# CS395T: Structured Models for NLP Lecture 2: Binary Classification



#### **Greg Durrett**

Some slides adapted from Vivek Srikumar, University of Utah



#### Administrivia

- Course enrollment
- OHs this week: Jifan 1pm-2pm Tues (today) in GDC 1.304 TA desk #1 Greg 11am-12pm Weds + 10am-11am Fri in GDC 3.420
- ▶ Readings on course website
- Mini1 is out, due September 11
  - ▶ Feel free to extend the code as needed; optimizers, featurization, etc. isn't set in stone



#### This Lecture

- ▶ Linear classification fundamentals
- ▶ Naive Bayes, maximum likelihood in generative models
- ▶ Three discriminative models: logistic regression, perceptron, SVM
  - ▶ Different motivations but very similar update rules / inference!

#### Classification



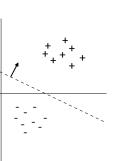
#### Classification

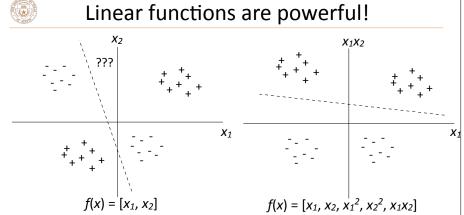
- ▶ Datapoint x with label  $y \in \{0, 1\}$
- ▶ Embed datapoint in a feature space  $f(x) \in \mathbb{R}^n$ but in this lecture f(x) and x are interchangeable
- Linear decision rule:  $w^{\top} f(x) + b > 0$  $w^{\top} f(x) > 0$
- ▶ Can delete bias if we augment feature space:

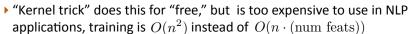
$$f(x) = [0.5, 1.6, 0.3]$$

$$\downarrow$$

$$[0.5, 1.6, 0.3, 1]$$









#### Classification: Sentiment Analysis

this movie was great! would watch again

Positive

that film was <mark>awful,</mark> I'll never watch again

Negative

- Surface cues can basically tell you what's going on here: presence or absence of certain words (great, awful)
- Steps to classification:
  - ▶ Turn examples like this into feature vectors
  - ▶ Pick a model / learning algorithm
  - ▶ Train weights on data to get our classifier



#### **Feature Representation**

this movie was great! would watch again

Positive

Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains film]. position 0

position 1

position 2

position 3

position 4

f(x) = [0]

0

1

0

- Very large vector space (size of vocabulary), sparse features
- ▶ Requires *indexing* the features (mapping them to axes)
- More sophisticated feature mappings possible (tf-idf), as well as lots of other features: character n-grams, parts of speech, lemmas, ...

#### **Naive Bayes**



#### **Naive Bayes**

- ullet Data point  $\,x=(x_1,...,x_n)$  , label  $\,y\in\{0,1\}$
- ullet Formulate a probabilistic model that places a distribution P(x,y)
- ullet Compute P(y|x), predict  $rgmax_y P(y|x)$  to classify

$$P(y|x) = \frac{P(y)P(x|y)}{P(x)}$$
 Bayes' Rule constant: irrelevant for finding the max 
$$P(y)P(x|y)$$
 for finding the max 
$$P(y) \prod_{i=1}^{n} P(x_i|y)$$
 Solution: 
$$P(y) \prod_{i=1}^{n} P(x_i|y)$$
 Solution: 
$$P(y|x) = \operatorname{argmax}_y \operatorname{P}(y|x) = \operatorname{argmax}_y$$



#### Naive Bayes Example

it was great 
$$\longrightarrow P(y|x) \propto$$

$$P(y|x) \propto P(y) \prod_{i=1}^{n} P(x_i|y)$$

$$\operatorname{argmax}_{y} \log P(y|x) = \operatorname{argmax}_{y} \left[ \log P(y) + \sum_{i=1}^{n} \log P(x_i|y) \right]$$



#### Maximum Likelihood Estimation

- ightharpoonup Data points  $(x_j,y_j)$  provided (j indexes over examples)
- Find values of P(y),  $P(x_i|y)$  that maximize data likelihood (generative):

$$\prod_{j=1}^m P(y_j,x_j) = \prod_{j=1}^m P(y_j) \left[ \prod_{i=1}^n P(x_{ji}|y_j) \right]$$
 data points (j) features (i) ith feature of jth example



#### Maximum Likelihood Estimation

- ▶ Imagine a coin flip which is heads with probability p
- lacksquare Observe (H, H, H, T) and maximize likelihood:  $\prod_{j=1}^n P(y_j) = p^3(1-p)$
- ▶ Easier: maximize *log* likelihood

$$\sum_{j=1}^{m} \log P(y_j) = 3 \log p + \log(1-p)$$

Maximum likelihood parameters for binomial/ multinomial = read counts off of the data + normalize





#### Maximum Likelihood Estimation

- ▶ Data points  $(x_i, y_i)$  provided (*j* indexes over examples)
- Find values of P(y),  $P(x_i|y)$  that maximize data likelihood (generative):

$$\prod_{j=1}^m P(y_j,x_j) = \prod_{j=1}^m P(y_j) \left[ \prod_{i=1}^n P(x_{ji}|y_j) \right]$$
 data points (j) features (i) ith feature of jth example

Equivalent to maximizing logarithm of data likelihood:

$$\sum_{j=1}^{m} \log P(y_j, x_j) = \sum_{j=1}^{m} \left[ \log P(y_j) + \sum_{i=1}^{n} \log P(x_{ji}|y_j) \right]$$



#### Maximum Likelihood for Naive Bayes

this movie was great! would watch again I liked it well enough for an action flick

I expected a great film and left happy brilliant directing and stunning visuals

that film was awful, I'll never watch again I didn't really like that movie

dry and a bit distasteful, it misses the mark great potential but ended up being a flop

$$P(+) = \frac{1}{2}$$

$$P(-) = \frac{1}{2}$$

$$P(\text{great}|+) = \frac{1}{2}$$

+ 
$$P(+) = \frac{1}{2}$$
  
+  $P(-) = \frac{1}{2}$   
+  $P(\text{great}|+) = \frac{1}{2}$   
-  $P(\text{great}|-) = \frac{1}{4}$ 

it was great 
$$\longrightarrow P(y|x) \propto \begin{bmatrix} P(+)P(\text{great}|+) \\ P(-)P(\text{great}|-) \end{bmatrix} = \begin{bmatrix} 1/4 \\ 1/8 \end{bmatrix} = \begin{bmatrix} 2/3 \\ 1/3 \end{bmatrix}$$



#### Naive Bayes: Summary

Model

$$P(x,y) = P(y) \prod_{i=1}^{n} P(x_i|y)$$

▶ Inference



 $\operatorname{argmax}_{y} \log P(y|x) = \operatorname{argmax}_{y} \left| \log P(y) + \sum_{i=1}^{n} \log P(x_{i}|y) \right|$ 

• Alternatively:  $\log P(y=+|x) - \log P(y=-|x) > 0$ 

$$\Leftrightarrow \log \frac{P(y=+|x)}{P(y=-|x)} + \sum_{i=1}^{n} \log \frac{P(x_i|y=+)}{P(x_i|y=-)} > 0$$

Learning: maximize P(x,y) by reading counts off the data



#### **Problems with Naive Bayes**

the film was beautiful, stunning cinematography and gorgeous sets, but boring



$$P(x_{\text{beautiful}}|+) = 0.1$$
  $P(x_{\text{beautiful}}|-) = 0.01$ 

$$P(x_{\text{beautiful}}|-) = 0.01$$

$$P(x_{\text{stunning}}|+) = 0.1$$

$$P(x_{\text{stunning}}|+) = 0.1$$
  $P(x_{\text{stunning}}|-) = 0.01$ 

$$P(x_{\text{gorgeous}}|+)=0.$$

$$P(x_{\text{gorgeous}}|+) = 0.1$$
  $P(x_{\text{gorgeous}}|-) = 0.01$ 

$$P(x_{\text{boring}}|+) = 0.01$$

$$P(x_{\text{boring}}|-) = 0.1$$

- ▶ Correlated features compound: beautiful and gorgeous are not independent
- Naive Bayes is naive, but another problem is that it's generative: spends capacity modeling P(x,y), when what we care about is P(y|x)
- Discriminative models model P(y|x) directly (SVMs, most neural networks, ...

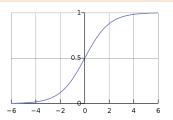
Logistic Regression



#### Logistic Regression

$$P(y = +|x) = \operatorname{logistic}(w^{\top}x)$$

$$P(y = +|x) = \frac{\exp(\sum_{i=1}^{n} w_i x_i)}{1 + \exp(\sum_{i=1}^{n} w_i x_i)}$$



▶ To learn weights: maximize discriminative log likelihood of data P(y|x)

$$\mathcal{L}(x_j, y_j = +) = \log P(y_j = +|x_j)$$

$$= \sum_{i=1}^n w_i x_{ji} - \log \left(1 + \exp\left(\sum_{i=1}^n w_i x_{ji}\right)\right)$$
sum over features



#### Logistic Regression

$$\mathcal{L}(x_{j}, y_{j} = +) = \log P(y_{j} = +|x_{j}) = \sum_{i=1}^{n} w_{i}x_{ji} - \log\left(1 + \exp\left(\sum_{i=1}^{n} w_{i}x_{ji}\right)\right)$$

$$\frac{\partial \mathcal{L}(x_{j}, y_{j})}{\partial w_{i}} = x_{ji} - \frac{\partial}{\partial w_{i}} \log\left(1 + \exp\left(\sum_{i=1}^{n} w_{i}x_{ji}\right)\right)$$

$$= x_{ji} - \frac{1}{1 + \exp\left(\sum_{i=1}^{n} w_{i}x_{ji}\right)} \frac{\partial}{\partial w_{i}} \left(1 + \exp\left(\sum_{i=1}^{n} w_{i}x_{ji}\right)\right) \qquad \text{deriv}$$
of log
$$= x_{ji} - \frac{1}{1 + \exp\left(\sum_{i=1}^{n} w_{i}x_{ji}\right)} x_{ji} \exp\left(\sum_{i=1}^{n} w_{i}x_{ji}\right) \qquad \text{deriv}$$
of exp
$$= x_{ji} - x_{ji} \frac{\exp\left(\sum_{i=1}^{n} w_{i}x_{ji}\right)}{1 + \exp\left(\sum_{i=1}^{n} w_{i}x_{ji}\right)} = x_{ji} (1 - P(y_{j} = +|x_{j}))$$



#### **Logistic Regression**

- ▶ Recall that  $y_i = 1$  for positive instances,  $y_i = 0$  for negative instances.
- Gradient of  $w_i$  on positive example  $= x_{ji}(y_j P(y_j = +|x_j))$ If P(+) is close to 1, make very little update Otherwise make  $w_i$  look more like  $x_{ii}$ , which will increase P(+)
- Gradient of  $w_i$  on negative example  $= x_{ji}(-P(y_j = +|x_j))$ If P(+) is close to 0, make very little update Otherwise make  $w_i$  look less like  $x_{ij}$ , which will decrease P(+)
- ullet Can combine these gradients as  $x_j(y_j-P(y_j=1|x_j))$



#### Regularization

Regularizing an objective can mean many things, including an L2norm penalty to the weights:

$$\sum_{j=1}^{m} \mathcal{L}(x_j, y_j) - \lambda ||w||_2^2$$

- ▶ Keeping weights small can prevent overfitting
- For most of the NLP models we build, explicit regularization isn't necessary
  - ▶ Early stopping
  - ▶ Large numbers of sparse features are hard to overfit in a really bad way
  - ▶ For neural networks: dropout and gradient clipping



#### Logistic Regression: Summary

Model

$$P(y = +|x) = \frac{\exp(\sum_{i=1}^{n} w_i x_i)}{1 + \exp(\sum_{i=1}^{n} w_i x_i)}$$

▶ Inference

 $\operatorname{argmax}_{y} P(y|x)$  fundamentally same as Naive Bayes

$$P(y=1|x) \ge 0.5 \Leftrightarrow w^{\top}x \ge 0$$

 Learning: gradient ascent on the (regularized) discriminative loglikelihood Perceptron/SVM



#### Perceptron

- ▶ Simple error-driven learning approach similar to logistic regression
- Decision rule:  $w^{\top}x > 0$

If incorrect: if positive,  $w \leftarrow w + x$   $w \leftarrow w + x(1 - P(y = 1|x))$ 

**Logistic Regression** 

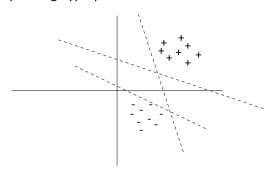
$$\begin{array}{ll} \text{if positive, } w \leftarrow w + x \\ \text{if negative, } w \leftarrow w - x \\ \end{array} \quad \begin{array}{ll} w \leftarrow w + x(1 - P(y = 1|x)) \\ w \leftarrow w - xP(y = 1|x) \\ \end{array}$$

• Guaranteed to eventually separate the data if the data are separable



#### **Support Vector Machines**

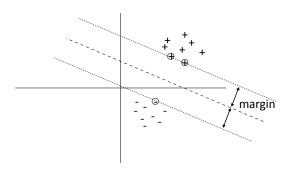
▶ Many separating hyperplanes — is there a best one?





#### **Support Vector Machines**

▶ Many separating hyperplanes — is there a best one?





#### **Support Vector Machines**

Constraint formulation: find w via following quadratic program:

Minimize 
$$\|w\|_2^2$$
  
s.t.  $\forall j \ w^\top x_j \ge 1 \text{ if } y_j = 1$   
 $w^\top x_j \le -1 \text{ if } y_j = 0$ 

minimizing norm with fixed margin <=> maximizing margin

As a single constraint:

$$\forall j \ (2y_j - 1)(w^\top x_j) \ge 1$$

▶ Generally no solution (data is generally non-separable) — need slack!



#### N-Slack SVMs

- ▶ The  $\xi_j$  are a "fudge factor" to make all constraints satisfied
- ▶ Take the gradient of the objective:

$$\frac{\partial}{\partial w_i} \xi_j = 0 \text{ if } \xi_j = 0$$

$$\frac{\partial}{\partial w_i} \xi_j = (2y_j - 1)x_{ji} \text{ if } \xi_j > 0$$

$$= x_{ji} \text{ if } y_j = 1, -x_{ji} \text{ if } y_j = 0$$

Looks like the perceptron! But updates more frequently



#### **Gradients on Positive Examples**

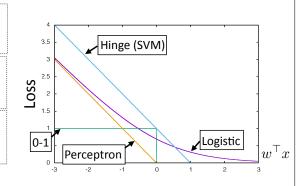
## Logistic regression $x(1 - \text{logistic}(w^{\top}x))$

#### Perceptron

 $x ext{ if } w^{\top}x < 0, ext{ else } 0$ 

SVM (ignoring regularizer)

 $x \text{ if } w^{\top}x < 1, \text{ else } 0$ 



\*gradients are for maximizing things, which is why they are flipped



#### **Comparing Gradient Updates (Reference)**

Logistic regression (unregularized)

$$x(y - P(y = 1|x)) = x(y - \text{logistic}(w^{\top}x))$$

y = 1 for pos, 0 for neg

#### Perceptron

(2y-1)x if classified incorrectly

0 else

#### SVM

 $(2y-1)x \;\;$  if not classified correctly with margin of 1 0 else

### 

#### Optimization — next time...

- ▶ Range of techniques from simple gradient descent (works pretty well) to more complex methods (can work better)
- Most methods boil down to: take a gradient and a step size, apply the gradient update times step size, incorporate estimated curvature information to make the update more effective



#### **Sentiment Analysis**

this movie was great! would watch again

+

the movie was gross and overwrought, but I liked it

+

this movie was not really very enjoyable



- ▶ Bag-of-words doesn't seem sufficient (discourse structure, negation)
- ▶ There are some ways around this: extract bigram feature for "not X" for all X following the not

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

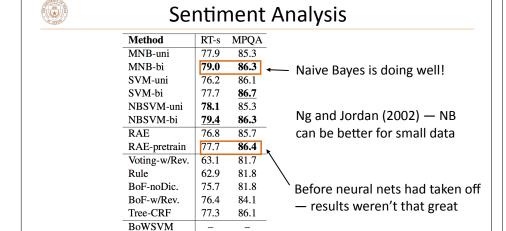


#### **Sentiment Analysis**

|     | Features          | # of     | frequency or | NB   | ME   | SVM  |
|-----|-------------------|----------|--------------|------|------|------|
|     |                   | features | presence?    |      |      |      |
| (1) | unigrams          | 16165    | freq.        | 78.7 | N/A  | 72.8 |
| (2) | unigrams          | "        | pres.        | 81.0 | 80.4 | 82.9 |
| (3) | unigrams+bigrams  | 32330    | pres.        | 80.6 | 80.8 | 82.7 |
| (4) | bigrams           | 16165    | pres.        | 77.3 | 77.4 | 77.1 |
| (5) | unigrams+POS      | 16695    | pres.        | 81.5 | 80.4 | 81.9 |
| (6) | adjectives        | 2633     | pres.        | 77.0 | 77.7 | 75.1 |
| (7) | top 2633 unigrams | 2633     | pres.        | 80.3 | 81.0 | 81.4 |
| (8) | unigrams+position | 22430    | pres.        | 81.0 | 80.1 | 81.6 |

▶ Simple feature sets can do pretty well!

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)



Kim (2014) CNNs 81.5 89.5



#### Recap

▶ Logistic regression:  $P(y=1|x) = \frac{\exp\left(\sum_{i=1}^n w_i x_i\right)}{\left(1 + \exp\left(\sum_{i=1}^n w_i x_i\right)\right)}$ 

Decision rule:  $P(y=1|x) \ge 0.5 \Leftrightarrow w^{\top}x \ge 0$ 

Gradient (unregularized): x(y - P(y = 1|x))

▶ SVM:

Wang and Manning (2012)

Decision rule:  $w^{\top}x \geq 0$ 

(Sub)gradient (unregularized): 0 if correct with margin of 1, else x(2y-1)



#### Recap

- ▶ Logistic regression, SVM, and perceptron are closely related
- ▶ SVM and perceptron inference require taking maxes, logistic regression has a similar update but is "softer" due to its probabilistic nature
- ▶ All gradient updates: "make it look more like the right thing and less like the wrong thing"