CS395T: Structured Models for NLP
Lecture 2: Binary Classification

Greg Durrett

Some slides adapted from Vivek Srikumar, University of Utah

Administrivia

» Course enrollment

» OHs this week: Jifan 1pm-2pm Tues (today) in GDC 1.304 TA desk #1
Greg 11am-12pm Weds + 10am-11am Fri in GDC 3.420

» Readings on course website
» Minil is out, due September 11

» Feel free to extend the code as needed; optimizers, featurization, etc.
isn’t set in stone

This Lecture

» Linear classification fundamentals

» Naive Bayes, maximum likelihood in generative models

» Three discriminative models: logistic regression, perceptron, SVM
» Different motivations but very similar update rules / inference!

Classification




Classification

» Datapoint = with label ¥ € {0,1}

» Embed datapoint in a feature space f(z) € R"
but in this lecture f(x) and x are interchangeable

. +
» Linear decision rule: w' f(z) +b> 0 L/ o

wa(x)>0 —

» Can delete bias if we augment feature space: - -
f(x)=10.5,1.6,0.3]
¥

[0.5,1.6,0.3,1]

Linear functions are powerful!

X1X2

fix) = [x1, x2]

X1

fIx) = [x1, X2, X1, X2%, x1x2]

» “Kernel trick” does this for “free,” but is too expensive to use in NLP
applications, training is O(n?) instead of O(n - (num feats))

Classification: Sentiment Analysis

this movie was great! would watch again Positive

that film was awful, I’ll never\watch again Negative

» Surface cues can basically tell you what’s going on here: presence or
absence of certain words (great, awful)
» Steps to classification:
» Turn examples like this into feature vectors
» Pick a model / learning algorithm

» Train weights on data to get our classifier

Feature Representation

this movie was great! would watch again

Positive

» Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains film] ..|

fx) =10 0

1 1

» Very large vector space (size of vocabulary), sparse features

» Requires indexing the features (mapping them to axes)

» More sophisticated feature mappings possible (tf-idf), as well as lots

of other features: character n-grams, parts of speech, lemmas, ...




Naive Bayes

Naive Bayes
» Data point * = (@1, ..., Z»), label y € {0, 1}
» Formulate a probabilistic model that places a distribution P(x,y)

» Compute P(y|x), predict argmax, P(y|r) to classify

P(y|z) = M Bayes’ Rule @
P(z) — constant: irrelevant
x P(y)P(z]y) for finding the max @
n __— “Naive” assumption: L
=Pl) H Plaily) linear model!
argmax, P(y|r) = argmax, log P(y|z) = argmax, [log P(y) + z”: log P(Iz|y)1
i=1

Naive Bayes Example

it was great — P(y|x) o [ ]

| Pyle) x P(y) [] Plasly)
i i=1

i n
argmax, log P(y|r) = argmax, |log P(y) + Z log P(i|y)
H i=1

Maximum Likelihood Estimation

» Data points (z;,y;) provided (j indexes over examples)

» Find values of P(y), P(x;|y) that maximize data likelihood (generative):
[T #0020 = TT 7o) | TT PG|
j=1 i=1
\

j=1
data points (j) features (i) ith feature of jth example

'\ /‘




Maximum Likelihood Estimation

» Imagine a coin flip which is heads with probability p

» Observe (H, H, H, T) and maximize likelihood: H P(y;) =p*(1 —p)

j=1
» Easier: maximize log likelihood log likelihood
Zlog P(y;) = 3logp+log(l —p) P(H) =0.75
j=1 g P
o

» Maximum likelihood parameters for binomial/ {
multinomial = read counts off of the data + normalize

Maximum Likelihood Estimation

» Data points (2}, ¥;) provided (j indexes over examples)

» Find values of P(y), P(x;|y) that maximize data likelihood (generative):

Ep(yj“r] lill H lelyj ]
'\

3

\

data points (j) features (i) ith feature of jth example

~

» Equivalent to maximizing logarithm of data likelihood:

> log Plyj,z) =)

j=1 j=1

log P(y;) + Zlogp(l‘ji|yj)]
i—1

Maximum Likelihood for Naive Bayes

this movie was great! would watch again TR P(+) = }
I liked it well enough for an action flick +| 21
| expected a great film and left happy + P(-) = )
i brilliant directing and stunning visuals + 1
i i P(great|+) = =
that film was awful, I'll never watch again  |—| 2
i Ididn’t really like that movie — P(great|—) = i

i dry and a bit distasteful, it misses the mark [—

great potential but ended up being a flop |—

it was great — P (y|z) [P(JF)P(gmatH)] = [ 1/4] - [ 2/3]
P(—)P(great|—) 1/8 1/3

Naive Bayes: Summary

» Model @

P(x,y) = P(y)HP(xily) @

» Inference

argmax, log P(y|r) = argmax,

log P(y) + ZlogP xz\y)]

i=1
» Alternatively: log P(y = +|z) — log P( =—lz) >0
+|5B :L'zly +)
& log + log >0
P( Z Plzily=-)

» Learning: maximize P(z,y ) by readlng counts off the data




Problems with Naive Bayes

the film was beautiful, stunning cinematography and gorgeous sets, but boring '—

P(xbeautiful““) =0.1 P(xbcautiful|_) =0.01
P(£stunning’+) =0.1 P(xstunning’_) =0.01
P(xgorgeousH’) =0.1 P<xgorgeous|—) =0.01
P(xboring|+) = 0.01 P(xboring’_) =0.1

» Correlated features compound: beautiful and gorgeous are not independent

» Naive Bayes is naive, but another problem is that it’s generative:
spends capacity modeling P(x,y), when what we care about is P(y|x)

» Discriminative models model P(y|x) directly (SVMs, most neural networks, ...

Logistic Regression

Logistic Regression

P(y = +|z) = logistic(w ' z)
exp(zn L W)
P pu— p— ?

» To learn weights: maximize discriminative Iog likelihood of data P(y|x)

L(zj,y; =+) = log P(y; = +lz;)

_ Z w;xj; — log (1 + exp (Z wzxﬂ>>

— i=1
sum over features

Logistic Regression

L(xj,y; =+) =1log P(y; = +|z;) = Zwixji — log (1 + exp (Z wmw))
=1

=1

OL(x4,y;)
8wi

exp (D21, wii)
xji1+exp (2211:1 wjxji) - xji(l a P(yj - +|$j)>

= —




Logistic Regression

» Recall that y; = 1 for positive instances, y; = 0 for negative instances.

» Gradient of w; on positive example = x;;(y; — P(y; = +|z;))

If P(+) is close to 1, make very little update
Otherwise make w; look more like x;;, which will increase P(+)

» Gradient of w; on negative example = xj;(—P(y; = +|z;))

If P(+) is close to 0, make very little update
Otherwise make w; look less like x;, which will decrease P(+)

» Can combine these gradients as z;(y; — P(y; = 1|z;))

Regularization

» Regularizing an objective can mean many things, including an L2-
norm penalty to the weights:

> Lwj,y5) — Mwlf3
j=1

» Keeping weights small can prevent overfitting

» For most of the NLP models we build, explicit regularization isn’t necessary
» Early stopping
» Large numbers of sparse features are hard to overfit in a really bad way

» For neural networks: dropout and gradient clipping

Logistic Regression: Summary

» Model
Py =+|z) = exp(Pi, witi)
L+ eXp(Z?:l W;%;)
» Inference

argmax, P(y|x) fundamentally same as Naive Bayes
Ply=1z) > 05w z>0

» Learning: gradient ascent on the (regularized) discriminative log-
likelihood

Perceptron/SVM




Perceptron

» Simple error-driven learning approach similar to logistic regression

» Decision rule: wTaj >0 Logistic Regression
» If incorrect: if positive, w < w +

if negative, w <— w — x w <+ w—zP(y = 1|z)

w w2l - Ply = 1a))

» Guaranteed to eventually separate the data if the data are separable

Support Vector Machines

» Many separating hyperplanes — is there a best one?

Support Vector Machines

» Many separating hyperplanes — is there a best one?

Support Vector Machines

» Constraint formulation: find w via following quadratic program:

Minimize ||w||3

T

stV wla; >1ify; =1

w x; < —1lify; =0

minimizing norm with
fixed margin <=>
maximizing margin

As a single constraint:

Vi (2y; — D(w'a;) > 1

» Generally no solution (data is generally non-separable) — need slack!




N-Slack SVMs

Minimize )\||w||§ + ij

j=1
st Wi 2y - Dw'ay) 21§

Vi & >0

» The ; are a “fudge factor” to make all constraints satisfied
» Take the gradient of the objective:
0 . 0 .
%Ej =0if fj =0 aiwlg] = (Qyj — 1)37ji if £j >0
= -'Ejz' 1f yj = 1, —.',Bji 1f yj =0

» Looks like the perceptron! But updates more frequently

Gradients on Positive Examples

Logistic regression
(1 — logistic(w " z)) o5

Hinge (SVM)

Perceptron 25

zifw'z <0, else 0

Loss

SVM (ignoring regularizer)

N
oo T 0-1
vitwTr <1 a0 O e TN g

-3 -2 -1 0 1 2 3

*gradients are for maximizing things,
which is why they are flipped

Comparing Gradient Updates (Reference)

Logistic regression (unregularized) y =1 for pos,

z(y — Py =1]x)) = 2(y — logistic(wT:I:)) 0 for neg

Perceptron
(2y — 1)z if classified incorrectly

0 else

SVM
(2y — 1)z if not classified correctly with margin of 1

0 else

Optimization — next time...

» Range of techniques from simple gradient descent (works pretty well)
to more complex methods (can work better)

» Most methods boil down to: take a gradient and a step size, apply the
gradient update times step size, incorporate estimated curvature
information to make the update more effective




Sentiment Analysis

this movie was great! would\watch again +

the movie was|gross and|overwrought, but Illiked it | +

this movie was not really very enjoyable —

» Bag-of-words doesn’t seem sufficient (discourse structure, negation)

» There are some ways around this: extract bigram feature for “not X” for
all X following the not

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

Sentiment Analysis

Features # of frequency or || NB ME SVM
features | presence?

(1) unigrams 16165 freq. 78.7 | N/A 72.8
(2) unigrams 7 pres. 81.0 | 804 82.9
(3) | unigrams+bigrams | 32330 pres. 80.6 80.8 82.7
(4) bigrams 16165 pres. 73| T7.4 771
(5) unigrams+POS 16695 pres. 81.5 | 80.4 81.9
(6) adjectives 2633 pres. 770 | 777 75.1
(7) | top 2633 unigrams 2633 pres. 80.3 | 81.0 81.4
(8) | unigrams+position | 22430 pres. 81.0 | 80.1 81.6

» Simple feature sets can do pretty well!

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

Sentiment Analysis

Method RTs MPQA

MNB-uni 77.9 85.3

MNB-bi 79.0 863« Naijve Bayes is doing well!
SVM-uni 762 86.1

SVM-bi 777 861

NBSVM-uni | 781  85.3
NBSVM-bi 794 863
RAE 76.8  85.7
RAE-pretrain | [77.7  86.4
Voting-w/Rev. | 63.1 81.7
Rule 629 81.8
BoF-noDic. 75.7 818
BoF-w/Rev. 764  84.1
Tree-CRF 713  86.1
BoWSVM - -

Kim (2014) CNNs |81.5 89.5

Ng and Jordan (2002) — NB
can be better for small data

Before neural nets had taken off
— results weren’t that great

Wang and Manning (2012)

Recap

exp (i wiw;)
(1 +exp (Do, wiz;))

Ply=1z) > 05w z>0

» Logistic regression: P(y=1lz) =
Decision rule:

Gradient (unregularized): z(y — P(y = 1|x))
» SVM:

.. T
Decision rule: w x > 0

(Sub)gradient (unregularized): 0 if correct with margin of 1, else z(2y — 1)




Recap

» Logistic regression, SVM, and perceptron are closely related

» SVM and perceptron inference require taking maxes, logistic regression
has a similar update but is “softer” due to its probabilistic nature

» All gradient updates: “make it look more like the right thing and less
like the wrong thing”




