Recall: Seq2seq Model

- Generate next word conditioned on previous word as well as hidden state
- W size is |vocabulary| x |hidden state|, softmax over entire vocabulary

\[
P(y_i|x, y_1, \ldots, y_{i-1}) = \text{softmax}(W\hat{h})
\]
\[
P(y|x) = \prod_{i=1}^{n} P(y_i|x, y_1, \ldots, y_{i-1})
\]

Decoder has separate parameters from encoder, so this can learn to be a language model (produce a plausible next word given current one)

Recall: Seq2seq Training

- Objective: maximize \[
\sum_{(x,y)} \sum_{i=1}^{n} \log P(y_i^*|x, y_1^*, \ldots, y_{i-1}^*)
\]
- One loss term for each target-sentence word, feed the correct word regardless of model's prediction

This Lecture

- Graham Neubig (CMU) talk this Friday at 11am in 6.302. “Towards Open-domain Generation of Programs from Natural Language”
- Project 2 out by the end of today; due *Friday* November 2
- Mini 2 graded by this weekend
Recall: Semantic Parsing as Translation

“what states border Texas”

\[
\lambda x \left(\text{state}(x) \land \text{border}(x, e89) \right)
\]

- Write down a linearized form of the semantic parse, train seq2seq models to directly translate into this representation
- No need to have an explicit grammar, simplifies algorithms
- Might not produce well-formed logical forms, might require lots of data

Jia and Liang (2015)

Regex Prediction

- Can use for other semantic parsing-like tasks
- Predict regex from text

Problem: requires a lot of data: 10,000 examples needed to get ~60% accuracy on pretty simple regexes

Locascio et al. (2016)

SQL Generation

- Convert natural language description into a SQL query against some DB
- How to ensure that well-formed SQL is generated?
 - Three seq2seq models
 - How to capture column names + constants?
 - Pointer mechanisms

Zhong et al. (2017)

This Lecture

- Attention
- Copying
- Transformers
Problems with Seq2seq Models

- Encoder-decoder models like to repeat themselves:

 Un garçon joue dans la neige → A boy plays in the snow **boy plays boy plays**

- Often a byproduct of training these models poorly

- Need some notion of input coverage or what input words we’ve translated

Problems with Seq2seq Models

- Unknown words:

 - *en*: The *ecotax* portico in *Pont-de-Buis*, ..., [truncated] ..., was taken down on Thursday morning
 - *fr*: Le *portique écotaxe* de *Pont-de-Buis*, ..., [truncated] ..., a été *démonté* jeudi matin
 - *nn*: Le *unk* de *unk à unk*, ..., [truncated] ..., a été pris le jeudi matin

- No matter how much data you have, you’ll need some mechanism to copy a word like Pont-de-Buis from the source to target

Problems with Seq2seq Models

- Bad at long sentences: 1) a fixed-size representation doesn’t scale; 2) LSTMs still have a hard time remembering for really long periods of time

 RNNsearch: introduces attention mechanism to give “variable-sized” representation

Bahdanau et al. (2014)
Aligned Inputs

- Suppose we knew the source and target would be word-by-word translated
- Can look at the corresponding input word when translating — this could scale!
- Much less burden on the hidden state
- How can we achieve this without hardcoding it?

Attention

- For each decoder state, compute weighted sum of input states
- No attn: \(P(y_i|x, y_1, \ldots, y_{i-1}) = \text{softmax}(W\tilde{h}_i) \)
- Weighted sum of input hidden states (vector)
- Normalized scalar weight
- Unnormalized scalar weight

\[
\begin{align*}
\alpha_{ij} &= \frac{\exp(e_{ij})}{\sum_{j'} \exp(e_{ij'})} \\
e_{ij} &= f(\tilde{h}_i, h_j)
\end{align*}
\]

- Bahdanau+ (2014): additive
 \[
f(h_i, h_j) = \tanh(W[h_i, h_j])
\]
- Luong+ (2015): dot product
 \[
f(h_i, h_j) = \bar{h}_i \cdot h_j
\]
- Luong+ (2015): bilinear
 \[
f(h_i, h_j) = \bar{h}_i^T W h_j
\]

- Note that this all uses outputs of hidden layers
What can attention do?

- Learning to copy — how might this work?
- LSTM can learn to count with the right weight matrix
- This is effectively position-based addressing

Luong et al. (2015)

What can attention do?

- Learning to subsample tokens
- Need to count (for ordering) and also determine which tokens are in/out
- Content-based addressing

Luong et al. (2015)

Attention

- Encoder hidden states capture contextual source word identity
- Decoder hidden states are now mostly responsible for selecting what to attend to
- Doesn’t take a complex hidden state to walk monotonically through a sentence and spit out word-by-word translations

Batching Attention

- token outputs: batch size x sentence length x dimension
- hidden state: batch size x dimension
 \[e_{ij} = f(h_i, h_j) \]
 \[\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{j'} \exp(e_{ij'})} \]
- sentence outputs: batch size x hidden size
- attention scores = batch size x sentence length
 \[c_i = \sum_j \alpha_{ij} h_j \]
- Make sure tensors are the right size!

Luong et al. (2015)
Alternatives

- When do we compute attention? Can compute before or after RNN cell
 - After RNN cell
 - Before RNN cell; this one is a little more convoluted and less standard

 ![Diagram](image1.png)
 Luong et al. (2015)
 Bahdanau et al. (2015)

Results

- Machine translation: BLEU score of 14.0 on English-German -> 16.8 with attention, 19.0 with smarter attention (we’ll come back to this later)

 - Summarization/headline generation: bigram recall from 11% -> 15%

 - Semantic parsing: ~30% accuracy -> 70+% accuracy on Geoquery

 Luong et al. (2015)
 Chopra et al. (2016)
 Jia and Liang (2016)

Unknown Words

- Want to be able to copy named entities like Pont-de-Buis

 \[P(y_i | x, y_1, \ldots, y_{i-1}) = \text{softmax}(W[c_i; \tilde{h}_i]) \]

 - from attention
 - from RNN hidden state

 Still can only generate from the vocabulary

 Jean et al. (2015), Luong et al. (2015)
Copying

Vocabulary contains “normal” vocab as well as words in input. Normalizes over both of these:

\[P(y_i = w | x, y_1, \ldots, y_{i-1}) \propto \begin{cases}
\exp W_w[c_i; \bar{h}_i] & \text{if } w \text{ in vocab} \\
\bar{h}_i^T V \bar{h}_i & \text{if } w = x_j
\end{cases} \]

- Bilinear function of input representation + output hidden state

Results

<table>
<thead>
<tr>
<th>Copying</th>
<th>GEO</th>
<th>ATIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Copying</td>
<td>74.6</td>
<td>69.9</td>
</tr>
<tr>
<td>With Copying</td>
<td>85.0</td>
<td>76.3</td>
</tr>
</tbody>
</table>

- For semantic parsing, copying tokens from the input (texas) can be very useful
- In many settings, attention can roughly do the same things as copying

Jia and Liang (2016)

Pointer Networks

- Only point to the input, don’t have any notion of vocabulary
- Used for tasks including summarization and sentence ordering

Vinyals et al. (2015)

Transformers
Self-Attention

- LSTM abstraction: maps each vector in a sentence to a new, context-aware vector
- CNNs did something similar with filters
- Attention can give us a third way to do this

Vaswani et al. (2017)

Self-Attention

- Each word forms a “query” which then computes attention over each word
 \[\alpha_{i,j} = \text{softmax}(x_i^T x_j) \]
 scalar

 \[x'_i = \sum_{j=1}^{n} \alpha_{i,j} x_j \]
 vector = sum of scalar * vector

- Multiple “heads” analogous to different convolutional filters. Use parameters \(W_k \) and \(V_k \) to get different attention values + transform vectors
 \[\alpha_{k,i,j} = \text{softmax}(x_i^T W_k x_j) \]
 \[x'_{k,i} = \sum_{j=1}^{n} \alpha_{k,i,j} V_k x_j \]

Vaswani et al. (2017)

Deep Transformers

- Supervised: transformer can replace LSTM; will revisit this when we discuss MT
- Unsupervised: transformers work better than LSTM for unsupervised pre-training of embeddings: predict word given context words

Devlin et al. October 11, 2018
“BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”

- Stronger than similar methods, SOTA on ~11 tasks (including NER — 92.8 F1)

Takeaways

- Attention is very helpful for seq2seq models
- Used for tasks including summarization and sentence ordering
- Explicitly copying input can be beneficial as well
- Transformers are strong models we’ll come back to later
Where are we going

- We’ve now talked about most of the important core tools for NLP
- Rest of the class: more focused on applications
- Information extraction, then MT, then a grab bag of things