

Learning

i L - S L' N [ I
» Each vertical slice is the e 1t |I .'r !|- oy I
beam for one example. e L || b -,i P :

. . = . | |

Green = correct denotation |+ c Lo It v

L I d FIR
LI Il 1 ]

0 iterations 1 iterations 2 iterations

» Only a small number of questions are even reachable by beam search
initially (but some questions are very easy so even a totally untrained
model can answer them)

» During training, more and more “good” derivations surface and will
result in model updates

Berant et al. (2013)




Takeaways

» Can represent meaning with first order logic and lambda calculus

» Can bridge syntax and semantics and create semantic parsers that can
interpret language into lambda-calculus expressions

» Useful for querying databases, question answering, etc.

» Next time: neural net methods for doing this that rely less on having
explicit grammars




